首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The energy reconstruction of extensive air showers measured with the LOFAR Radboud Air Shower Array (LORA) is presented in detail. LORA is a particle detector array located in the center of the LOFAR radio telescope in the Netherlands. The aim of this work is to provide an accurate and independent energy measurement for the air showers measured through their radio signal with the LOFAR antennas. The energy reconstruction is performed using a parameterized relation between the measured shower size and the cosmic-ray energy obtained from air shower simulations. In order to illustrate the capabilities of LORA, the all-particle cosmic-ray energy spectrum has been reconstructed, assuming that cosmic rays are composed only of protons or iron nuclei in the energy range between ∼2 × 1016 and 2 × 1018 eV. The results are compatible with literature values and a changing mass composition in the transition region from a Galactic to an extragalactic origin of cosmic rays.  相似文献   

2.
We investigate the problem of transition from galactic cosmic rays to extragalactic ultra-high energy cosmic rays. Using the model for extragalactic ultra-high energy cosmic rays and observed all-particle cosmic ray spectrum, we calculate the galactic spectrum of iron nuclei in the energy range 108–109 GeV. The flux and spectrum predicted at lower energies agree well with the KASCADE data. The transition from galactic to extragalactic cosmic rays is distinctly seen in spectra of protons and iron nuclei, when they are measured separately. The shape of the predicted iron spectrum agrees with the Hall diffusion.  相似文献   

3.
The extragalactic sources of ultra-high-energy (E > 4 × 1019 eV) cosmic rays that make a small contribution to the flux of particles recorded by ground-based arrays are discussed. We show that cosmic rays from such sources can produce a noticeable diffuse gamma-ray flux in intergalactic space compared to the the data obtained with Fermi LAT (onboard the Fermi space observatory). A possible type of active galactic nuclei (AGNs) in which cosmi-ray protons can be accelerated to energies 1021 eV is considered as an illustration of such sources. We conclude that ultra-high-energy cosmic rays from the AGNs being discussed can contribute significantly to the extragalactic diffuse gamma-ray emission. In addition, a constraint on the fraction of the AGNs under consideration relative to the BL Lac objects and radio galaxies has been obtained from a comparison with the Fermi LAT data.  相似文献   

4.
The IceCube experiment has detected two neutrinos with energies between 1 and 10 PeV. They might have originated from Galactic or extragalactic sources of cosmic rays. In the present work we consider hadronic interactions of the diffuse very high energy cosmic rays with the interstellar matter within our Galaxy to explain the PeV neutrino events detected in IceCube. We also expect PeV gamma ray events along with the PeV neutrino events if the observed PeV neutrinos were produced within our Galaxy in hadronic interactions. PeV gamma rays are unlikely to reach us from sources outside our Galaxy due to pair production with cosmic background radiation fields. We suggest that in future with simultaneous detections of PeV gamma rays and neutrinos it would be possible to distinguish between Galactic and extragalactic origins of very high energy neutrinos.  相似文献   

5.
《Astroparticle Physics》2008,28(6):512-520
We report the results of a search for point-like deviations from isotropy in the arrival directions of ultra-high energy cosmic rays in the northern hemisphere. In the monocular data set collected by the High-Resolution Fly’s Eye, consisting of 1525 events with energy exceeding 1018.5 eV, we find no evidence for point-like excesses. We place a 90% c.l. upper limit of 0.8 hadronic cosmic rays/km2 yr on the flux from such sources for the northern hemisphere and place tighter limits as a function of position in the sky.  相似文献   

6.
The origin and nature of the highest energy cosmic ray events is currently the subject of intense investigation by giant air shower arrays and fluorescent detectors. These particles reach energies well beyond what can be achieved in ground-based particle accelerators and hence they are fundamental probes for particle physics as well as astrophysics. One of the main topics today focuses on the high energy end of the spectrum and the potential for the production of high-energy neutrinos. Above about 1020 eV cosmic rays from extragalactic sources are expected to be severely attenuated by pion photoproduction interactions with photons of the cosmic microwave background. Investigating the shape of the cosmic ray spectrum near this predicted cut-off will be very important. In addition, a significant high-energy neutrino background is naturally expected as part of the pion decay chain which also contains much information.Because of the scarcity of these high-energy particles, larger and larger ground-based detectors have been built. The new generation of digital radio telescopes may play an important role in this, if properly designed. Radio detection of cosmic ray showers has a long history but was abandoned in the 1970s. Recent experimental developments together with sophisticated air shower simulations incorporating radio emission give a clearer understanding of the relationship between the air shower parameters and the radio signal, and have led to resurgence in its use. Observations of air showers by the SKA could, because of its large collecting area, contribute significantly to measuring the cosmic ray spectrum at the highest energies. Because of the large surface area of the moon, and the expected excellent angular resolution of the SKA, using the SKA to detect radio Cherenkov emission from neutrino-induced cascades in lunar regolith will be potentially the most important technique for investigating cosmic ray origin at energies above the photoproduction cut-off.  相似文献   

