首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 154 毫秒
1.
我们使用了全球定位系统(GPS)4年的大地测量资料计算了:(1)6个主要板块之间的运动;(2)板块边界带上10个点的相对板块运动。大地测量速率与刚性板块之间的统一性的标准误差,对水平速率(一维)约为2mm/a,我们根据GPS估算结果描述成对板块之间运动的15个角速度中的每一个角度,与全球板块运动模型NUVEL-1A中的响应角速度无明显的不同,而后者是取过去3Ma的运动均值。观测到太平洋板块相对于欧亚板块和北美板块的运动比采用NUVEL-1A预测的要快得多,支持了甚长基线干涉测量(VLBI)得到的太平洋板块运动在过去的若干Ma中加快的结论。欧亚-北美的转极处于NUVEL-1A的北端,与这样的一种假设是一致的,即:极点最近向北穿过东北亚朝勒拿(Lena)河三角洲(俄)附近迁移,位于卡斯凯迪亚消减带的主要冲断层上的维多利亚,以消减板块速度的30%作相对于主要板块内部运动,支持了冲断层在大陆架和陆坡下面被锁住的观点。  相似文献   

2.
利用现代空间大地测量技术测出北半球活动板块边缘会聚、扩张和滑动速度.北半球板块间南北方向运动总体上呈现会聚类型,反映北半球在南北方向处于收缩状态;北大西洋中脊扩张速度明显小于南大西洋中脊;纬度为7.7,23.3,34.8,42.0和51.0的闭合环纬线长变化率分别为-20.0,-15.5,-3.5,-4.1和-5.8 mm/a,均为负值,表明北半球纬向运动在收缩.另外,利用板块欧拉运动定律得出北半球同纬度板块回路速度闭合差为负值,进一步验证了北半球压缩.   相似文献   

3.
阐述利用空间大地测量测定和研究板块运动的基本方法、研究成果及最新进展,并和地质学方法进行了比较,结果表明,用地质学方法与用大地测量方法建立的板块运动模型参数在整体上具有很好的一致性,但对某些板块而言两者相差甚大,超出了模型误差的范围,其中,所有大地测量得到的太平洋板块速率都大于地质模型,极位置经度都偏小。不同作者利用空间大地测量建立的板块运动模型参数也存在着一定的差异,这种差异与所利用的数据类型,板块及其边界划分方案、测站的数量与分布状态及测站取舍的原则有关,尤其是与测站的分布 变形(非刚性板块运动)测站的取舍有关。在研究区域性地壳运动时,采用不同的板块运动模型将会得到不同的背景场,从而会得到不同的区域运动图像,因此选择合适的背景场模型是至关重要的。  相似文献   

4.
推导了板块的弹性运动方程.根据太平洋板块(PCFC)上空间大地测量的观测结果,建立了PCFC的弹性运动模型,该模型与板块实际运动状态的符合程度明显地优于刚体运动模型.研究表明:PCFC现今旋转的角速度比过去3Ma的平均值大0037°/Ma;在PCFC内部存在明显的水平形变,在15°S以北和2045°E以西地区存在一致的向西形变,北西与南西方向的形变速率分别为08~35 mm/a与10~34 mm/a;在板块的东南区存在一致的向东形变,北东与南东方向的形变速率分别为15~18 mm/a与28~91 mm/a.PCFC内部水平应变场的空间变化是有规律的,在PCFC的西北部,主压应变轴为NW-SE方向,主压应变率大于主张应变率;在PCFC的东南部,主压应变轴为NE-SW方向,主张应变率大于主压应变率;PCFC的东南边界是扩张边界,边界附近的主张应变率最大(平均为151×10-9/a),主张应变轴基本上与洋中脊的扩张方向一致;PCFC的西北边界是俯冲边界,边界附近的主压应变率最大(平均为075×10-9/a),主压应变轴基本上与太平洋板块的俯冲方向一致.  相似文献   

5.
本文主要介绍空间大地测量测定板块运动的成果和最新进展并与地质学方法进行了比较,研究结果表明,地质学方法和空间大地方法获得的板块运动参数基本一致,说明板块运动三百多万年来在整体上有较好的确定性,但太平洋板块用空间大地测量方法获得的板块运动速率高于地质学结果,随着空间大地测量的不断发展,用空间大地测量测定精确的全球和区域性板块运行参数已经成为可能。  相似文献   

