首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
In most ecosystems, community structure emerges as a result of the complex interaction between biotic and environmental variables. Sandy beaches connected to adjacent ecosystem like estuaries/creeks provide an opportunity to understand the role of the environment on the community. Kalbadevi beach along the central west coast of India, invaded by creeks at the northern and southern ends, provides an opportunity to investigate the role of environmental heterogeneity in structuring the intertidal macrofaunal communities. Further, the annual tropical rainfall brings about drastic changes in the environmental parameters. Seasonal survey was carried out at 10 transects covering the entire ~5-km beach of Kalbadevi for environmental and macrofaunal studies. We quantified the abundance, biomass, assemblage structure and distribution of macrofauna at different spatio-temporal scales. The univariate and multivariate analyses showed significant spatio-temporal variability in the biotic and abiotic variables. BIOENV analyses showed the best correlation with OC, phaeopigment and grain size. High abundance of macrofauna in the north and south was due to food availability, influenced by the creek. The low abundance during monsoon and subsequent increase in the post-monsoon can be attributed to annual spawning and recruitment of tropical fauna. Therefore, the present research suggests that the other environmental variables also play an important role in structuring the macrofauna of sandy beach. This supports our hypothesis that environmental heterogeneity influences the structuring of macrofaunal community.  相似文献   

2.
Meiobenthic data from two microtidal sandy beaches of the eastern Mediterranean (Crete, Greece) were used to investigate patterns of both alpha and beta diversity in space and time. Copepod assemblages and environmental variables related to sediment characteristics, morphodynamics and food were studied over a year at four distinct habitats at each beach; the retention, resurgence and saturation zones of Salvat's intertidal scheme (midlittoral zone), and the surf zone of the sublittoral. Αlpha diversity analysis indicated similar species richness at both beaches when the whole 13-month data set was considered but was higher at the sheltered site when each sampling period was examined separately. Both beaches supported higher diversity in the sublittoral zone. Species richness increased seawards at the midlittoral zone of the sheltered site whereas, no pattern was evident at the exposed site, where the intense hydrodynamic conditions homogenized the sediments. Beta diversity increased markedly towards the sublittoral, indicating greater differences in alpha diversity between the sublittoral and the midlittoral zone. Species turnover was more variable at the exposed beach and at the most landward stations, where environmental conditions change often between extremes. A proportion of the variation in alpha diversity was explained by food availability at both beaches and additionally by grain size at the sheltered site. However, no environmental variable explained beta diversity patterns. Although the results of our study support the hypothesis of Multicausal Environmental Severity proposed for sandy beach macrofauna, we believe the classic Intermediate Disturbance Hypothesis is a more appropriate framework for the meiofauna communities of the studied sites.  相似文献   

3.
Sandy beach/surf‐zone ecosystems are unique environments that, despite the harsh and highly variable hydrodynamic conditions, present a diverse and heterogeneous fauna. However, the dynamics of these ecosystems are currently poorly understood. In this study we tested the hypothesis that surf‐zone assemblages vary with temporal factors such as time of day, tide and tidal height. To test this hypothesis, the surf‐zone community of Bastendorff, a Southern Oregon sandy beach was sampled during the summer of 2006. Samples were collected to (i) describe the smaller, benthic and larger swimming assemblages, (ii) determine whether assemblage compositions, densities, species richness and diversity vary with time of day, tide and tidal height, (iii) explore potential reasons for the variation by correlating environmental factors to the assemblages, and (iv) identify particular species that most strongly exhibit these variations. A hyperbenthic sledge, a sediment corer and a beach seine were used to collect the smaller swimming, benthic and larger swimming fauna, respectively. Sampling occurred during day and night, spring and neap tide, and high, mid and low tide. A total of 76,743 individuals belonging to 105 species were collected. Ninety‐one invertebrate (72,904 individuals), 15 invertebrates (2234 individuals), and 19 invertebrate and vertebrate species (1605 individuals) were collected with the sledge, corer and seine, respectively. Nine species of fish were caught, 98% of which were juveniles. The smaller and larger swimming assemblages varied most strongly with the time of day, suggesting certain species will actively move to the shallow surf‐zone at night. The three assemblages also varied with the tide, potentially due to the larger waves and higher abundance of detached macrophytes observed during spring tides when compared to neap tides, which could push individuals into the surf zone. The benthic assemblage most strongly varied with tidal height and sand grain size, confirming the presence of different faunal zones within Oregon sandy beaches. Finally, several variables of the swimming assemblages varied with temperature and salinity, suggesting that downwelling favorable conditions may have transported species close to shore. Bastendorff presents a complex and diverse surf‐zone community that appears to be influenced by diel species movements, environmental variables such as wave height and abundance of detached macrophytes, and regional oceanographic conditions.  相似文献   

