首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fernández  T.  Irigaray  C.  El Hamdouni  R.  Chacón  J. 《Natural Hazards》2003,30(3):297-308
This article presents a method to map landslide susceptibility in rock massifs using Geographical Information Systems (GIS). The method is based on making an inventory of rupture zones of different types of slope movements and then analysing the bivariate correlation of these with the factors that determine instability. After determining the factors that present the highest correlation with each type of movement, a matrix is created to combine these factors and to determine the percentage of the rupture zone in each combination, which provides an expression of the susceptibility of the terrain. The map thus obtained is divided into susceptibility classes. The susceptibility maps (made in 1995) for each type of movement are first calibrated with the inventory of the movements from which they are derived (previous to 1995), and subsequently validated by another inventory elaborated after the susceptibility maps (in 1997). In both cases, significant correlation coefficients were obtained (the Goodman–Kruskal coefficients were over 0.8 and sometimes exceeded 0.9). The relative error (degree of accumulated fit for very low to low susceptibility classes) was always less than 5%,while the relative success rate was always above 50%. These resultsillustrate the adequacy of the method and of the maps obtained.  相似文献   

2.
van Westen  C. J.  Rengers  N.  Soeters  R. 《Natural Hazards》2003,30(3):399-419
The objective of this paper is to evaluate the importance of geomorphological expert knowledge in the generation of landslide susceptibility maps, using GIS supported indirect bivariate statistical analysis. For a test area in the Alpago region in Italy a dataset was generated at scale 1:5,000. Detailed geomorphological maps were generated, with legends at different levels of complexity. Other factor maps, that were considered relevant for the assessment of landslide susceptibility, were also collected, such as lithology, structural geology, surficial materials, slope classes, land use, distance from streams, roads and houses. The weights of evidence method was used to generate statistically derived weights for all classes of the factor maps. On the basis of these weights, the most relevant maps were selected for the combination into landslide susceptibility maps. Six different combinations of factor maps were evaluated, with varying geomorphological input. Success rates were used to classify the weight maps into three qualitative landslide susceptibility classes. The resulting six maps were compared with a direct susceptibility map, which was made by direct assignment of susceptibility classes in the field. The analysis indicated that the use of detailed geomorphological information in the bivariate statistical analysis raised the overall accuracy of the final susceptibility map considerably. However, even with the use of a detailed geomorphological factor map, the difference with the separately prepared direct susceptibility map is still significant, due to the generalisations that are inherent to the bivariate statistical analysis technique.  相似文献   

3.
基于GIS与ANN模型的地震滑坡易发性区划   总被引:1,自引:0,他引:1  
基于遥感数据、地理信息系统(GIS)技术和人工神经网络(ANN)模型,开展地震滑坡易发性区划研究.2010年4月14日玉树地震后,基于航片与卫星影像目视解译,并辅以野外调查的方法,在地震区圈定了2036处地震诱发滑坡.选择高程、坡度、坡向、斜坡曲率、坡位、与水系距离、地层岩性、与断裂距离、与公路距离、归一化植被指数(NDVI)、与同震地表破裂距离、地震动峰值加速度(PGA)共12个因子作为地震滑坡易发性评价因子.这些因子均是应用GIS技术与遥感影像处理技术,基于地形数据、地质数据、遥感数据得到.训练样本中的滑动样本有两组,一组是滑坡区整个单滑坡体的质心位置,另一组是滑坡滑源区滑前的坡体高程最高的位置.应用这12个影响因子,分别采用这两组评价样本,基于ANN模型建立地震滑坡易发性索引图,基于GIS工具建立地震滑坡易发性分级图.分别应用训练样本中滑坡分布的点数据去检验各自的结果正确率,正确率分别为81.53%与81.29%,表明ANN模型是一种高效科学的地震滑坡易发性区划模型.  相似文献   

