首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Summary The Tyrrhenian border of the Italian peninsula has been the site of intense magmatism from Pliocene to recent times. Although calc-alkaline, potassic and ultrapotassic volcanism overlaps in space and time, a decrease of alkaline character in time and space (southward) is observed. Alkaline ultrapotassic and potassic volcanic rocks are characterised by variable enrichment in K and incompatible elements, coupled with consistently high LILE/HFSE values, similar to those of calc-alkaline volcanic rocks from the nearby Aeolian arc. On the basis of mineralogy and major and trace element chemistry two different arrays can be recognised among primitive rocks; a silica saturated trend, which resulted in formation of leucite-free mafic rocks, and a silica undersaturated trend, charactrerised by leucite-bearing rocks. Initial 87Sr/86Sr and 143Nd/144Nd values of Italian ultrapotassic and potassic mafic rocks range from 0.70506 to 0.71672 and from 0.51173 to 0.51273, respectively. 206Pb/204Pb values range between 18.50 and 19.15, 207Pb/204Pb values range between 15.63 and 15.70, and 208Pb/204Pb values range between 38.35 and 39.20. The general εSr vs. εNd array, along with crustal lead isotopic values, clearly indicates that a continental crustal component has played an important role in the genesis of these magmas. The main question is where this continental crustal component has been acquired by the magmas. Volcanological and petrologic data indicate continental crustal contamination to be a leading process along with fractional crystallisation and magma mixing. Considering, however, only the samples thought to represent primary magmas, which have been in equilibrium with their mantle source, a clearer picture emerges. A large variation of εSr vs. εNd is still observed, with εSr from −2 to +180 and εNd from + 2 to −12. A bifurcation of this array is observed in the samples that plot in the lower right quadrant, with mafic leucite-bearing Roman Province rocks buffered at εSr = + 100 whereas the mafic leucite-free potassic and ultrapotassic rocks point to strongly radiogenic Sr compositions. We may argue that mafic leucite-bearing Roman Province rocks point to εSr and εNd values similar to those of Miocene carbonate sediments whereas mafic leucite-free potassic and ultrapotassic rocks point to a silicate upper crust end-member. Lead isotopes plot well inside the field of island arcs, overlapping the values of pelagic sediments as well, but bifurcation between the samples north and south of Rome is observed. The main characteristic for the mantle source of Italian potassic and ultrapotassic magmas is the clear upper crustal signature acquired prior to partial melting through metasomatic agents released by the subducted slab. In addition, one lithospheric mantle source in the north and an asthenospheric mantle source, pointing to an HIMU reservoir, in the south were recognised. The chemical and isotopic differences observed between the northern and southern sectors of the magmatic region were possibly due to the presence of a carbonate-rich component in the crustal enriching agent in the south. One crustal component might have been generated by melting of silicate metasedimentary rocks or sediments from an ancient subducted slab. The second one might reflect the activity of mostly CO2-rich fluid released more recently by the incipient subduction of carbonate sedimentary rocks. Received February 16, 2000; revised version accepted September 6, 2001  相似文献   

2.
 Agali–Coimbatore dolerite dykes constitute an important Proterozoic magmatic event that affected the south Indian shield. Rb-Sr whole rock isotope data yield an “errorchron” of 2369±400 Ma (2σ error) which is within error of the reported 2030±65 Ma K-Ar age. The dyke magmas were evolved Fe-rich tholeiitic melts produced by fractionation of clinopyroxene, orthopyroxene and olivine in the initial stages. Plagioclase became a fractionation phase during the latter stages of crystallization. The dykes characteristically have high 87Sr/86Sri (0.703–0.706) and are enriched in large-ion lithophile and light rare earth elements relative to primordial mantle values and show negative Nb anomalies. These compositional characteristics are interpreted as source mantle characteristics whereas some crustal effects are visible in some samples with high initial 87Sr/86Sr. Peridotite with minor hydrous metasomatic phases like amphibole (and phlogopite) within the shallow lithospheric mantle could be a potential source material for the dykes. However, at this stage we cannot convincingly differentiate whether the source of the parent magmas is solely lithospheric or a product of asthenosphere-lithosphere mixing. The δ18O values of the dykes range from +5.2 to +7.2 per mil (vs standard mean oceanic water). Initial Nd isotope values at the time of dyke intrusion (ɛNd at t=2.0 Ga) range from −2.3 to −4.8. Whole rocks define a correlation on an Sm-Nd isochron plot with a slope equivalent to an age of 3.15±0.53 Ga (2σ error); Sm-Nd crustal residence ages average at 2.87 Ga. The isochron age does not appear to be the result of systematic mixing with an older crustal component. These results together with trace element geochemistry suggest that the south Indian mantle lithosphere developed by addition of enriched melts/fluids at about 3.0 Ga synchronously with major crustal gene- ration in the south Indian shield. Received 20 June 1994/Accepted: 17 May 1995  相似文献   