6.
利用近年来中外几个研究单位在青藏高原的GPS观测结果,根据印度板块向欧亚大陆 俯冲模型,采用二层弹性自重半空间内断层运动的位错模型,对印度板块向欧亚大陆俯冲的 速率进行了反演,给出了在大地测量观测结果约束下的现今印度板块向欧亚大陆俯冲的速率 . 反演结果表明,现今印度板块约以8.1°的倾角、21.8 mm/a的速率向欧亚大陆俯冲. 本文 结果与从地质推断的在过去2~3Ma时期内,印度板块向欧亚大陆俯冲速率平均为18mm/a,有 较好的一致性,表明在较长时间内,印度板块向欧亚大陆俯冲的速率仍然是稳定的.  相似文献   

7.
地球南北半球的非对称性   总被引:12,自引:1,他引:12  
依据新的计算分析和空间观测数据,进一步论述了地球南北半球的非对称性. 全球热散失量的计算得出,南半球高出北半球33髎;南半球地幔热散失量是北半球的2倍. 比较南北半球S波速度分布,得出南半球的上地幔为低速、高温,北半球的上地幔为高速、低温. 计算地幔各层的质心位置发现,地球的质心偏于北半球. 计算地球经、纬圈长度的年变化率表明,南半球在扩张,北半球在收缩. 用空间大地测量数据的检测结果证实,南半球处于扩张状态,北半球处于压缩状态. 对地球的非对称性作了初步的动力学解释.  相似文献   

8.
论珠穆朗玛峰地区地壳运动   总被引:5,自引:1,他引:5  
珠穆朗玛峰位于欧亚板块和印度板块边缘的碰撞地带,地壳运动活跃,30余年来,共进行35次大规模的大地测量.根据这些大地测量成果对该地区的地壳运动进行了研究和探讨,认为珠峰地区地壳垂直运动在时间上和空间上都可能存在非平稳性,并发现在时间上的非平稳性与地震学家提出的地震活跃幕似有一定相关性;在空间上的非平稳性可能和地壳介质的非均匀性及地应力的非均匀吸收有关;珠峰地区的地壳水平运动以每年6~7cm速度向北东东方向运动,印度板块和青藏块体在冲撞边缘呈现明显的走滑运动趋势.  相似文献   

9.
欧亚东边缘的双向板块汇聚及其对大陆的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
自3 Ma至现今,在欧亚东缘太平洋、菲律宾海板块以较大速率朝NWW方向运动,并沿海沟向欧亚大陆俯冲;同时欧亚板块以较小速率朝SEE方向移动,构成双方向的板块汇聚格局.沿日本岛弧东侧,海洋板片以较小的倾角插入欧亚大陆下面,在浅部产生的挤压变形扩展到日本海东边缘.琉球岛弧的中、北部,菲律宾海俯冲板片的倾角较大,其西南段由NE向转变为EW向,正经历活动的海沟后退与弧后扩张.台湾是3种板块汇聚的交点:欧亚沿马尼拉海沟向东俯冲,吕宋弧与台湾碰撞,使台湾岛陆壳东西向缩短与隆升,形成年轻的造山带,菲律宾海板块沿琉球海沟的西南段向北俯冲到欧亚下面.位于南海与菲律宾海之间的菲律宾群岛是宽的变形过渡带,两侧被欧亚向东、菲律宾海向西俯冲夹击,中间是大型左旋走滑断层.总体上,现今时期的太平洋、菲律宾海板块的西向俯冲运动所产生的变形主要分布在俯冲板片内部及岛弧,未扩散到弧后地区,可能这种俯冲运动产生的水平应力较小,不能阻挡欧亚大陆的向东移动,对大陆内部的现今构造没有明显的影响.  相似文献   