4.
In the international literature, although considerable amount of publications on the landslide susceptibility mapping exist, geomorphology as a conditioning factor is still used in limited number of studies. Considering this factor, the purpose of this article paper is to implement the geomorphologic parameters derived by reconstructed topography in landslide susceptibility mapping. According to the method employed in this study, terrain is generalized by the contours passed through the convex slopes of the valleys that were formed by fluvial erosion. Therefore, slope conditions before landsliding can be obtained. The reconstructed morphometric and geomorphologic units are taken into account as a conditioning parameter when assessing landslide susceptibility. Two different data, one of which is obtained from the reconstructed DEM, have been employed to produce two landslide susceptibility maps. The binary logistic regression is used to develop landslide susceptibility maps for the Melen Gorge in the Northwestern part of Turkey. Due to the high correct classification percentages and spatial effectiveness of the maps, the landslide susceptibility map comprised the reconstructed morphometric parameters exhibits a better performance than the other. Five different datasets are selected randomly to apply proper sampling strategy for training. As a consequence of the analyses, the most proper outcomes are obtained from the dataset of the reconstructed topographical parameters and geomorphologic units, and lithological variables that are implemented together. Correct classification percentage and root mean square error (RMSE) values of the validation dataset are calculated as 86.28% and 0.35, respectively. Prediction capacity of the different datasets reveal that the landslide susceptibility map obtained from the reconstructed parameters has a higher prediction capacity than the other. Moreover, the landslide susceptibility map obtained from the reconstructed parameters produces logical results.  相似文献   

5.
Dramatic effects resulting from landslides on human life and economy of many nations are observed sometimes throughout the world. Landslide inventory and susceptibility mapping studies are accepted as the first stage of landslide hazard mitigation efforts. Generally, these landslide inventory studies include identification and location of landslides. The main benefit is to provide a basis for statistical susceptibility zoning studies. In the present study, a landslide susceptibility zoning near Yenice (NW Turkey) is carried out using the factor analysis approach. The study area is approximately 64 km2 and 57 landslides were identified in this area. The area is covered completely by Ulus Formation that has a flysh-like character. Slope angle, elevation, slope aspect, land-use, weathering depth and water conditions were considered as the main conditioning factors while the heavy precipitation is the main trigger for landsliding. According to the results of factor analysis, the importance weights for slope angle, land-use, elevation, dip direction, water conditions and weathering depth were determined as 45.2%, 22.4%, 12.5%, 8.8%, 8.1% and 3.0% respectively. Also, using these weights and the membership values of each conditioning factor, the membership value for landslide susceptibility was introduced. In the study area, the lowest membership value for landslide susceptibility was calculated as 0.20. Consequently, combining all results, a landslide susceptibility map was obtained. Compared with the obtained map, a great majority of the landslides (86 %) identified in the field were found to be located in susceptible and highly susceptible zones.  相似文献   

6.
Landslides are one of the most damaging and threatening hazards associated with seismically induced slope movements. Estimations of support conditions for slope displacements are important for taking preventive measures to avoid landslide events in future. California's Division of Mines and Geology (DMG) procedure is utilised in the present paper for estimating the slope failure mechanism under seismic conditions. In this study, the DMG procedure has been explained and has also been incorporated in a Geographic Information System (GIS) using Arc-GIS software from Environmental Systems Research Institute. Further, it is utilised for establishing a seismically induced slope displacement map for the Skien municipality area of Telemark County in Norway. The motivation for selecting this site was the availability of geotechnical parameters for the site. Three different displacement maps have been produced for earthquake scenarios of magnitude 5, 6 and 7, respectively. The maximum displacement of 133 cm is estimated for earthquake scenario of magnitude 7. It is noticed that the sensitive areas for slope failure remain the same under different earthquake scenarios. A displacement tool based on the DMG procedure has been created in the Arc-tool box in Arc-GIS software. This tool minimises the efforts for inserting formulas for making raster displacement maps. By using the displacement tool one can generate final products like displacement maps automatically at high accuracy and in quick time. The prepared slope displacement maps of study area are used for landslide susceptibility zonation (LSZ) map preparation. The LSZ maps are useful for landslide hazard assessment and further can be utilised by planners, civil engineers and local administrators for town planning and policy-making.  相似文献   

7.
基于灰色关联度模型的区域滑坡敏感性评价   总被引:2,自引:0,他引:2       下载免费PDF全文
数理统计和机器学习模型如支持向量机(support vector machine,SVM)等,在区域滑坡敏感性评价中得到广泛的应用.但这些模型的建模过程往往较复杂,如在对机器学习进行训练和测试时难以选取合理的非滑坡栅格单元,而且有较多的模型参数需要确定.为提高滑坡敏感性评价建模的效率和精度,提出基于灰色关联度的敏感性评价模型.灰色关联度模型能有效计算各比较样本与参考样本之间的定量的关联度,具有建模过程简洁和评价精度高的优点,该模型目前在区域滑坡敏感性评价中的应用还没有引起研究人员的足够关注且有待进一步拓展.拟将灰色关联度模型用于浙江省飞云江流域南田—雅梅图幅(南田地区)的滑坡敏感性评价,并将得到的评价结果与SVM模型的敏感性评价结果作对比分析.结果显示,灰色关联度模型在高和极高敏感区的滑坡预测精度优于SVM模型,而在中等敏感区的滑坡预测精度略低于SVM模型;整体而言,灰色关联度模型对整个南田地区滑坡敏感性分布的预测精度略高于SVM模型.对两个模型建模过程的对比结果显示,灰色关联度模型建模较简单,具有比SVM模型更高的建模效率,为滑坡敏感性评价提供了一种新思路.  相似文献   