4.
It is known that the fauna of the exposed sandy beaches are primarily controlled by physical variables; but how these variables operate along and across the beach still remains fairly under discussion. In our study, we sampled a range of exposed sandy beaches along the Northwest coast of Spain to determine the relationship between the principal physical variables of the beaches (including beach morphodynamic state), and the macrofaunal community. The fauna of these beaches comprise truly marine species along the intertidal zone as well as semi-terrestrial species in the upper and supratidal environments. These two groups respond in a different manner to the physical environment. The first group is directly controlled by the morphodynamic state of the beach, and variations in the physical environment; the second group is not clearly affected by these physical conditions. In this case, other variables such as food availability and the human uses of the upper limits of the beach seem to be more relevant in explaining the patterns observed in the macrofaunal community.  相似文献   

5.
This study analyzed the factors structuring demersal fish community in a tropical bay in southeastern Brazil. The results were used to quantify the partitioning of ecological variation among the environmental, spatial and temporal components molding the fish community. Three bay zones (inner, middle and outer) were defined according to depth and salinity gradient. Monthly samplings were conducted by bottom trawl tows during daylight hours, between October 1998 and September 1999. In each zone, three replicate samples were taken. Ninety-three fish species from 73 genera and 37 families were recorded in the 108 samples. Two demersal fish assemblages were evidenced, one in the inner and the other in the outer zone. These assemblages were characterized by changes in species composition and relative abundance. Depth, followed by transparency and salinity, influenced spatial pattern of fish assemblages. The largest part of the explained variation occurred as a result of the spatial structure of environmental variables, which means that both species and environmental variables presented similar spatial structure. The spatial effect, not the seasonal, explained the highest part of species variations. The amount of unexplained variation was relatively high (76%), even assuming that part of it is due to nondeterministic fluctuation, which could be due to local effects of unmeasured (biotic and abiotic) controlling variables. Knowing the relative importance of these factors can be of decisive importance when applying casual hypotheses in the framework of some precise ecological theory and should facilitate management, planning, and usage of bay resources.  相似文献   

6.
The spatial and temporal patterns within the surf zone epibenthic assemblages were studied in a coastal fringe of Argentina to determine whether assemblage compositions, abundance, species richness and diversity vary spatially and temporarily. Sampling was conducted seasonally in two sandy beaches over 2 years with a benthic sledge used to collect the fauna in the upper centimeters of soft bottom sediments and the epifauna on the sediment surface. Physical variables were measured in the same coastal sites where biological sampling was conducted. A total of 58 morphospecies were collected. Peracarid crustaceans were the most abundant group. The mysid Pseudobranchiomysis arenae (new genus–new species) (29.73 ± 17.79 ind. per sample) and the isopod Leptoserolis bonaerensis (51.54 ± 22.35 ind. per sample) were the most abundant and common species and were present regularly throughout the sampling period. Differences in the surf zone community composition were found between the beaches; these differences could be related to variation in physical parameters such as sand grain size and wave climate, indicating the possible influence of the morphodynamic state of the beaches on the epibenthic assemblages. A seasonal abundance trend was detected, reflecting the changes in abundance of the two dominant species; the richness pattern was not easily detectable due to the sporadic appearance of non‐resident species in the surf zone, probably due to different causes, including dispersion by entry of water from surrounding areas, littoral currents and storms. The surf zone studied presents a complex and dynamic epibenthic community that appears to be influenced by the morphodynamic state of the beach and the dynamic of non‐resident species.  相似文献   

