首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Remote surface flow observations are crucial for improving the comprehension of hydrological phenomena. A recent advancement in remote hydrological measurements involves the use of drones for generating surface flow‐velocity field maps through large‐scale particle image velocimetry (LSPIV). In this work, we perform a comparative analysis of drone‐based LSPIV with fixed implementations. Quantitative indices are introduced to test the efficiency of the techniques with regards to measurement accuracy, sensitivity to the transit of tracers, and platform mobility. Experimental findings support drone‐based observations in outdoor settings. Specifically, measurements from the aerial platform are more sensitive to the transit of tracers and closer to benchmark values than traditional LSPIV implementations. Future work should aim at improving the stability of the aerial platform and mitigating the effects of tracer scarcity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Irrespective of their spatial extent, free-surface shallow flows are challenging measurement environments for most instruments due to the relatively small depths and velocities typically associated with these flows. A promising candidate for enabling measurements in such conditions is Large-scale Particle Image Velocimetry (LSPIV). This technique uses a non-intrusive approach to measure two-dimensional surface velocity fields with high spatial and temporal resolutions. Although there are many publications documenting the successful use of LSPIV in various laboratory and field open-channel flow situations, its performance has not been equally substantiated for measurement in shallow flows. This paper aims at filling in this gap by demonstrating the capabilities of LSPIV to: (a) accurately evaluate complex flow patterns in shallow channel flows; and (b) estimate depth in shallow flows using exclusively LSPIV measurements. The demonstration is provided by LSPIV measurements in three shallow flow laboratory situations with flow depths ranging from 0.05 to 0.31 m. The obtained measurements illustrate the LSPIV flexibility and reliability in measuring velocities in shallow and low-velocity (near-zero) flows. Moreover, the technique is capable to evaluate and map velocity-derived quantities that are difficult to document with alternative measurement techniques (e.g. vorticity and shear stress distributions and mapping of large-scale structure in the body of water).  相似文献   

3.
Movies taken by witnesses of extreme flood events are increasingly available on video sharing websites. They potentially provide highly valuable information on flow velocities and hydraulic processes that can help improve the post‐flood determination of discharges in streams and flooded areas. We investigated the troubles and potential of applying the now mature large‐scale particle image velocimetry (LSPIV) technique to such flood movies that are recorded under non‐ideal conditions. Processing was performed using user‐friendly, free software only, such as Fudaa‐LSPIV. Typical issues related to the image processing and to the hydrological analysis are illustrated using a selected example of a pulsed flash‐flood flow filmed in a mountainous torrent. Simple corrections for lens distortion (fisheye) and limited incoherent camera movement (shake) were successfully applied, and the related errors were reduced to a few percents. Testing the different image resolution levels offered by YouTube showed that the difference in time‐averaged longitudinal velocity was less than 5% compared with full resolution. A limited number of GRPs, typically 10, is required, but they must be adequately distributed around the area of interest. The indirect determination of the water level is the main source of uncertainty in the results, usually much more than errors because of the longitudinal slope and waviness of the free‐surface of the flow. The image‐based method yielded direct discharge estimates of the base flow between pulses, of the pulse waves, and of the time‐averaged flow over a movie sequence including a series of five pulses. A comparison with traditional indirect determination methods showed that the critical‐depth method may produce significantly biassed results for such a fast, unsteady flow, while the slope‐area method seems to be more robust but would overestimate the time‐averaged flow rate if applied to the high‐water marks of a pulsed flow. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Water flow velocity is an important hydraulic variable in hydrological and soil erosion models, and is greatly affected by freezing and thawing of the surface soil layer in cold high-altitude regions. The accurate measurement of rill flow velocity when impacted by the thawing process is critical to simulate runoff and sediment transport processes. In this study, an electrolyte tracer modelling method was used to measure rill flow velocity along a meadow soil slope at different thaw depths under simulated rainfall. Rill flow velocity was measured using four thawed soil depths (0, 1, 2 and 10 cm), four slope gradients (5°, 10°, 15° and 20°) and four rainfall intensities (30, 60, 90 and 120 mm·h−1). The results showed that the increase in thawed soil depth caused a decrease in rill flow velocity, whereby the rate of this decrease was also diminishing. Whilst the rill flow velocity was positively correlated with slope gradient and rainfall intensity, the response of rill flow velocity to these influencing factors varied with thawed soil depth. The mechanism by which thawed soil depth influenced rill flow velocity was attributed to the consumption of runoff energy, slope surface roughness, and the headcut effect. Rill flow velocity was modelled by thawed soil depth, slope gradient and rainfall intensity using an empirical function. This function predicted values that were in good agreement with the measured data. These results provide the foundation for a better understanding of the effect of thawed soil depth on slope hydrology, erosion and the parameterization scheme for hydrological and soil erosion models.  相似文献   

5.