10.
对于大地测量应用来说,目前IERS机构在定义地球参考系时推荐采用岩石圈无整体旋转(No-Net-Rotation-NNR)约束条件,然而对于地球物理应用来说,相对于NNR参考基准的绝对板块运动数据可能会对地幔对流等研究结果产生误导.考虑到热点的运动,提出建立平均热点(MHS-Medial HotSpot)参考基准的方法,给出建立该基准的约束准则,分别以地学模型NNR-NUVEL1A和实测模型ITRF2005VEL为基础,建立了平均热点参考基准MHS-NUVEL1A和MHS-ITRF2005,并与其它基于热点的绝对板块运动模型进行了比较和分析;讨论了岩石圈的西向漂移,给出了岩石圈相对于下地幔整体旋转的更精确的定量估计,即基于实测的热点参考架MHS-ITRF2005和地学模型NNR-NUVEL1A之间的整体旋转为0.26°/Ma,旋转极在(50°S, 62°E),这与由板块的受力模型给出的岩石圈的整体旋转的旋转极很接近,旋转速率大致快了10%.  相似文献   

11.
Introduction With the development of global tectonics and overall detections for global tectonics with multi-geophysical methods, ones can roundly study on the geological tectonics of sampling and magnetic stripe image, so as to summarize and interpret the geometrical and kinematical charac-teristics for the distribution of the ocean and the land, and spreading state of the global tectonics in a global scale. From a comprehensive view, the South and North hemispheres are clearly unsym-metrical…  相似文献   

12.
An asymmetric pattern is observed in the orientation of minor fracture zones about the axis of the Mid-Atlantic Ridge at five sites where relatively detailed studies have been made between latitudes 22°N and 51°N. The minor fracture zones intersect the axis of the Mid-Atlantic Ridge in an asymmetric V-shaped configuration. The V's point south north of the Azores triple junction (38°N latitude) and point north south of that junction.The rates and directions of sea-floor spreading are related to the asymmetric pattern of minor fracture zones at the sites studied. Half-rates of sea-floor spreading averaged between about 0 and 10 m.y. are unequal measured perpendicular to the ridge axis. The unequal half-rates of spreading are faster to the west north of the Azores triple junction and faster to the east south of that junction. The half-rates of sea-floor spreading calculated in the directions of the asymmetric minor fracture zones are equal about the ridge axis within the uncertainty of the direction determinations.A discrepancy exists between minor fracture zones that form an asymmetric V about the axis of the Mid-Atlantic Ridge, and major fracture zones that follow small circles symmetric about the ridge axis. To reconcile this discrepancy it is proposed that minor fracture zones are preferentially reoriented under the influence of a stress field related to interplate and intraplate motions. Major fracture zones remain symmetric about the Mid-Atlantic Ridge under the same stress field due to differential stability between minor and major structures in oceanic lithosphere. This interpretation is supported by the systematic variation in the orientation of minor fracture zones and the equality of sea-floor spreading half-rates observed about lithospheric plate boundaries.  相似文献   

13.
Summary The discovery of paleoplates buried in the upper mantle leads to an interpretation of the subduction as a discontinuous process running in cycles and shifting the place of its operation in or against the direction of ocean floor spreading. This mechanism explains the distribution of calc-alkaline volcanism of different age in fossil convergent plate boundaries. The establishment of regular spatial correlation of the aseismic gap in the Wadati-Benioff zones with the distribution of calc-alkaline volcanism enables to reconstruct fossil plate boundaries and to define allochtonous terranes in apparently homogeneous continental plates. The hampering effect of the ocean floor morphology and of the fragments of continental plates approaching the trench, which substantially influences the rates of subduction and the geodynamic history of active continental margins in different domains along the trench, allows us to understand the complicated geological development of continental wedges in fossil convergent plate margins. The establishment of the segmented nature of active subduction zones and the dramatic morphology of the lower limit of the active subducted slab along the trench help us to interpret extensive lateral gaps in volcanic chains overlying active as well as fossil subduction zones.  相似文献   

14.