7.
8.
The distinctiveness of macrofaunal assemblages on different sandy beaches in the Maltese Islands was previously suggested by different single-season studies. A multi-seasonal sampling programme using pitfall trapping was implemented on four Maltese beaches to test the occurrence of this phenomenon. A total of 29,302 individuals belonging to 191 species were collected over a 2-year period, during which the beaches were sampled once per calendar season. A total of 77 species were recorded from single Maltese beaches only, of which nine were psammophiles. Non-metric multidimensional scaling analyses of pitfall trap species-abundance data resulted in a weak separation pattern, with samples grouping mainly in terms of beach and island rather than in terms of season or year of sampling, No physical variable could conclusively explain these patterns. It is concluded that although operating on Maltese beaches, macrofaunal assemblage distinctiveness is weaker than originally thought and can be attributed to the presence/absence or abundance of just a few psammophilic species. It is postulated that this phenomenon may be related to the 'pocket beach' nature of Maltese beaches, where headlands on either side of the beach to a large extent prevent the occurrence of longshore currents, resulting in semi-isolation of the populations of psammophilic species. A large number of single-beach records reported in this study highlight the high degree of beta diversity and spatial heterogeneity of Maltese beaches, and the conservation importance of the individual beach macrofaunal assemblages.  相似文献   

9.
In this study, we used experimental manipulation of algal wrack to test hypotheses about influences on macrofaunal assemblages inhabiting the upper shore level of different sites along an exposed sandy beach. First, we hypothesized that decomposition of algal wrack depends on wrack patch size and site. With respect to macrofauna, we tested the hypotheses that (1) abundance of colonising individuals and species vary with wrack patch size, (2) succession (i.e. sequence of colonisation and species replacement) depends on time, and (3) as a result, macrofaunal assemblages associated with wrack patches vary with the patch size and time. We also predicted that responses could be different across sites because of their slightly different environmental conditions. The decomposition of wrack patches was similar in all sites and was dependent on wrack patch size. It was strongly influenced by time-specific environmental and/or biological factors. The pattern of colonisation, i.e. total number of species and individuals, varied among wrack patch sizes. Small patches had fewer species and individuals than medium and large patches. Nevertheless, pattern of colonisation varied among species, across sites and through time. Colonisation of wrack patches was rapid (i.e. within 3 days) for most species. There was some evidence to support the hypothesis that macrofaunal assemblages change in response to patch size and time.  相似文献   

10.
Lately, across‐shore zonation has been found to be more important in structuring the nematode community of a tropical macrotidal sandy beach than microhabitat heterogeneity. To evaluate whether this zonation pattern applies to a temperate beach, a macrotidal ridge‐and‐runnels sandy beach in the North Sea was studied. We investigated whether a similar zonation occurs in sandbar and runnel microhabitats, and whether the runnels harbour a different community from the subtidal. Our results indicate that nematode communities from runnel and sandbar habitats are significantly different. In addition, horizontal zonation patterns for nematode communities differ between both habitats. Nematode assemblages from sandbars are divided to lower, middle and upper beach while upper and middle runnels cluster together. The subtidal and upper runnels showed dissimilar nematode assemblages, although runnels showed the same dominant species (Daptonema normandicum), which increases its abundance towards the upper runnels. This study illustrates the importance of microhabitat heterogeneity, which resulted in different zonation patterns across the sandy beach examined. The divergent zonation between sandbars and runnels in the macrotidal temperate sandy beach, compared with the pattern observed for a subtropical sandy beach with similar morphodynamics, indicates that generalizations about nematode distribution patterns should be made with caution.  相似文献   

11.
Meiofauna as descriptor of tourism-induced changes at sandy beaches   总被引:9,自引:0,他引:9  
Tourism has long been considered as a 'clean industry' with almost no negative effects on the environment. This study demonstrated, in two different coastal systems (Mediterranean and Baltic), that tourism related activities are particularly affecting the sandy beach meio- and nematofauna in the upper beach zone, the specific ecotone in which many meiofauna species from both the marine and the terrestrial environment congregate. Tourist upper beaches are characterized by a lower % total organic matter (%TOM), lower densities, lower diversities (absence of Insecta, Harpacticoida, Oligochaeta, terrestrial nematodes and marine Ironidae nematodes) and higher community stress compared to nearby non-tourist locations. The %TOM was found to be the single most important factor for the observed differences in meiofauna assemblage structure at tourist versus non-tourist beaches in both the Mediterranean and the Baltic region. The free-living nematode assemblages from tourist upper zones depart significantly from expectations based on random selections from the regional nematode species pool. Furthermore upper zone assemblages are characterised by a low species diversity consisting of taxonomically closely related nematode species with r-strategist features. Generally, faunal differences between tourist and non-tourist beaches are decreasing towards the lower beach zones.  相似文献   