3.
Initial 87Sr/86Sr and 143Nd/144Nd ratios of Phanerozoic granitoids and related intrusions of the New Zealand block display a mixing-type array indicative of the involvement in their sources of old continental crustal material, most likely of Proterozoic age. Sr(T) values range from –4 to +273 (87Sr/86Sr=0.7041–0.7233), while Nd(T) ranges from +2.7 to –11.0. Preexisting metasedimentary rocks have generally higher Sr and lower Nd (ranging to present-day values of +646 and –15.0, respectively), and, particularly for the Mesozoic intrusives, are isotopically appropriate mixing end-members. The widespread, early Paleozoic Greenland Group graywackes, which are derived from Proterozoic sources, are modeled as the source of the crustal end-member mixing with mantle-derived mafic magmas to produce the intrusive rocks. Four different types of models are applied to the isotopic and trace-element (Rb, Sr, Ba, REE) data: simple mixing; mixing with a partial melt of the metasedimentary rock, with or without isotopic equilibrium; and assimilation-fractional crystallization. Based on these models, some constraints may be applied on petrogenesis (e.g., the lack of high Rb concentrations points to the presence of biotite, and HREE depletion points to the presence of garnet); however, the models fail to adequately explain all the data. The New Zealand granitoids show similarities in isotopic character not only to rocks from offshore islands on the New Zealand block, but also to similar-aged granitoids in adjacent regions of Antarctica and Australia. This points to similarities in crustal character between continental blocks formerly proximal in Gondwanaland. We note an overall increase in Nd and decrease in Sr in felsic magmas from the Paleozoic to the Mesozoic to the Cenozoic in New Zealand, indicative of a decrease over time in the level of influence of recycled continental crust in subduction-related magmatism.Division Contribution No. 4538 (582)  相似文献   

4.
Arc magmas ranging in composition from basaltic andesites to rhyolites and intrusive equivalents were emplaced into the western margin of the North American craton starting in Late Triassic time giving way to rift0related sedimentation in the Late Jurassic. The region of this study cuts across Proterozoic basements of contrasting Nd model ages, 1.7–1.8 Ga (average ɛNd∼−11) in eastern Arizona and 2.0 to 2.3 GA (average ɛNd∼−18) in western Arizona and eastern California (Bennett and DePaolo 1987). The Mesozoic rocks have initial ɛNd of -3.4 to-6.4 in the eastern part of the study area and -7.1 to -9.2 in the western part. All of the rocks have elevated 87Sr/87Sr initial ratios (>0.706). Trends in initial ɛNd values of Mesozoic arc rocks are directly correlated with the Nd model ages of the basement through which they passed. Simple two-component mixing calculations indicate that recycled continental crust in the arc magmas represents on average about 65%. A minimum of 35% mantle input into continental arc magmas, as recent as the Mesozoic, represents a significant contribution to the growth of the continental crust, in the absence of a return flow of continental material into the mantle of similar magnitude. In a detailed study in the Santa Rita Mountains. Arizona, there is a pattern of increase of ɛNd with time: early basaltic andesites have more negative ɛNd than later felsic rocks. A correlated pattern of depletion with time is also observed with trace element and major element data. We attribute this either to progressive hybridization of the lower crust by repeated injection of mantle magmas, or the progressive thinning of the continental crust during prolonged arc magmatism. The present data do not allow distinction between the two models. Progressive decrease in crustal contribution to arc magmas with time may be an important feature of continental arc evolution. Hybridization of the lower crust due to repeated injection of mantle melts during arc magmatism may help contribute to small-scale heterogeneities in lower crust inferred from seismic and xenolith data. Similarly, whether there is a well defined MOHO or sharp crust-mantle boundary in any given segment of the continental crust may in part depend on the extent of crust modification as a result of continental arc magmatism.  相似文献   