The evolution and driving mechanism of the Asian winter monsoon system are of great importance to understanding the present-day climate. Through high-resolution particle size analysis of the oldest loess-red clay sequence known so far (with a basal age of about 8 Ma) and comparison of the results with oxygen isotope curves from North Atlantic marine sediments, 4 stages of the evolution of the Asian winter monsoon were clearly demonstrated. During the first stage, between about 8.1 and 4.3 Ma, there was no relation between Asian winter monsoon and Northern Hemisphere ice volume and high latitude climate inferred from marine sediments. A weak relation developed during the second stage, about 4.3 to 3.5 Ma. During the third stage (3.5 to 2.6 Ma) an Asian winter monsoon system similar to the present formed, initiating a stronger relation between the winter monsoon and Northern Hemisphere ice volume and high latitude climate. In the final stage (2.6 to 0 Ma) the present Asian winter monsoon system was fortified and stabilized and changes in the winter monsoon system were almost in phase with Northern Hemisphere ice volume and climate. The staggered uplift of Tibetan Plateau at ≈8, 3.6, 2.6 Ma and later might be the driving force for the evolution of the Asian winter monsoon.

  相似文献   

15.
The non-hydrostatic geoid is dominated by three large anomalies: an area of high gravity potential in the equatorial Pacific; another stretching from Greenland through Africa to the southwest Indian Ocean; and a semi-continuous low region passing from Hudson's Bay through Siberia to India and on to Antarctica. None of these three high-amplitude (greater than 60 m) and long-wavelength anomalies corresponds to present-day plate boundaries. However, if the modern geoid is plotted over the positions of continents and plate boundaries at 125 Ma B.P. (reconstructed relative to hotspots) a strong correlation emerges. The modern geoidal low corresponds in position to the areas of subduction surrounding the Pacific 125 Ma ago. The geoidal high now centered on Africa is entirely contained within ancient Pangaea, and the equatorial Pacific high overlies the location of the spreading centers preserved in the magnetic anomalies of the central Pacific. The most plausible cause of the large geoidal undulations is lower mantle convection only weakly coupled to plate motions. The correspondence between modern geoid and ancient plate boundaries implies either that the coupling was much more intimate in the past, or that there is a lag of at least 100 Ma in response of the lower mantle to upper mantle conditions.  相似文献   

16.
—Geodetic measurements of crustal deformation over large areas deforming at slow rates (<5 mm/yr over more than 1000 km), such as the Western Mediterranean and Western Europe, are still a challenge because (1) these rates are close to the current resolution of the geodetic techniques, (2) inaccuracies in the reference frame implementation may be on the same order as the tectonic velocities. We present a new velocity field for Western Europe and the Western Mediterranean derived from a rigorous combination of (1) a selection of sites from the ITRF2000 solution, (2) a subset of sites from the European Permanent GPS Network solution, (3) a solution of the French national geodetic permanent GPS network (RGP), and (4) a solution of a permanent GPS network in the western Alps (REGAL). The resulting velocity field describes horizontal crustal motion at 64 sites in Western Europe with an accuracy on the order of 1 mm/yr or better. Its analysis shows that Central Europe behaves rigidly at a 0.4 mm/yr level and can therefore be used to define a stable Europe reference frame. In that reference frame, we find that most of Europe, including areas west of the Rhine graben, the Iberian peninsula, the Ligurian basin and the Corsica-Sardinian block behaves rigidly at a 0.5 mm/yr level. In a second step, we map recently published geodetic results in the reference frame previously defined. Geodetic data confirm a counterclockwise rotation of the Adriatic microplate with respect to stable Europe, that appears to control the strain pattern along its boundaries. Active deformation in the Alps, Apennines, and Dinarides is probably driven by the independent motion of the Adriatic plate rather than by the Africa-Eurasia convergence. The analysis of a global GPS solution and recently published new estimates for the African plate kinematics indicate that the Africa-Eurasia plate motion may be significantly different from the NUVEL1A values. In particular, geodetic solutions show that the convergence rate between Africa and stable Europe may be 30–60% slower than the NUVEL1A prediction and rotated 10–30° counterclockwise in the Mediterranean.  相似文献   

17.
在建立全球ITRF97板块运动模型的基础上,利用"中国地壳运动观测网络"79个GPS基本站的数据,建立我国新的地壳运动方向图和块体运动模型.通过与NNR-NUVEL1A地质模型比较认为,ITRF97板块运动模型反映了现今十几年跨度的地壳运动,在研究我国现今几年到十几年时间跨度的地壳形变时,地壳运动背景场应采用基于ITRF97实测速度场建立欧亚板块运动模型.  相似文献   