Advances in spatial analytical software allow digital elevation models (DEMs) to be produced which accurately represent landform surface variability and offer an important opportunity to measure and monitor morphological change and sediment transfer across a variety of spatial scales. Many of the techniques presently employed (aerial LIDAR, EDM theodolites, GPS, photogrammetry) suffer coverage or resolution limitations resulting in a trade‐off between spatial coverage and morphologic detail captured. This issue is particularly important when rates of spatial and temporal change are considered for fluvial systems. This paper describes the field and processing techniques required for oblique laser scanning to acquire 0·01 m resolution digital elevation data of an upland reach of the River Wharfe in the UK. The study site is variable with rapidly changing morphology, diverse vegetation and the presence of water, and these are evaluated with respect to laser data accuracy. Scan location, frequency and distance are discussed with reference to survey accuracy and efficiency, and a field protocol is proposed. Scan data cloud merging was achieved with a high degree of precision (sub‐centimetre) and positional data are shown to be very accurate for exposed surfaces. Vegetation and water decrease the accuracy, as the laser pulse is often prevented from reaching the ground surface or is not returned. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
An imaging‐based automated large‐scale particle image velocimetry (LSPIV) system for flash flood monitoring is developed and deployed in a mountainous stream in the Longchi Catchment, Chengdu, China. This system is built from a low‐cost Raspberry Pi board‐level computer with a camera module, which can acquire continuous images/videos automatically at programmed intervals. The minimum quadratic difference algorithm tracks surface patterns as flow tracers to estimate the distribution of surface velocities. Meanwhile, a stereo imaging‐based ‘virtual pole’ method has been developed to reconstruct the three‐dimensional topography with a stereo digital camera, and a cross‐sectional bathymetry has been generated without manual surveying. The varying water stage and water surface gradient, which are critical parameters that affect image rectification and surface velocity measurements, can also be directly resolved by applying the two imaging modules together. Discharge can then be estimated with the velocity–area method through selected cross sections. A flash flood that occurred between 24 July 2014 and 25 July 2014 is selected for analysis. The water surface level reconstructed from image processing was validated with marked water levels, and a good agreement was found with a root mean square error of 3.7 cm. The discharge recorded during the flood recession process ranged from approximately 3.5 to 27 m3/s. The rating curve obtained can be well described by a power function, and the linear regression suggested a Manning's n roughness coefficient of 0.18 of one specific cross section. Some limitations of the presented large‐scale particle image velocimetry system are also put forward, and possible solutions are provided for future improvements. With these proposed upgrades, the system can provide valuable datasets of flash floods in steep mountainous streams, which are critically needed for improving our understanding and modelling of many hydrological processes associated with flood generation, propagation and erosion, as well as for real‐time forecasting. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
The effects of ice cover on flow characteristics in meandering rivers are still not completely understood. Here, we quantify the effects of ice cover on flow velocity, the vertical and spatial flow distribution, and helical flow structure. Comparison with open‐channel low flow conditions is performed. An acoustic doppler current profiler (ADCP) is used to measure flow from up to three meander bends, depending on the year, in a small sandy meandering subarctic river (Pulmanki River) during two consecutive ice‐covered winters (2014 and 2015). Under ice, flow velocities and discharges were predominantly slower than during the preceding autumn open‐channel conditions. Velocity distribution was almost opposite to theoretical expectations. Under ice, velocities reduced when entering deeper water downstream of the apex in each meander bend. When entering the next bend, velocities increased again together with the shallower depths. The surface velocities were predominantly greater than bottom/riverbed velocities during open‐channel flow. The situation was the opposite in ice‐covered conditions, and the maximum velocities occurred