7.
Although kilometer-scale neutrino detectors such as IceCube are discovery instruments, their conceptual design is very much anchored to the observational fact that Nature produces protons and photons with energies in excess of 1020 eV and 1013 eV, respectively. The puzzle of where and how Nature accelerates the highest energy cosmic particles is unresolved almost a century after their discovery. From energetics considerations we anticipate on the order of 10–100 neutrino events per kilometer squared per year pointing back at the source(s) of both galactic and extragalactic cosmic rays. In this context, we discuss the results of the AMANDA and IceCube neutrino telescopes which will deliver a kilometer-square-year of data over the next 3 years.  相似文献   

8.
The origin and behavior of cosmic rays in the Galaxy depends crucially upon whether the galactic magnetic field has a closed topology, as does the field of Earth, or whether a major fraction of the lines of force connect into extragalactic space. If the latter, then cosmic rays could be of extragalactic origin, or they could be of galactic origin, detained in the Galaxy by the scattering offered by hydromagnetic waves, etc. If, on the other hand, the field is largely closed, then cosmic rays cannot be of extragalactic origin (at least below 1016 eV). They must be of galactic origin and escape because their collective pressure inflates the galactic field and they push their way out.This paper examines the structure of a galactic field that opens initially into intergalactic space and, with the inclusion of turbulent diffusion, finds no possibility for maintaining a significant magnetic connection with an extragalactic field. Unless some mechanism can be found, we are forced to the conclusion that the field is closed, that cosmic rays are of galactic origin, and that cosmic rays escape from the Galaxy only by pushing their way out.  相似文献   

9.
We have studied Extensive Air Showers (EAS) with two small arraysof 1 m2 scintillation detectors inTehran, 1200 m above sea level.The distribution of air showersin zenith and azimuth angles has been studied and a cosnΘdistribution with n = 7.2±0.2 was obtained for zenith angledistribution. An asymmetry has been observed in the azimuthaldistribution of EAS of cosmic rays because of magnetic field ofthe Earth. Amplitudes of the first and the second harmonics ofobserved distribution depend on zenith angle as A I ≈ (0.02 + 0.35 sin2Θ)±0.02, and A II ≈ (0.03 + 0.42 sin4Θ)±0.03. Meanwhile, the uncertainties arising from the instrument, transit location of shower particles in the scintillator and fluctuations in the shower front have been calculated.  相似文献   

10.
The sources of ultrahigh energy cosmic rays (UHECRs, E >1018 eV) are still unknown, mainly due to the loss of the direction to the source after the deflection of cosmic rays’ (CRs) trajectories in the galactic and extragalactic magnetic fields. With the increase in CR energy (rigidity), the influence of the magnetic field weakens; therefore, the most promising approach is to search for the sources of events with the highest energy. In our work, we expand the existing UHECR (E > 1020 eV) sample from 33 to 42 events by calibrating the AUGER events. The sample is characterized by the presence of an event triplet in a circle of radius 3°. The highest-energy event is still the shower (E = 3.2 × 1020 eV) detected with the Fly’s Eye fluorescent detector (FE-event) in 1993. The possible sources of the triplet and the FE-event are analyzed. Taking into account the deflection of CR trajectories in the extragalactic and galactic magnetic fields, it is shown that transient sources of the FE-event and the triplet may be galaxies with active star formation, where CRs are accelerated by newborn millisecond pulsars. Among the galactic sources, the potential candidates are young pulsars that might have had millisecond periods at birth and giant magnetar flares.  相似文献   

