首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 440 毫秒
1.
This paper is an experimental investigation into the removal of arsenic species from simulated groundwater by adsorption onto Ca2+ impregnated granular activated carbon (GAC‐Ca) in the presence of impurities like Fe and Mn. The effects of adsorbent concentration, pH and temperature on the percentage removal of total arsenic (As(T)), As(III) and As(V) have been discussed. Under the experimental conditions, the optimum adsorbent concentration of GAC‐Ca was found to be 8 g/L with an agitation time of 24 h, which reduced As(T) concentration from 188 to 10 μg/L. Maximum removal of As(V) and As(III) was observed in a pH range of 7–11 and 9–11, respectively. Removal of all the above arsenic species decreased slightly with increasing temperature. The presence of Fe and Mn increased the adsorption of arsenic species. Under the experimental conditions at 30°C, the maximum percentage removals of As(T), As(III), As(V), Fe, and Mn were found to be ca. 94.3, 90.6, 98.0, 100 and 63%, respectively. It was also observed that amongst the various regenerating liquids used, a 5 N H2SO4 solution exhibited maximum regeneration (ca. 91%) of the spent GAC‐Ca.  相似文献   

2.
The effect of varying parameters such as dye concentration, adsorbent dose, pH and temperature on the adsorption capacity of Pleurotus ostreatus is investigated. The commonly available white rot fungus Pleurotus ostreatus is investigated as a viable biomaterial for the biological treatment of synthetic basic methylene blue effluents. The results obtained from the batch experiments reveal the ability of the fungus to remove methylene blue. The performance is dependent on the dye concentration, pH, and fungal biomass. The equilibrium and kinetics of adsorption are investigated and the Langmuir equation is used to fit the equilibrium isotherm. The adsorption isotherm of methylene blue follows only the Langmuir model with a correlation coefficient of ca. 0.96–0.99. The maximum adsorption capacity is ca. 70 mg of dye per g of dry fungus at pH 11, 70 mg L–1 dye, and 0.1 g L–1 fungus concentration, respectively. This study demonstrates that the fungus could be used as an effective biosorbent for the treatment of dye‐containing wastewater streams.  相似文献   

3.
For the first time ever, Enteromorpha compressa macroalgae (ECM), which is commonly found in Turkey, has been used as biosorbent by us. This study aims to investigate the biosorption of Cd2+ from aqueous solutions in a batch system by using an alga of ECM in different concentrations, pH levels, agitation rates (90–150 rpm), and contact periods. The maximum biosorption capacity of the ECM was found to be 9.50 mg/g at pH 6, Cd2+ initial concentration of 10 mg/L and agitation rate 150 rpm. Cadmium removal efficiency was about 95%. The experimental isotherm data were analyzed using the Langmuir and Freundlich equations. Isotherm parameters for both equations were determined and discussed. The stated biosorption mechanism is explained by the Freundlich isotherm (r2 = 0.998) theory. Two simplified kinetic models including a pseudo‐first‐ and second‐order equation were selected to follow the biosorption process. Kinetic parameters; rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated and discussed. It was shown that the biosorption of cadmium onto ECM could be described by the pseudo‐second‐order equation (r2 > 0.99).  相似文献   

4.
Adsorptive removal of EDTA (ethylenediaminetetraacetic acid) from aqueous solution was studied using steam pyrolyzed activated carbon. Rubber wood sawdust, obtained from a local timber facility at Kodangavila, Trivandrum, Kerala, India was used as the precursor for the production of the activated carbon. Batch adsorption experiments were employed to monitor and optimize the removal process. The experimental parameters, i. e., solution pH, agitation time, initial EDTA concentration and adsorbent dosage, affecting the adsorption of EDTA onto sawdust activated carbon (SDAC) were optimized. The inner core mechanism for the interaction between EDTA and SDAC, which resulted in the adsorption process, was also discussed. The change in amount of EDTA adsorbed onto SDAC and CAC (commercial activated carbon) was compared over a wide range of pH (2.0–8.0). The maximum removal of EDTA took place in the pH range of 4.0–6.0 for SDAC and 5.0–5.5 for CAC, which demonstrates the effectiveness of the former adsorbent. Kinetic as well as equilibrium studies were performed to determine the rate constant and adsorption capacity, respectively. The adsorption kinetic data was fitted with pseudo‐first‐order kinetics and the equilibrium data was shown to follow the Langmuir isotherm model. These observations explain the formation of a monolayer of EDTA on the surface of SDAC as confirmed by the slow approach to equilibrium after 4 h of contact time. The adsorption capacity of SDAC for the removal of EDTA was 0.526 mmol/g and is seen to be greater than that of CAC and other reported adsorbents (0.193–0.439 mmol/g). Finally, it is clear that the production of steam pyrolyzed activated carbon in the presence of K2CO3 greatly enhanced EDTA removal and resulted in a product with possible commercial value for wastewater treatment strategies.  相似文献   