in the middle layers of the water columns. High‐velocity core (HVC) locations varied under ice between consecutive cross‐sections. Whereas in ice‐free conditions the HVC was located next to the inner bank at the upstream cross‐sections, the HVC moved towards the outer bank around the apex and again followed the thalweg in the downstream cross‐sections. Two stacked counter‐rotating helical flow cells occurred under ice around the apex of symmetric and asymmetric bends: next to the outer bank, top‐ and bottom‐layer flows were towards the opposite direction to the middle layer flow. In the following winter, no clear counter‐rotating helical flow cells occurred due to the shallower depths and frictional disturbance by the ice cover. Most probably the flow depth was a limiting factor for the ice‐covered helical flow circulation, similarly, the shallow depths hinder secondary flow in open‐channel conditions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Conventional roughness–resistance relationships developed for pipe and open‐channel flows cannot accurately describe shallow overland flows over natural rough surfaces. This paper develops a new field methodology combining terrestrial laser scanning (TLS) and overland flow simulation to provide a high‐resolution dataset of surface roughness and overland flow hydraulics as simulated on natural bare soil surfaces. This method permits a close examination of the factors controlling flow velocity and a re‐evaluation of the relationship between surface roughness and flow resistance. The aggregate effect of flow dynamics, infiltration and depression storage on retarding the passage of water over a surface is important where runoff‐generating areas are distant from well‐defined channels. Experiments to separate these effects show that this ‘effective resistance’ is dominated by surface roughness. Eight measurements of surface roughness are found to be related to flow resistance: standard deviation of elevations, inundation ratio, pit density (measured both perpendicular and parallel to the flow direction), slope, median depth, skewness of the depth distribution and frontal area. Hillslope position is found to affect the significant roughness measures. In contrast, infiltration rate has little effect on the velocity of water fronts advancing over the soil surfaces examined here and the effect of depression storage is limited. Overland flow resistance is depth dependent where complex microtopographic structures are progressively inundated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
10.
We herein report the results of a ?eld study that was designed to test the feasibility of using ground‐based LIDAR to map the topography of a sand dune in high spatial resolution. A portable Cyrax 2500 three‐dimensional (3D) laser scanner was used to digitally capture the topography of a barchan, roughly 4 m tall and 50 m long, located in the White Sands National Monument, New Mexico. We performed eleven scans around the barchan and obtained the elevation relative to the inter‐dune ?at at roughly 1/4 million points on the dune surface. The elevation point data were then interpolated to yield a continuous surface model of the dune topography with c. 10 cm spatial resolution and c. 6 mm position accuracy. The results from this ?eld study clearly demonstrate the potential of ground‐based LIDAR as a mapping tool for use in aeolian research and other earth science applications. The 3D surface model of the dune can describe the morphology with hitherto unprecedented detail. Moreover, the surface of the dune is mapped with a minimum of foot traf?c on the dune itself. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
Few methods exist for measuring rapidly changing fluid contents at the pore scale that simultaneously allow whole flow field visualization. We present a method for using real-time neutron radiography to measure rapidly changing moisture profiles in porous media. The imaging technique monitors the attenuation of a thermal neutron beam as it traverses a flow field and provides measurements every 30 ms with an image area >410 cm2 and a spatial resolution 0.05 cm. The technique is illustrated by measuring the variation in moisture content across a wetting front moving at constant velocity through SiO2 sand. The relative contributions of the hydraulic conductivity and diffusivity terms in Richards' equation to the total fluid flux within the wetting front region were also measured. The diffusivity was found to rise from zero to a peak value within the wetting front region before falling off while the conductivity was found to rise monotonically. The reliability of the technique was checked via mass balance.  相似文献   

12.