8.
A quantitative methodology for landslide susceptibility zonationis described and its application to a study area in the lower part of the Deba Valley (Guipúzcoa,Spain) presented. Susceptibility models were obtained on the basis of statisticalrelationships between known mass movements and conditioning factors. A landslide rupturehypothesis was set and a digital database consisting of seventeen causal factors layers constructed.The modelling procedure was implemented utilising a GIS. The susceptibility analysis methodis based on the Favourability Functions approach, and two different mathematicalframeworks: probability theory and Zadehïs fuzzy set theory. Several landslidesusceptibility models were produced and validated using different sets of independent landslide data.The predictive capability of models was determined.  相似文献   

9.
Knowing the factors that influence landslide abundance and distribution is important to evaluate landslide susceptibility and hazard. Visual interpretation of aerial photographs (API) can be used to collect spatially distributed information on bedding attitude (BA), in an area. Where a map of the location of bedding traces (BTs), i.e. lines showing the intersection of bedding planes with the local topography, is available, the map can be used to obtain BA point data and to prepare maps showing morpho-structural domains. The possibility of using BA maps to investigate the influence of morpho-structural settings on landslide abundance is hampered by the lack of understanding of the influence of the length of the BTs, and of the parameters used to interpolate the BA data on the structural zonation. To investigate the problem, we used information on 207 BTs obtained through API in the Collazzone area, Central Italy, and we prepared 150 maps showing BA information. This was accomplished using 15 different values for the segmentation length of the BTs (S), and 10 different values for the tension parameter (T) used for the interpolation. We compare the results against previous results obtained for the same area adopting a heuristic approach to the segmentation of the same set of BTs. Next, we compare the geographical distribution of old deep-seated, deep-seated and shallow landslides in five morpho-structural domains in the study area, and we analyse the influence of the structural settings on the abundance of the different types of landslides.  相似文献   

10.
Spatial prediction of landslides is termed landslide susceptibility zonation (LSZ). In this study, an objective weighting approach based on fuzzy concepts is used for LSZ in a part of the Darjeeling Himalayas. Relevant thematic layers pertaining to landslide causative factors have been generated using remote sensing and geographic information system (GIS) techniques. The membership values for each category of thematic layers have been determined using the cosine amplitude fuzzy similarity method and are used as ratings. The integration of these ratings led to the generation of LSZ map. The integration of different ratings to generate an LSZ map has been performed using a fuzzy gamma operator apart from the arithmetic overlay approach. The process is based on determination of combined rating known as the landslide susceptibility index (LSI) for all the pixels using the fuzzy gamma operator and classification using the success rate curve method to prepare the LSZ map. The results indicate that as the gamma value increases, the accuracy of the LSZ map also increases. It is observed that the LSZ map produced by the fuzzy algebraic sum has reflected a more real situation in terms of landslides in the study area.  相似文献   

11.
Shiuan Wan   《Engineering Geology》2009,108(3-4):237-251
Spatial decision support system (SDSS) is an interactive, computer-based system designed to support a user in achieving a higher effectiveness of decision-making while solving a semi-structured spatial data. Satellite Remote Sensing and Digital Elevation Modeling are providing a systematic, rational framework for advancing scientific knowledge of our SDSS of geophysical phenomena that, often lead to observe the natural hazards or resources. Taking the advantage of these, more specifically, our study focused on using these to collect and measure the landslide data on a vast area located at Shei Pa National Park, Miao Li, Taiwan. Our source data includes (1) Digital Elevation Modeling is also used to investigate the landform, and (2) remote sensing image data are also employed to analyze the vegetation conditions. In addition, the process of generating landslide susceptibility maps involved on how to effectively extract the site-condition dominant attributes and thresholds for displaying the landslide occurrence accurately. Thus, the information from landslide must be categorized and thoroughly evaluated by an Advanced Data Mining Technique — Entropy-based classification method to construct the landslide knowledge rules. The knowledge scope with regards to core factors and thresholds are solved. Then, the susceptibility hazard maps are drawn and verifications are made. On the other hand, the conventional statistical method of Logistic Regression is used for comparison.  相似文献   