11.
We provide our estimates of the intensity of the gamma-ray emission with an energy near 0.1 TeV generated in intergalactic space in the interactions of cosmic rays with background emissions. We assume that the cosmic-ray sources are pointlike and that these are active galactic nuclei. The following possible types of sources are considered: remote and powerful ones, at redshifts up to z = 1.1, with a monoenergetic particle spectrum, E = 1021 eV; the same objects, but with a power-law particle spectrum; and nearby sources at redshifts 0 < z ≤ 0.0092, i.e., at distances no larger than 50 Mpc also with a power-law particle spectrum. The contribution of cosmic rays to the extragalactic diffuse gammaray background at an energy of 0.1 TeVhas been found to depend on the type of sources or, more specifically, the contribution ranges from f ? 10?4 to f ≈ 0.1, depending on the source model. We conclude that the data on the extragalactic background gamma-ray emission can be used to determine the characteristics of extragalactic cosmic-ray sources, i.e., their distances and the pattern of the particle energy spectrum.  相似文献   

12.
The origin of observed extremely high energy cosmic rays remains an astrophysical enigma. We show that a single evaporating primordial black hole should produce 8.5·1014 particles over a 1020 eV threshold. This emission results from direct production of fundamental constituents and from hadronization of quarks and gluons. The induced flux on the Earth is studied as a function of the local density of exploding black holes and compared with experimental data. The discovery potential of future detectors is finally reviewed.  相似文献   

13.
We summarize the status of the search for the origin of the highest energy cosmic rays. We briefly mention several competing proposals, such as supersymmetric particles, Gamma Ray Bursts also giving rise to energetic protons, interacting high energy neutrinos and cosmological defects, and then concentrate on the possibilities of the propagation of these particles, assuming that they are charged. The distribution of arrival directions of the highest energy particles on the sky ought to reflect the source distribution as well as propagation history. The present status can be summarized as inconclusive. If we were able to confirm any particular theory these particles beyond 1020eV may be turned into tools of high energy physics. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Blazar emission of gamma rays and cosmic ray production of gamma rays in gas-rich clusters have been proposed recently as alternative sources of the high energy extragalactic diffuse gamma ray background radiation. We show that these sources also produce very different high energy extragalactic diffuse neutrino background radiations. An extragalactic neutrino background radiation may be detected by the new generation of large neutrino telescopes under construction and may be used to trace the origin of the extragalactic gamma radiation.  相似文献   

15.
We have estimated the proton injection flux from the nuclei of some typical extragalactic radio sources (EGRS). To do so, we have used measured values of radio luminosities from these sources and have assumed the proton-proton collision model as a source of relativistic electrons which give rise to radio emission. The estimated values of the proton flux is in fairly good agreement with theoretical estimates of cosmic-ray fluxes within the same range of energy. This lends support to the fact that the nuclei of EGRSs might be the site for the generation of primary cosmic rays.  相似文献   

16.
Charged dust grains of radiia3×10–6 cm could be a help in understanding the production of primary cosmic ray particles in extensive air showers (EAS). A two-stage acceleration mechanism is proposed in order to accelerate dust grains up to relativistic energy. In the first stage, dust grains acquire suprathermal energy (Suprathermal Grains) by the Fermi mechanism. In the second stage, suprathermal grains attain relativistic energy by the Alfvén magnetic pumping mechanism yielding the primary cosmic ray particles. Ionization loss has been considered to be a most important loss mechanism for charged dust grains in a fully ionized medium. It is suggested that graphite dust grains of intergalactic origin may be responsible for high energy (>1020 eV) cosmic rays.  相似文献   

17.
In this paper we present our most recent results on the sub-iron (Sc to Cr) to Fe nuclei abundance ratios in the low-energy cosmic rays of 50 to 250 MeV nucl.–1 and their implications as observed in theSkylab experiment. In view of the importance of this ratio in determining the cosmic-ray pathlength in interstellar medium, we have obtained additional data in the same detector module and the results of final analysis are reported. Charge determinations in the Lexan detector were made from an average of about four independent measurements ofZ for each of the cosmic-ray events and the mean charge resolution is obtained asZ/Z0.2. From about 100 events of calcium to nickel in low-energy cosmic rays, sub-iron (Sc to Cr) to Fe–Co ratio is determined as 1.43±0.40 in 50–250 MeV nucl.–1. This shows a large energy dependence of the ratio as compared to the value of 0.4–0.8 in 200–1000 MeV nucl.–1 as measured by many investigators. The origin of this large enhancement of the ratios in low-energy cosmic rays is not known at present. Some possible suggestions are briefly mentioned.  相似文献   