River system measurement and mapping using UAVs is both lean and agile, with the added advantage of increased safety for the surveying crew. A common parameter of fluvial geomorphological studies is the flow velocity, which is a major driver of sediment behavior. Advances in fluid mechanics now include metrics describing the presence and interaction of coherent structures within a flow field and along its boundaries. These metrics have proven to be useful in studying the complex turbulent flows but require time‐resolved flow field data, which is normally unavailable in geomorphological studies. Contactless UAV‐based velocity measurement provides a new source of velocity field data for measurements of extreme hydrological events at a safe distance, and could allow for measurements of inaccessible areas. Recent works have successfully applied large‐scale particle image velocimetry (LSPIV) using UAVs in rivers, focusing predominantly on surficial flow estimation by tracking intensity differences between georeferenced images. The objective of this work is to introduce a methodology for UAV based real‐time particle tracking in rivers (RAPTOR) in a case study along a short test reach of the Brigach River in the German Black Forest. This methodology allows for large‐scale particle tracking velocimetry (LSPTV) using a combination of floating, infrared light‐emitting particles and a programmable embedded color vision sensor in order to simultaneously detect and track the positions of objects. The main advantage of this approach is its ability to rapidly collect and process the position data, which can be done in real time. The disadvantages are that the method requires the use of specialized light‐emitting particles, which in some cases cannot be retrieved from the investigation area, and that the method returns velocity data in unscaled units of px/s. This work introduces the RAPTOR system with its hardware, data processing workflow, and provides an example of unscaled velocity field estimation using the proposed method. First experiences with the method show that the tracking rate of 50 Hz allows for position estimation with sub‐pixel accuracy, even considering UAV self‐motion. A comparison of the unscaled tracks after Savitzky–Golay filtering shows that although the time‐averaged velocities remain virtually the same, the filter reduces the standard deviation by more than 40% and the maxima by 20%. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
High‐resolution snow depth (SD) maps (1 × 1 m) obtained from terrestrial laser scanner measurements in a small catchment (0.55 km2) in the Pyrenees were used to assess small‐scale variability of the snowpack at the catchment and sub‐grid scales. The coefficients of variation are compared for various plot resolutions (5 × 5, 25 × 25, 49 × 49, and 99 × 99 m) and eight different days in two snow seasons (2011–2012 and 2012–2013). We also studied the relation between snow variability at the small scale and SD, topographic variables, small‐scale variability in topographic variables. The results showed that there was marked variability in SD, and it increased with increasing scales. Days of seasonal maximum snow accumulation showed the least small‐scale variability, but this increased sharply with the onset of melting. The coefficient of variation (CV) in snowpack depth showed statistically significant consistency amongst the various spatial resolutions studied, although it declined progressively with increasing difference between the grid sizes being compared. SD best explained the spatial distribution of sub‐grid variability. Topographic variables including slope, wind sheltering, sub‐grid variability in elevation, and potential incoming solar radiation were also significantly correlated with the CV of the snowpack, with the greatest correlation occurring at the 99 × 99 m resolution. At this resolution, stepwise multiple regression models explained more than 70% of the variance, whereas at the 25 × 25 m resolution they explained slightly more than 50%. The results highlight the importance of considering small‐scale variability of the SD for comprehensively representing the distribution of snowpack from available punctual information, and the potential for using SD and other predictors to design optimized surveys for acquiring distributed SD data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Understanding the dynamics of spatial and temporal variability of soil moisture at the regional scale and daily interval, respectively, has important implications for remote sensing calibration and validation missions as well as environmental modelling applications. The spatial and temporal variability of soil moisture was investigated in an agriculturally dominated region using an in‐situ soil moisture network located in central Saskatchewan, Canada. The study site evaluated three depths (5, 20, 50 cm) through 139 days producing a high spatial and temporal resolution data set, which were analysed using statistical and geostatistical means. Processes affecting standard deviation at the 5‐cm depth were different from the 20‐cm and 50‐cm depths. Deeper soil measurements were well correlated through the field season. Further analysis demonstrated that lag time to maximum correlation between soil depths increased through the field season. Temporal autocorrelation was approximately twice as long at depth compared to surface soil moisture as measured by the e‐folding frequency. Spatial correlation was highest under wet conditions caused by uniform rainfall events with low coefficient of variation. Overall soil moisture spatial and temporal variability was explained well by rainfall events and antecedent soil moisture conditions throughout the Kenaston soil moisture network. It is expected that the results of this study will support future remote sensing calibration and validation