12.
The structure of macrofaunal communities at two similar exposed sandy beaches on the western coast of Portugal was monitored for approximately 18 months by sampling all the beach area, from the shoreline to the base of the dunes. The beaches’ physical environment, as well as community density and composition, seasonal variations and the potential relationships between biological data and environmental parameters were studied. The two beaches had similar exposure to wave action, but differed in terms of sediment grain size, extent of the intertidal area, sediment moisture content and, especially, in the potential food availability in the form of allochthonous debris. Differences were observed with regard to the communities’ structure, namely regarding composition and relative contribution of the dominant species. Seasonality, especially temperature variations, and the interaction between seasons and the beach zones (supralittoral vs. intertidal) also had a strong influence on communities: controlling dominant species’ density and the horizontal distribution of the dominant species, and promoting a differential utilization of the beach by several resident macrofaunal animals. The present study allows the identification of key species in exposed sandy beaches of western Portugal and demonstrates that a steady community structure does not persist in the similarly exposed conditions observed, which may be mainly a response to distinct detritus subsidies, combined with differences in sediment grain size, sediment moisture content and extent of the intertidal area.  相似文献   

13.
14.
15.
为研究南黄海小型底栖动物的空间分布格局及其环境影响因素,于2020年8月(夏季)和11月(秋季)对南黄海进行了两个航次的野外观测和采样,对小型底栖动物的类群组成、丰度、生物量、垂直分布、群落结构及其与环境因子的关系进行了研究。结果显示,共鉴定出小型底栖动物类群15个,其中自由生活海洋线虫为最优势类群,在两个航次中分别占小型底栖动物总丰度的75.6%和84.6%。其他较重要的类群还包括底栖桡足类、轮虫类和枝角类等。夏季和秋季小型底栖动物的平均丰度分别为(514.9±32.1)ind./(10 cm2) 和(350.8±30.7)ind./(10 cm2),平均生物量(干质量)分别为(651.7±98.0)μg/(10 cm2)和(589.2±37.1)μg/(10 cm2)。小型底栖动物在时空分布上存在差异。在季节分布上,小型底栖动物丰度和类群组成存在极显著差异。结合环境因子分析结果可知,沉积物中值粒径是引起差异的主要环境因子。在空间分布上,夏季小型底栖动物丰度和类群组成在不同水深间存在极显著差异,秋季小型底栖动物丰度和类群组成在不同水深间差异不显著。推测黄海冷水团是影响夏季小型底栖动物空间分布差异的主要因素。本研究中小型底栖动物的数量和类群多样性相较于国内其他对南黄海小型底栖动物的研究较低,其中沉积物叶绿素a含量及有机质含量是引起南黄海小型底栖动物丰度变化的重要因素。海洋线虫与桡足类的丰度比值(N/C比值)评估显示秋季该区域存在有机污染,这一结果与应用大型底栖动物对同一区域进行环境评价的结果不一致,对于应用N/C比值评价环境质量还需要进一步的研究。  相似文献   

16.
为深入了解不同地理尺度因素对驱动微型生物群落空间结构的相对影响,本研究于2020年10月调查了中国北方14个砂质潮间带的砂栖纤毛虫群落。研究结果如下:(1)检获纤毛虫105种,隶属26目65属,按丰度优势依次为帆口目、小胸目和环毛目;(2)黄海、渤海两区域的环境因子存在显著差异,但纤毛虫群落组成趋于相似;(3)偏Mental分析显示,环境条件较空间距离在纤毛虫群落组成的驱动中更为重要,其中盐度、粒度和海滩坡度是解释纤毛虫空间分布的最优环境因子组合,而潮差和溶解无机氮含量是次要影响因子;(4)沿海区域微型生物的强扩散效应在一定程度上掩盖了环境异质性影响。综上,由于沿海生态系统中微型生物受到更少扩散限制,在空间分布格局的形成上,环境条件的影响比空间距离更重要。本研究为海洋微型生物地理学提供了基础数据,有助于在全球变化背景下制定沙滩管理和保护规划。  相似文献   