18.
Tim  Byrne Lee  DiTullio 《Island Arc》1992,1(1):148-165
Abstract We propose that a change in convergence between the Pacific and Eurasian plates and the demise of the Kula-Pacific spreading centre at ca 43 Ma resulted in an ∼40° counterclockwise rotation in shortening direction within the Eocene Shimanto accretionary prism of southwest Japan. Evidence for this interpretation comes from: (1) structural studies of the accreted, deep-sea rocks of the Eocene Shimanto Belt from four widely separated localities; and (2) new plate reconstructions that incorporate the geological history of east Asia as well as the recently recognized reorganization of the Kula and Pacific plates at the time of anomaly 24. These reconstructions suggest that the Philippine Sea plate formed as the Kula-Pacific spreading centre reoriented at the time of anomaly 24 and that the Kula plate was being subducted beneath southwest Japan until ca 43 Ma. Our reconstructions and structural studies suggest that after ca 43 Ma, plate convergence in southwest Japan was oblique to the trend of the continental margin. Oblique convergence was apparently recorded at this time because arc volcanism had decreased and the accretionary prism was not detached from the arc massif. Moreover, the transition from cataclasis and faulting to pressure solution within the accreted sediments may have resulted in a stronger basal décollément, resulting in higher shear stresses along this boundary. We therefore propose that where the arc region and the décollément are of similar strengths, structures within accretionary prisms may record changing plate motions, including oblique convergence.  相似文献   

19.
Seismic gaps and plate tectonics: Seismic potential for major boundaries   总被引:5,自引:0,他引:5  
The theory of plate tectonics provides a basic framework for evaluating the potential for future great earthquakes to occur along major plate boundaries. Along most of the transform and convergent plate boundaries considered in this paper, the majority of seismic slip occurs during large earthquakes, i.e., those of magnitude 7 or greater. The concepts that rupture zones, as delineated by aftershocks, tend to abut rather than overlap, and large events occur in regions with histories of both long- and short-term seismic quiescence are used in this paper to delineate major seismic gaps.In detail, however, the distribution of large shallow earthquakes along convergent plate margins is not always consistent with a simple model derived from plate tectonics. Certain plate boundaries, for example, appear in the long term to be nearly aseismic with respect to large earthquakes. The identification of specific tectonic regimes, as defined by dip of the inclined seismic zone, the presence or absence of aseismic ridges and seamounts on the downgoing lithospheric plate, the age contrast between the overthrust and underthrust plates, and the presence or absence of back-arc spreading, have led to a refinement in the application of plate tectonic theory to the evaluation of seismic potential.The term seismic gap is taken to refer to any region along an active plate boundary that has not experienced a large thrust or strike-slip earthquake for more than 30 years. A region of high seismic potential is a seismic gap that, for historic or tectonic reasons, is considered likely to produce a large shock during the next few decades. The seismic gap technique provides estimates of the location, size of future events and origin time to within a few tens of years at best.The accompanying map summarizes six categories of seismic potential for major plate boundaries in and around the margins of the Pacific Ocean and the Caribbean, South Sandwich and Sunda (Indonesia) regions for the next few decades. These categories range from what we consider high to low potential for being the site of large earthquakes during that period of time. Categories 1, 2 and 6 define a time-dependent potential based on the amount of time elapsed since the last large earthquake. The remaining categories, 3, 4, and 5, are used for areas that have ambiguous histories for large earthquakes; their seismic potential is inferred from various tectonic criteria. These six categories are meant to be interpreted as forecasts of the location and size of future large shocks and should not be considered to be predictions in which a precise estimate of the time of occurrence is specified.Several of the segments of major plate boundaries that are assigned the highest potential, i.e., category 1, are located along continental margins, adjacent to centers of population. Some of them are hundreds of kilometers long. High priority should be given to instrumenting and studying several of these major seismic gaps since many are now poorly instrumented. The categories of potential assigned here provide a rationale for assigning prorities for instrumentation, for future studies aimed at predicting large earthquakes and for making estimates of tsunami potential.Lamont-Doherty Geological Observatory Contribution No. 2906.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号