5.
The present study was aimed at removing cadmium ions from aqueous solution through batch studies using adsorbents, such as, granular activated carbon (GAC) and activated clay (A‐clay). GAC was of commercial grade where as the A‐clay was prepared by acid treatment of clay with 1 mol/L of H2SO4. Bulk densities of A‐clay and GAC were 1132 and 599 kg/m3, respectively. The surface areas were 358 m2/g for GAC and 90 m2/g for A‐clay. The adsorption studies were carried out to optimize the process parameters, such as, pH, adsorbent dosage, and contact time. The results obtained were analyzed for kinetics and adsorption isotherm studies. The pH value was optimized at pH 6 giving maximum Cd removal of 84 and 75.2% with GAC and A‐clay, respectively. The adsorbent dosage was optimized and was found to be 5 g/L for GAC and 10 g/L for A‐clay. Batch adsorption studies were carried out with initial adsorbate (Cd) concentration of 100 mg/L and adsorbent dosage of 10 g/L at pH 6. The optimum contact time was found to be 5 h for both the adsorbents. Kinetic studies showed Cd removal a pseudo second order process. The isotherm studies revealed Langmuir isotherm to better fit the data than Freundlich isotherm.  相似文献   

6.
Granular activated carbon (GAC) adsorption of two representative taste and odor (T & O) compounds, 2‐isopropyl‐3‐methoxy pyrazine (IPMP), and 2‐isobutyl‐3‐methoxy pyrazine (IBMP), in drinking water was investigated. Results show that the modified Freundlich equation best fit the experimental data during the adsorption isotherm tests, and the pseudo first‐order kinetics and intra‐particle diffusion kinetics well described the adsorption kinetics pattern. The calculated thermodynamic parameters (ΔH0, ΔS0, and ΔG0) indicated a spontaneous and endothermic adsorption process. Factors affecting the treatment efficiency were carefully evaluated. Acidic and alkaline conditions both favored GAC adsorption of IPMP and IBMP, especially the former. With the GAC dosage increasing, the first order adsorption rates increased, while the intra‐particle adsorption rates decreased. Within 12 h, 200 mg/L GAC could remove >90% of 150 µg/L IPMP and IBMP via adsorption at pH 3–11. Therefore, GAC is a promising treatment technology to control the T & O compounds associated water pollution.  相似文献   

7.
Lepidocrocite (γ‐FeOOH) nanoparticles were synthesized from iron(II) sulfate solution and characterized using X‐ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform‐IR (FT‐IR), nitrogen adsorption, and point of zero charge pH (pHPZC) analyses. TEM, XRD, and FT‐IR analyses proved the synthesis of nano‐lepidocrocite. Surface area and pHPZC of the synthesized lepidocrocite were 68.1 m2 g?1 and 4.8, respectively. Utilization of the synthesized lepidocrocite in the adsorption of Lanacron brown S‐GL (LBS‐GL) from aqueous solutions was investigated, and the effect of lepidocrocite dosage, pH, temperature, and contact time on this process were optimized and modeled using response surface methodology approach. The lepidocrocite dosage of 0.015 g, pH 3.5, temperature of 38°C, and contact time of 100 min were determined as optimum adsorption conditions. Isotherm and kinetics of the adsorption process were analyzed at the optimum conditions. The equilibrium data were fitted well to the Langmuir isotherm model. The maximum monolayer adsorption capacity was 528.21 mg g?1. The adsorption process was described by the pseudo‐second‐order kinetic model. Furthermore, the effect of pH on the desorption of LBS‐GL was investigated. High LBS‐GL desorption efficiency was achieved at a high pH value.  相似文献   

8.
Activated carbons prepared from sunflower seed hull have been used as adsorbents for the removal of acid blue 15 (AB‐15) from aqueous solution. Batch adsorption techniques were performed to evaluate the influences of various experimental parameters, e. g., temperature, adsorbent dosage, pH, initial dye concentration and contact time on the adsorption process. The optimum conditions for AB‐15 removal were found to be pH = 3, adsorbent dosage = 3 g/L and equilibrium time = 4 h at 30°C. The adsorption of AB‐15 onto the adsorbent was found to increase with increasing dosage. It was found from experimental results that the Langmuir isotherm fits the data better than the Freundlich and Temkin isotherms. The maximum adsorption capacity, Qm (at 30°C) was calculated for SF1, SF2, and SF3 as 75, 125 and 110 mg g–1 of adsorbent, respectively. It was found that the adsorption follows pseudo‐second order kinetics. The thermodynamic parameters such as ΔG°, ΔH°, and ΔS° were also evaluated. The activated carbons prepared were characterized by FT‐IR, SEM and BET analysis.  相似文献   