18.
Cosmic rays of interest here are electrically charged protons or nuclei having kinetic energy of the order of 1018 eV or more. The theory of cosmic-ray propagation is carried out on the assumption that the original particle may be of extragalactic origin. The curvature and gradient drift is incorporated in the anti-symmetric term of the diffusion tensor. The theory of force-field is examined including diffusion, convection, and energy losses of the cosmic rays. Finally some observation aspects are included in the concluding remarks.  相似文献   

19.
We present the first diffraction-limited K-band image of the Red Rectangle with 76 mas resolution, an H-band image with 75 mas resolution, and an RG 715 filter image ( 800 nm wavelength) with 78 mas resolution (corresponding to 25 AU for a distance of 330 pc). The H and K images were reconstructed from 6 m telescope speckle data and the RG 715 image from 2.2 m telescope data using the speckle masking bispectrum method. At all wavelengths the images show a compact, highly symmetric bipolar nebula, suggesting a toroidal density distribution of the circumstellar material. No direct light from the central binary can be seen as it is obscured by a dust disk or circumbinary torus. Our first high-resolution HK color image of the nebula shows a broad red plateau of HK≈ 2m in the bright inner regions.The optical and near-infrared images and the available photometric continuum observations in a wide range of ultraviolet to centimeter wavelengths enabled us to model the Red Rectangle in detail using a two-dimensional radiative transfer code. Our model matches both the high-resolution images and the spectral energy distribution of this object very well, making the following picture much more certain. The central close binary system with a total luminosity of 3000 L is embedded in a very dense, compact circumbinary torus which has an average number density nH ≈5×1012 cm−3, an outer radius of the dense inner region of R≈30 AU (91 mas), and a ρ∝r−2 density distribution. The full opening angle of the bipolar outflow cavities in our model is 70°. By comparing the observed and theoretical images, we derived an inclination angle of the torus to the line of sight of 7°±1°.The radiative transfer calculations show that the dust properties in the Red Rectangle are spatially inhomogeneous. The modeling confirms that the idea of large grains in the long-lived disk around the Red Rectangle (Jura et al., 1997 [ApJ, 474, 741]) is quantitatively consistent with the observations. In our models, unusually large, approximately millimeter-sized grains dominate the emission of the compact, massive torus. Models with smaller average grain sizes can possibly be found in future studies, for instance, if it turns out that the radio spectrum is not mainly caused by continuum dust emission. Therefore, the large grains suggested by our models require further confirmation by both new observations and radiative transfer calculations. Assuming a dust-to-gas ratio ρdg of 0.005, the dense torus mass is 0.25 M. The model gives a lower limit of 0.0018 M, for the mass of the large particles, which produce a gray extinction of A≈ 28m, towards the center. A much smaller mass of submicron-sized dust grains is presumably located in the polar outflow cavities, their conical surface layers, and in the outer low-density parts of the torus (where ρ∝r−4, in the region of 30 AUr 2000 AU corresponding to 0.′′09–6′′).  相似文献   

20.
Ultrahigh energy cosmic rays (UHECRs, E > 1018 eV) from extragalactic sources deviate in the galactic and intergalactic magnetic fields, which explains the diffusive character of their propagation, the isotropization of their total flux, and the absence of UHECR clusters associated with individual sources. Extremely high energy cosmic rays (E > 1019.7 eV) are scattered mainly in localized magnetized structures, such as galaxy clusters, filaments, etc., with a mean free path of tens of megaparsecs; therefore, in the case of nearby transient sources, a substantial contribution to the observed flux is expected from unscattered and weakly scattered particles, which may be a decisive factor in the identification of these sources. We propose a method for calculating the time evolution of the UHECR energy spectra based on analytical solutions of the transport equation with the explicit determination of the contributions from scattered and unscattered particles. As examples, we consider the cases of transient activity of the nearest active galactic nucleus, Centaurus A, and the acceleration of UHECRs by a young millisecond pulsar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号