12.
滑坡危险性评价与预测是滑坡灾害防治中的首要任务,科学合理地评价滑坡危险性十分重要。以岩桑树水电站库区发育的潜在滑坡为例,据其特有的地质环境条件,选取坡体风化程度、斜坡坡度等9个影响因素作为滑坡危险性评价的指标,并建立分级标准将滑坡危险性分为轻度危险、中度危险、重度危险和极度危险4个等级。将突变理论运用到滑坡危险性评价中,从而建立了新的稳定性评判模型。基于突变级数法的滑坡危险性评价方法,综合考虑了各评价指标间的相关性,真实地描绘了滑坡系统的内在机制。实例分析结果表明,该方法评判结果准确率高,可为滑坡的防治提供依据。  相似文献   

13.
In recent years SAR interferometry has become a widely used technique for measuring altitude and displacement of the surface of the earth. Both these capabilities are highly relevant for landslide susceptibility studies. Although there are many problems that make the use of SAR interferometry less suitable for landslide inventory mapping, it’s use in landslide monitoring and in the generation of input maps for landslide susceptibility assessment looks very promising. The present work attempts to evaluate the usefulness and limitations of this technique based on a case study in the Swiss Alps. Input maps were generated from ERS repeat pass data using SAR interferometry. A land cover map has been generated by image classification of multi-temporal SAR intensity images. An InSAR DEM was generated and a number of maps were derived from it, such as slope-, aspect, altitude- and slope form classes. These maps were used to generate landslide and rockfall susceptibility maps, which give fairly well acceptable results. However, a comparison of the InSAR DEM with the conventional Swisstopo DEM, indicated significant errors in the absolute height and slope angles derived from InSAR, especially along the ridges and in the valleys. These errors are caused by low coherence mostly due to layover and shadow effects. Visual comparison of stereo images created from hillshading maps and corresponding DEMs demonstrate that a considerable amount of topographic details have been lost in the InSAR-derived DEM. It is concluded that InSAR derived input maps are not ideal for landslide susceptibility assessment, but could be used if more accurate data is lacking.  相似文献   

14.
The purpose of this study is to evaluate and to compare the results of multivariate (logical regression) and bivariate (landslide susceptibility) methods in Geographical Information System (GIS) based landslide susceptibility assessment procedures. In order to achieve this goal the Asarsuyu catchment in NW Turkey was selected as a test zone because of its well-known landslide occurrences interfering with the E-5 highway mountain pass.Two methods were applied to the test zone and two separate susceptibility maps were produced. Following this a two-fold comparison scheme was implemented. Both methods were compared by the Seed Cell Area Indexes (SCAI) and by the spatial locations of the resultant susceptibility pixels.It was found that both of the methods converge in 80% of the area; however, the weighting algorithm in the bivariate technique (landslide susceptibility method) had some severe deficiencies, as the resultant hazard classes in overweighed areas did not converge with the factual landslide inventory map. The result of the multivariate technique (logical regression) was more sensitive to the different local features of the test zone and it resulted in more accurate and homogeneous susceptibility maps.  相似文献   

15.
基于粗糙集的支持向量机滑坡易发性评价   总被引:4,自引:0,他引:4  
区域滑坡易发性评价对灾害中长期预测预报具有重要意义。以三峡库区秭归至巴东段为研究区,利用粗糙集理论对20个初始评价因子进行属性约简,去掉冗余或干扰信息,得到13个核心评价因子,并以此作为支持向量机的输入特征集,构建支持向量机模型,实现滑坡易发性评价。在易发性分区图中高易发区占8.2%,主要分布在童庄河右岸、归州河沿岸、青干河左岸、树坪至范家坪长江右岸、牛口到东壤口长江左岸和巴东附近;不易发区占 52.7%,主要分布于店子湾至巴东旧城以及远离长江水系及植被覆盖度高的区域。通过验证与分析,粗糙集-支持向量机模型在高中易发区中的预测精度为85.6%,其预测能力优于支持向量机模型;与野外调查对比,预测结果与实际情况吻合较好。研究表明,应用粗糙集和支持向量机相结合进行滑坡易发性评价具有预测能力强、计算效率高等优点。  相似文献   