9.
Biomass char (BC) deriving from fast pyrolysis of biomass was a potential adsorption material due to its relative high fixed‐carbon content and the inherent porous structures. Adsorption of phosphate from aqueous solution by BC was investigated in this paper. The results showed that the adsorption capacity of BC was dependent on pyrolysis conditions, such as temperature and holding time. The maximum adsorption capacity for phosphate was approximately 15.11 mg g?1 at 298 K. The pseudo‐second order model of the adsorption kinetics indicated that the adsorption process was complex and several mechanisms were involved. Equilibrium isotherm was satisfactorily followed the Freundlich isotherm model. The KF value in Freundlich equation gradually increased with elevating temperature. Moreover, the thermodynamic constants: ΔG0, ΔH0, and ΔS0 were evaluated as ?6.49 kJ mol?1 (at 298 K), 13.41 kJ mol?1, and 66.70 J mol?1 K?1, respectively. Phosphate adsorption onto BC was spontaneous and endothermic. As a waste, BC was a potentially attractive adsorbent for phosphate removal from aqueous solution with low cost and high capability.  相似文献   

10.
This paper discusses about the adsorption of metal ions such as Cu(II), Cd(II), Zn(II), and Ni(II) from aqueous solution by sulfuric acid treated cashew nut shell (STCNS). The adsorption process depends on the solution pH, adsorbent dose, contact time, initial metal ions concentration, and temperature. The adsorption kinetics was relatively fast and equilibrium was reached at 30 min. The adsorption equilibrium follows Langmuir adsorption isotherm model. The maximum adsorption capacity values of the modified cashew nut shell (CNS) for metal ions were 406.6 mg/g for Cu(II), 436.7 mg/g for Cd(II), 455.7 mg/g for Zn(II), and 456.3 mg/g for Ni(II). The thermodynamic study shows the adsorption of metal ions onto the STCNS was spontaneous and exothermic in nature. The kinetics of metal ions adsorption onto the STCNS followed a pseudo‐second‐order kinetic model. The external mass transfer controlled metal ions removal at the earlier stages and intraparticle diffusion at the later stages of adsorption. A Boyd kinetic plot confirms that the external mass transfer was the slowest step involved in the adsorption of metal ions onto the STCNS. A single‐stage batch adsorber was designed using the Langmuir adsorption isotherm equation.  相似文献   

11.
Batch sorption technique was carried out for the removal of anionic dye Congo red (CR) from aqueous solution using raw rectorite (R‐REC) and organified rectorite (CTA+‐REC) modified by cetyltrimethylammonium bromide (CTAB) as adsorbents. The effects of organification degree of CTA+‐REC as well as the process parameters including the pH of dye solution, sorption time, and initial dye concentration on adsorption capacity for CR were investigated and the sorption kinetics was also evaluated. The results showed that the sorption behaviors of R‐REC and CTA+‐REC for CR followed pseudo‐second‐order kinetic model and the sorption equilibrium data perfectly obeyed the Langmuir isotherm. The thermodynamic parameters including entropy of sorption (ΔS0), enthalpy of sorption (ΔH0), and Gibbs free energy of sorption (ΔG0) were obtained and analyzed. Fourier transform infrared study revealed that a chemisorption process occurred between CR and CTA+‐REC. REC modified by cationic surfactants showed the higher adsorption capacities for CR compared to R‐REC and in theory would be used as an efficient and promising adsorbent for the removal of anionic dyes in wastewater treatment.  相似文献   