missions, data assimilation, as well as hydrologic model parameterization for use in agricultural regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Two field tests were completed to compare the performance of an electromagnetic current meter (ECM) with that of an acoustic Doppler velocimeter (ADV) in gravel‐bed rivers. Research was particularly motivated by the need to measure flow properties in highly energetic turbulent flows. Measurements were made at two field sites, one at moderate velocities (up to 70 cm/s) and with moderate turbulence intensities (10–20% of mean flow), and the other in an area of non‐uniform flow that included locations with fast mean velocities (up to 1.75 m/s) and high turbulent intensities (up to 50% of mean flow). Comparison of means, standard deviations, turbulent kinetic energy and Reynolds shear stress confirm the general agreement between the ECMs and ADVs. The general agreement is subject to limitations associated with the sample volume and frequency response of the instruments, and only applies within restricted velocity (up to ≈1.25 m/s) and turbulence intensity ranges (up to ≈0·125 m/s). At higher turbulence intensities, spectral analysis showed anomalous behavior of the ADV signal, especially in the vertical velocity component. Quadrant analysis of the Reynolds stress suggests that these problems occur predominantly in quadrants 1 and 3. Errors in ADV measurements were estimated using four different methods: one that utilized the characteristic noise floor in spectral plots, one based on internal ADV measurements of signal correlation and two techniques that aggregate errors related to various sub‐factors. Estimates were divergent at high flows. Techniques that rely on sub‐factors appeared to underestimate the impact of high turbulence on signal quality. The key conclusion for future field applications is that the older ECM technology provides the more reliable estimates of flow parameters in high turbulence. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Topographic measurements are essential for the study of earth surface processes. Three‐dimensional data have been conventionally obtained through terrestrial laser scanning or photogrammetric methods. However, particularly in steep and rough terrain, high‐resolution field measurements remain challenging and often require new creative approaches. In this paper, range imaging is evaluated as an alternative method for obtaining surface data in such complex environments. Range imaging is an emerging time‐of‐flight technology, using phase shift measurements on a multi‐pixel sensor to generate a distance image of a surface. Its suitability for field measurements has yet not been tested. We found ambient light and surface reflectivity to be the main factors affecting error in distance measurements. Low‐reflectivity surfaces and strong illumination contrasts under direct exposure to sunlight lead to noisy distance measurements. However, regardless of lighting conditions, the accuracy of range imaging was markedly improved by averaging multiple images of the same scene. For medium ambient lighting (shade) and a light‐coloured surface the measurement uncertainty was approximately 9 mm. To further test the suitability of range imaging for field applications we measured a reach of a steep mountain stream with a horizontal resolution of approximately 1 cm (in the focal plane of the camera), allowing for the interpolation of a digital elevation model on a 2 cm grid. Comparison with an elevation model obtained from terrestrial laser scanning for the same site revealed that both models show similar degrees of topographic detail. Despite limitations in measurement range and accuracy, particularly at bright ambient lighting, range imaging offers three‐dimensional data in real time and video mode without the need of post‐processing. Therefore, range imaging is a useful complement or alternative to existing methods for high‐resolution measurements in small‐ to medium‐scale field sites. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Shear‐wave statics in marine seismic exploration data are routinely too large to be estimated using conventional techniques. Near‐surface unconsolidated sediments are often characterized by low values of Vs and steep velocity gradients. Minor variations in sediment properties at these depths correspond to variations in the shear‐wave velocity and will produce significant static shifts. It is suggested that a significant proportion of the shear‐wave statics solution can be estimated by performing a separate high‐resolution survey to target near‐surface unconsolidated sediments. Love‐wave, shear‐wave refraction and geotechnical measurements were individually used to form high‐resolution near‐surface shear‐wave velocity models to estimate the shear‐wave statics for a designated survey line. Comparisons with predicted statics revealed that shear‐wave statics could not be estimated using a velocity model predicted by substituting geotechnical measurements into empirical relationships. Empirical relationships represent a vast simplification of the factors that control Vs and are therefore not sufficiently sensitive to estimate shear‐wave statics. Refraction measurements are potentially sensitive to short‐wavelength variations in sediment properties when combined with accurate navigational data. Statics estimated from Love‐wave data are less sensitive, and sometimes smoothed in appearance, since interpreted velocity values represent an average both laterally and vertically over the receiver array and the frequency–depth sensitivity range, respectively. For the survey site, statics estimated from near‐surface irregularities using shear‐wave refraction measurements represent almost half the total statics solution. More often, this proportion will be greater when bedrock relief is less.  相似文献   

18.