16.
Landslides are one of the most frequent and common natural hazards in many parts of Himalaya. To reduce the potential risk, the landslide susceptibility maps are one of the first and most important steps in the landslide hazard mitigation. Earth observation satellite and geographical information system-based techniques have been used to derive and analyse various geo-environmental parameters significant to landslide hazards. In this study, a bivariate statistics method was used for spatial modelling of landslide susceptibility zones. For this purpose, thematic layers including landslide inventory, geology, slope angle, slope aspect, geomorphology, slope morphology, drainage density, lineament and land use/land cover were used. A large number of landslide occurrences have been observed in the upper Tons river valley area of Western Himalaya. The result has been used to spatially classify the study area into zones of very high, high, moderate, low and very low landslide susceptibility zones. About 72% of active landslides have been observed to occur in very high and high hazard zones. The result of the analysis was verified using the landslide location data. The validation result shows significant agreement between the susceptibility map and landslide location. The result can be used to reduce landslide hazards by proper planning.  相似文献   

17.
18.
基于GIS和信息量模型的京张高铁滑坡易发性评价   总被引:5,自引:3,他引:2  
新建京张铁路不仅是2022年北京冬奥会的配套交通保障设施,同时也是京包兰交通廊道的重要组成部分。在京张高铁沿线滑坡灾害调查的基础上,对影响滑坡灾害发育的相关因子进行统计分析,选取斜坡坡高、坡度、坡向、归一化植被指数、工程地质岩组、活动断裂、河流、年平均降雨量、地震和人类工程活动等10个要素作为评价模型计算的基本变量和数值化参数,采用基于GIS的信息量模型法对在建京张高铁沿线及邻区进行了滑坡灾害易发性评价,并将评价结果划分为5个等级:极低易发区、低易发区、中易发区、高易发区和极高易发区。结合野外调查成果,对评价结果的可信度进行了检验分析,评价结果与实际灾害发生情况基本吻合,研究结果可为京张高铁建设、减灾防灾提供基础依据。   相似文献   

19.
In this article, the results of a study aimed to assess the landslide susceptibility in the Calaggio Torrent basin (Campanian Apennines, southern Italy) are presented. The landslide susceptibility has been assessed using two bivariate-statistics-based methods in a GIS environment. In the first method, widely used in the existing literature, weighting values (Wi) have been calculated for each class of the selected causal factors (lithology, land-use, slope angle and aspect) taking into account the landslide density (detachment zones + landslide body) within each class. In the second method, which is a modification of the first method, only the landslide detachment zone (LDZ) density has been taken into account to calculate the weighting values. This latter method is probably characterized by a major geomorphological coherence. In fact, differently from the landslide bodies, LDZ must necessarily occur in geoenvironmental classes prone to failure. Thus, the calculated Wi seem to be more reliable in estimating the propensity of a given class to generate failure. The thematic maps have been reclassified on the basis of the calculated Wi and then overlaid, with the purpose to produce landslide susceptibility maps. The used methods converge both in indicating that most part of the study area is characterized by a high–very high landslide susceptibility and in the location and extent of the low-susceptible areas. However, an increase of both the high–very high and moderate–high susceptible areas occurs in using the second method. Both the produced susceptibility maps have been compared with the geomorphological map, highlighting an excellent coherence which is higher using method-2. In both methods, the percentage of each susceptibility class affected by landslides increases with the degree of susceptibility, as expected. However, the percentage at issue in the lowest susceptibility class obtained using method-2, even if low, is higher than that obtained using method-1. This suggests that method-2, notwithstanding its major geomorphological coherence, probably still needs further refinements.  相似文献   

20.
The present study deals with the application of analytical hierarchy process to prepare landslide hazard risk map of the Shivkhola Watershed applying remote sensing and geographic information system (GIS). Firstly, to integrate all the required thematic data layers and to prepare landslide susceptibility map, prioritised class rating value and prioritised factor rating value were obtained by developing couple-comparing matrix with a reasonable consistency and with the help of MATLAB software after Saaty. Three important risk factor/element maps, that is, weighted land use/land cover map, road contributing area map and settlement density map, were developed and their weighted linear combination was performed to prepare landslide risk exposure map. Then by integrating landslide susceptibility map and landslide risk exposure map, a classification was incorporated on ARC GIS Platform to prepare landslide hazard risk map. To evaluate the validity of the landslide hazard risk map, probability/chance of landslide hazard risk event has been estimated by means of frequency ratio between landslide hazard risk area (%) and number of risk events (%) for each landslide hazard risk class. Finally, an accuracy assessment was also made on ERDAS Imagine (8.5) which depicts that the classification accuracy of the landslide hazard risk map was 92.89 with overall Kappa statistics of 0.8929.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号