12.
Using batch method, the adsorption of thallium(I) ions from aqueous solutions on eucalyptus leaves powder, as a low cost adsorbent, was studied. The effect of various modification of considered adsorbent on the adsorption percentage of Tl(I) is an important feature of this study. The results showed that the unmodified and acidic modified adsorbent are the poor adsorbents for the Tl(I) ions while basic modified adsorbent is a suitable adsorbent. Also, the effect of some experimental conditions such as solution initial pH, agitation speed, contact time, sorbent dosage, temperature, particle size, and thallium initial concentration was studied. The results showed that the adsorption percentage depends on the conditions and the process is strongly pH‐dependent. The satisfactory adsorption percentage of Tl(I) ions, 81.5%, obtained at 25 ± 1°C. The equilibrium data agreed fairly better with Langmuir isotherm than Freundlich and Temkin models. The value of qm that was obtained by extrapolation method is 80.65 mg g?1. Separation factor values, RL, showed that eucalyptus leaves powder is favorable for the sorption of Tl(I). The negative values of ΔH0 and ΔS0 showed that the Tl(I) sorption is an exothermic process and along with decrease of randomness at the solid–solution interface during sorption, respectively.  相似文献   

13.
The adsorption of Cu(II) onto HCl treated rubber leaf powder (HHBL) was investigated in batch and column studies. The adsorbent was characterized by spectroscopic and quantitative analyses in order to understand the mechanism of copper adsorption. HHBL is mesoporous in nature as indicated by Bruneuer, Emmett and Teller (BET) analysis, and has various kinds of functional groups such as Si‐OH, ROH, RCOOH, RCOO, RNH2, C‐O‐C and aromatic rings as detected by Fourier transform infrared (FTIR) spectroscopy. Copper adsorption was confirmed by scanning electron microscopy (SEM) and energy dispersive X‐ray spectroscopy (EDS). The equilibrium process was described well by the Langmuir isotherm model, and a maximum adsorption capacity of 8.39 mg/g was recorded for the smallest adsorbent size (<180 μm). The two main adsorption mechanisms involved were ion exchange and complexation. The fixed bed column study demonstrated satisfactory applicability of HHBL in removing Cu(II) from aqueous solutions.  相似文献   

14.
In this paper, a novel composite material the silica grafted by poly(N‐vinyl imidazole) (PVI), i.e., PVI/SiO2, was prepared using 3‐methacryloxypropyl trimethoxysilane (MPS) as intermedia through the “grafting from” method. The adsorption behavior of metal ions by PVI/SiO2 was researched by both static and dynamic methods. Experimental results showed that PVI/SiO2 possessed very strong adsorption ability for metal ions. For different metal ions, PVI/SiO2 exhibited different adsorption abilities with the following order of adsorption capacity: Cu2+ > Cd2+ > Zn2+. The adsorption material PVI/SiO2 was especially good at adsorbing Cu(II) ion and the saturated adsorption capacity could reach up to 49.2 mg/g. The empirical Freundlich isotherm was found to describe well the equilibrium adsorption data. Higher temperatures facilitated the adsorption process and thus increased the adsorption capacity. The pH and grafting amount of PVI had great influence on the adsorption amount. In addition, PVI/SiO2 particles had excellent eluting and regenerating property using diluted hydrochloric acid solution as eluent. The adsorption ability trended to steady during 10 cycles.  相似文献   

15.
Xanthoceras sorbifolia seed coat (XSSC), a bioenergy forest waste, was used for the adsorption of methylene blue (MB) from aqueous solutions. The effects of adsorbent dosage, pH, adsorbate concentration and contact time on MB biosorption were studied. The equilibrium adsorption data was analyzed by Langmuir and Freundlich isotherm models. The results indicated that the Langmuir model provided the best correlation with the experimental data. The adsorption capacity of XSSC for MB was determined with the Langmuir model and was found to be 178.6 mg/g at 298 K. The adsorption kinetic data was modeled using the pseudo‐first order, pseudo‐second order, and intraparticle diffusion kinetic equations. It was seen that the pseudo‐second order equation could describe the adsorption kinetics, and intraparticle diffusion was not the sole rate controlling factor. Thermodynamic parameters were also evaluated. Standard Gibbs free energy was spontaneous for all interactions, and the biosorption process exhibited exothermic standard enthalpy values. The results indicated that XSSC is an attractive alternative for removing cationic dyes from wastewater.  相似文献   

16.
The potential of MCM‐41 for the removal of cationic dyes from water solution was evaluated using sodium dodecyl sulfate (SDS) for the surface modification of this mesoporous material. Admicelle structures formed on the surface of the calcined MCM‐41 are capable of removing organic pollutants and cationic species from water environment. The structural, textural, and surface chemical characteristics of the prepared SDS‐modified MCM‐41 (SDS‐MCM‐41) were studied. The adsorption capacity of SDS‐MCM‐41 was evaluated for methylene blue (MB) as a target cationic dye. Equilibrium adsorption isotherm data were manipulated employing nonlinear regression analysis. The Langmuir, Freundlich, and Sips isotherm models were examined. The adsorption data were well fitted to both Langmuir and Sips isotherm models. The maximum adsorption capacity of SDS‐MCM‐41 for MB, based on Langmuir and Sips models, were 290.8 and 297.3 mg g?1, respectively. Ethanol was found to be an effective solvent for partial regeneration of the adsorbent.  相似文献   