17.
We analysed the consistence of vertical patterns of distribution (i.e. zonation) for macrofauna at different spatial scales on four intermediate exposed beaches in the North of Portugal. We tested the hypothesis that biological zonation on exposed sandy beaches would vary at the studied spatial scales. For this aim, abundance, diversity and structure of macrobenthic assemblages were examined at the scales of transect and beach. Moreover, the main environmental factors that could potentially drive zonation patterns were investigated. Univariate and multivariate analyses revealed that the number of biological zones ranged from two to three depending on the beach and from indistinct zonation to three zones at the scale of transect. Therefore, results support our working hypothesis because zonation patterns were not consistent at the studied spatial scales. The median particle size, sorting coefficient and water content were significantly correlated with zonation patterns of macrobenthic assemblages. However, a high degree of correlation was not reached when the total structure of the assemblage was considered.  相似文献   

18.
Spatial patterns of nematode community structure from two geographically spaced intermediate, micro-tidal beaches (i.e. Mediterranean and Baltic) were investigated. Differences in the nematode assemblages were found to be significantly different and related to the morphodynamic characteristics of the studied zones (upper beach, swash/breakers and subtidal). Highest nematode densities and species diversities were recorded on the coarse-grained, more physically controlled, Italian beach in contrast to the more chemically controlled Polish beach. This is in contrast to the worldwide patterns of macrofaunal communities. As demonstrated by higher taxonomic distinctness measurements, upper beaches were found to harbour species from both the marine and terrestrial ecosystem and are considered to be important ecotones between these adjacent systems. The swash/breaker zones are characterised by the loss of distinctive species caused by the high water percolation in these zones. The concept of parallel ecological communities ‘isocommunities’ is only supported for the upper beach zones.  相似文献   

19.
海草床是海岸带最富生产力的生态系统之一,支撑着各种各样的伴生生物。热带的印度和太平洋地区被认为拥有海草植物种类多样性最高,且分布面积最广,然而,这个区域的海草床大型底栖生物我们知之甚少。为了填补认知的空白,我们在该区域开展了一项生态调查,旨在描述该区热带海草床大型底栖生物的丰度和多样性,以及确定大型底栖生物丰度、物种丰富度和群落结构是否明显存在断面内的站间变化和样地间变化。2014年5月和2015年10月我们分别在北苏拉威西省东海岸和西海岸开展野外工作,使用柱状取样器采集海草床大型底栖生物样品。所得样品共计鉴定14大类149种底栖生物,种类最为丰富的类别为多毛类(56种,占26%的总个体数),十足类(20种,占9%的总个体数)和端足类(18种,占35%的总个体数)。东、西海岸海草床大型底栖生物表现出不同的空间分布模式。在东海岸,同一断面的大型底栖生物和端足类的丰度存在显著的站间差异;而在西海岸,大型底栖生物和多毛类的种类丰富度和丰度都表现出明显的站间变化,这可能归结于同一断面底质不均所造成。单因素ANOSIM以及MDS排序表明了北苏拉威西省东海岸和西海岸海草床大型底栖生物群落结构存在显著不同,正好对应于将海草床分成两大类型的栖息地,即西海岸的红树林-海草床-珊瑚连续体和东海岸的海草床-珊瑚连续体。与在热带海区开展的其他研究相比,本研究的大型底栖生物丰度和多样性处于中等水平。东、西海岸海草床大型底栖生物群落存在显著区别,其原因可能源于多方面,包括了沉积物模式,海草床结构和时间变化。  相似文献   

20.
While prokaryotes play key roles in nutrient cycling and energy flow during Phaeocystis globosa blooms, the information on the spatial and diel temporal distribution of the prokaryotic community during Phaeocystis blooms remains scarce. In January 2019, we used high-throughput sequencing of the 16S rRNA gene to explore the spatial and diel variations of particle-attached (PA) and free-living (FL) prokaryotic communities during the blooming phase of P. globosa in Beibu Gulf, Guangxi, China. The results suggested a significant spatial variation pattern in the horizontal distribution of prokaryotic communities, while there was no significant difference in the vertical direction. Both spatial distance and environmental variables shaped the horizontal distribution of the prokaryotic community structure, while environmental variables, particularly the abundance of P. globosa colony and Chl a, showed more significant influence and were closely related to the structure and variation of the prokaryotic community. Strong vertical mixing of the water column disrupted the vertical structure heterogeneity of the prokaryotic community in winter. There were significant differences in the diel samples of PA prokaryotic communities, but not in the FL prokaryotic communities. Nitrate, ammonium and the abundance of P. globosa colony were the key environmental variables impacting the diel variations of prokaryotic communities over the sampling period. The present study provided valuable information to depict the spatial-temporal variations of the microbial community and its association with environmental parameters during P. globosa bloom in the tropical gulf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号