Shear velocity u* is an important parameter in geophysical flows, in particular with respect to sediment transport dynamics. In this study, we investigate the feasibility of applying five standard methods [the logarithmic mean velocity profile, the Reynolds stress profile, the turbulent kinetic energy (TKE) profile, the wall similarity and spectral methods] that were initially developed to estimate shear velocity in smooth bed flow to turbulent flow over a loose bed of coarse gravel (D50 = 1·5 cm) under sub‐threshold conditions. The analysis is based on quasi‐instantaneous three‐dimensional (3D) full depth velocity profiles with high spatial and temporal resolution that were measured with an Acoustic Doppler Velocity Profiler (ADVP) in an open channel. The results of the analysis confirm the importance of detailed velocity profile measurements for the determination of shear velocity in rough‐bed flows. Results from all methods fall into a range of ± 20% variability and no systematic trend between methods was observed. Local and temporal variation in the loose bed roughness may contribute to the variability of the logarithmic profile method results. Estimates obtained from the TKE and Reynolds stress methods reasonably agree. Most results from the wall similarity method are within 10% of those obtained by the TKE and Reynolds stress methods. The spectral method was difficult to use since the spectral energy of the vertical velocity component strongly increased with distance from the bed in the inner layer. This made the choice of the reference level problematic. Mean shear stress for all experiments follows a quadratic relationship with the mean velocity in the flow. The wall similarity method appears to be a promising tool for estimating shear velocity under rough‐bed flow conditions and in field studies where other methods may be difficult to apply. This method allows for the determination of u* from a single point measurement at one level in the intermediate range (0·3 < h < 0·6). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Vegetation cover is an important factor for erosion control. Laboratory‐simulated rainfall experiments were conducted to quantify the effectiveness of patchy distributed Artemisia capillaris in retarding overland flow velocity. Simulated storms (60, 90, 120, and 150 mm h?1) were applied on a bare plot (CK) and four different plant patterns, a banded pattern perpendicular to the slope direction (BP), a single long strip parallel to slope direction (LP), small patches distributed like a checkerboard (SP1), and small patches distributed like a letter “X” (SP2). All treatments had three replicates. Each plot underwent two sets of experiments, intact plant plots and root plots (the above‐ground parts were removed, only roots were reserved), respectively. Results showed that flow velocity increased with rainfall intensity, and the lower slope velocity (Vl) was higher than the upper slope velocity (Vu). The removal of grass shoots increased flow velocity. Compared with bare soil plot, intact plants reduced mean flow velocity by 14%–60%, whereas the reduction declined to <40% for the root plots. BP and both SP treatments performed more effectively than LP in retarding flow velocity, whereas no significant differences were identified between BP and SP. The contributions of A. capillaris shoots and roots to the reductions in flow velocity under different rainfall intensities were different. The shoots made greater contribution of 53%–97% at 60 and 90 mm h–1, and the roots contributed more (51%–81%) at 120 and 150 mm h–1. Runoff and sediment rate had significant (p < 0.05) linear correlations with mean flow velocity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
This study investigates spatial patterns and temporal dynamics of aquifer–river exchange flow at a reach of the River Leith, UK. Observations of sub‐channel vertical hydraulic gradients at the field site indicate the dominance of groundwater up‐welling into the river and the absence of groundwater recharge from surface water. However, observed hydraulic heads do not provide information on potential surface water infiltration into the top 0–15 cm of the streambed as these depths are not covered by the existing experimental infrastructure. In order to evaluate whether surface water infiltration is likely to occur outside the ‘window of detection’, i.e. the shallow streambed, a numerical groundwater model is used to simulate hydrological exchanges between the aquifer and the river. Transient simulations of the successfully validated model (Nash and Sutcliff efficiency of 0·91) suggest that surface water infiltration is marginal and that the possibility of significant volumes of surface water infiltrating into non‐monitored shallow streambed sediments can be excluded for the simulation period. Furthermore, the simulation results show that with increasing head differences between river and aquifer towards the end of the simulation period, the impact of streambed topography and hydraulic conductivity on spatial patterns of exchange flow rates decreases. A set of peak flow scenarios with altered groundwater‐surface water head gradients is simulated in order to quantify the potential for surface water infiltration during characteristic winter flow conditions following the observation period. The results indicate that, particularly at the beginning of peak flow conditions, head gradients are likely to cause substantial increase in surface water infiltration into the streambed. The study highlights the potential for the improvement of process understanding of hyporheic exchange flow patterns at the stream reach scale by simulating aquifer‐river exchange fluxes with a standard numerical groundwater model and a simple but robust model structure and parameterization. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号