17.
In this study, crude multi‐walled carbon nanotubes (MWCNT) was functionalized by a two‐step process; first using strong mixed acids (H2SO4/HNO3) and then treatment with 1,3‐phenylenediamine (mPDA). The equilibrium adsorption of CO2 on pristine MWCNT and amine functionalized MWCNT (MWCNT‐NH2) were investigated. Experiments were preformed via application of volumetric method in a dual sorption vessel at temperature range of 298–318 K and pressures up to 40 bars. The results obtained indicated that the equilibrium uptake of CO2 increased after functionalizing of MWCNT. The increase in CO2 capture by MWCNT‐NH2 was attributed to the existence of great affinity between CO2 molecules and amine sites on this adsorbent at low pressures. The experimental data were analyzed by means of Freundlich and Langmuir adsorption isotherm models. The data obtained revealed a fast kinetics for the adsorption of CO2 in which most of adsorption occurred at initial period of adsorption experiments. This renders MWCNT as a suitable adsorbent for practical applications. Values of isosteric heat of adsorption were evaluated based on Clausius–Clapeyron equation. The results demonstrated that both chemisorption and physisorption played important role in CO2 adsorption on MWCNT‐NH2, whereas the physisorption process was dominant for CO2 adsorption on MWCNT.  相似文献   

18.
The effects of various parameters such as initial concentration, adsorbent loading, pH, and contact time on kinetics and equilibrium of adsorption of Cd2+ metal ion from its aqueous solution by castor seed hull (CSH) and also by activated carbon have been investigated by batch adsorption experiments. The amount of adsorption increases with initial metal ion concentration, contact time, solution pH, and the loading of adsorbent for both the systems. Kinetic experiments indicate that adsorption of cadmium metal ion on both CSH and on activated carbon consists of three steps – a rapid adsorption of cadmium metal ion, a transition phase, and an almost flat plateau region. This has also been confirmed by the intraparticle diffusion model. The lumped kinetic results show that the cadmium adsorption process follows a pseudo‐second order rate law. The kinetic parameters including the rate constant are determined at different initial metal ion concentrations, pH, amount, and type of adsorbent, respectively. The Langmuir and Freundlich adsorption isotherm models are used to describe the experimental data. The Langmuir model yields a better correlation coefficient than the other model. A comparison of the monolayer adsorption capacity (qm) of CSH, activated carbon, and several other reported adsorbents has been provided. The value of separation factor (RL) calculated from the Langmuir equation also gives an indication of favorable adsorption of the metal ion. From comparative studies, it has been found that CSH is a potentially attractive adsorbent than commercial activated carbon for cadmium metal ion (Cd2+) removal.  相似文献   

19.
This study reports on the adsorption characteristics of Pb(II) ions from aqueous solutions using ZnCl2‐activated date (Phoenix dactylifera) bead (ADB) carbon with respect to change in adsorbent dosage, initial pH, contact time, initial concentration, and temperature of the solution. Kinetic studies of the data showed that the adsorption follows the pseudo‐second‐order kinetic model. Thermodynamic parameters, enthalpy change (ΔH° = 55.11 kJ/mol), entropy change (ΔS° = ? 0.193 kJ/mol/K), and Gibbs free energy change (ΔG°) were also calculated for the uptake of Pb(II) ions. These parameters show that adsorption on the surface of ADB was feasible, spontaneous in nature, and endothermic between temperatures of 298.2 and 318.2 K. The equilibrium data better fitted the Langmuir and Freundlich isotherm models than the D–R adsorption isotherm model for studying the adsorption behavior of Pb(II) onto the ADB carbon. It could be observed that the maximum adsorption capacity of ADB was 76.92 mg/g at 318.2 K and pH 6.5.  相似文献   

20.
The present study provides an electrocoagulation method, for the removal of NO3from drinking water using magnesium as the anode and cathode. The experiments are carried out as a function of pH, temperature, and current density. The results show that the maximum removal efficiency of 95.8% was achieved at a current density of 0.25 A/dm2, at a pH of 7.0. The adsorption of NO3preferably fitting the Langmuir adsorption isotherm suggests monolayer coverage of the adsorbed molecules. The adsorption process follows a second‐order kinetics model. Thermodynamic studies show that the adsorption was exothermic and spontaneous in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号