5.
Middle to Late Jurassic plutonic rocks in the central Mojave Desert represent the continuation of the Sierran arc south of the Garlock fault. Rock types range from calc-alkaline gabbro to quartz monzonite. Chemical and isotopic data indicate that petrologic diversity is attributable to mixing of crustal components with mantle melts. Evidence for magma mixing is scarce in most plutons, but emplacement and injection of plutons into preexisting wallrocks (e.g. pendants of metasedimentary rocks) suggests that assimilation may be locally important. Field and petrographic evidence and major and trace element data indicate that the gabbros do not represent pure liquids but are, at least partly, cumulates. The cumulate nature of the gabbros coupled with field evidence for open-system contamination means that trace element contents of gabbros cannot be used to fingerprint the Jurassic mantle source, nor can isotopic data be unequivocally interpreted to reflect the isotopic composition of the mantle. Correlation of Sr and Nd isotropic composition with bulk composition allows some constraints to be placed on the mantle isotopic signature. Gabbros and mafic inclusions from localities north of Barstow, CA have the most depleted mantle-like isotopic signatures (Sr ( i )≈0.705 and ɛNd (t)=≈0 to +1). However, these rocks have likely seen some contamination as well, so the mantle source probably has an even more depleted character. Gabbros with the lowest Sr( i ) and highest ɛNd (t) are also characterized by the highest 207Pb/204Pb and 206Pb/204Pb in the entire data set. This may be a feature of the mantle component in the Jurassic arc indicative of minor source contamination with subducted sediment as has been observed in modern continental arcs. Locally exposed Precambrian basement and metasedimentary rocks have appropriate Sr, Nd and Pb isotopic signatures for the crustal end members and are possible contaminants. Incorporation of these components through combined anatexis and assimilation can explain the observed spread in isotopic composition. Evidence for a depleted mantle component in these gabbros contrasts with the enriched subcontinental mantle component in Jurassic arc plutons further to the east and suggests there may have been a major mantle lithosphere boundary between the two areas as far back as the Late Jurassic. Crustal boundaries and isotopic provinces defined on the basis of initial isotopic composition (Sr( i )=0.706 isopleth) are difficult to delineate because of the correlation of bulk composition with Sr and Nd isotopic composition and because values may differ depending on the age of the rocks sampled within a given area. Data from plutons intruded into rocks known or inferred to be Precambrian are, however, shifted dramatically (highest Sr( i ) and lowest ɛNd(t)) toward Precambrian values. The least isotopically evolved rocks (lowest Sr( i ) and highest ɛNd(t)) occur within the eugeoclinal belt of the Mojave Desert. This zone has been previously identified as a Precambrian rift zone but more likely represents a zone where mantle magmas have been intruded into isotopically similar crustal rocks of the eugeocline with minor input from old Precambrian crust. Received: 12 August 1993/Accepted: 8 July 1994  相似文献   

6.
The paper presents data on the Nd-Sr systematics of magmatic rocks of the Khaidaiskii Series of the Anginskaya Formation in the Ol’khon region, western Baikal area, and rocks of the Talanchanskaya Formation on the eastern shore of Lake Baikal. Geochemical characteristics of these rocks are identical and testify to their arc provenance. At the same time, the ɛNdtof rocks of the Khaidaiskii Series in the Ol’khon area has positive values, and the data points of these rocks plot near the mantle succession line in the ɛNdt-87Sr/86Sr diagram, whereas the ɛNdt values of rocks of the Talanchanskaya Formation are negative, and the data points of these rocks fall into the fourth quadrant in the ɛNdt-87Sr/86Sr diagram. This testifies to a mantle genesis of the parental magmas of the Khaidaiskii Series and to the significant involvement of older crustal material in the generation of the melts that produced the orthorocks on the eastern shore of the lake. These conclusions are corroborated by model ages of magmatic rocks in the Ol’khon area (close to 1 Ga) and of rocks of the Talanchanskaya Formation (approximately 2 Ga). The comparison of our data with those obtained by other researchers on the Nd-Sr isotopic age of granulites of the Ol’khon Group and metavolcanics in various structural zones in the northern Baikal area suggests, with regard for the geochemistry of these rocks, the accretion of tectonic nappes that had different isotopic histories: some of them were derived from the mantle wedge and localized in the island arc itself (magmatic rocks of the Anginskaya Formation) or backarc spreading zone (mafic metamagmatic rocks of the Ol’khon Group), while others were partial melts derived, with the participation of crustal material, from sources of various age (metagraywackes in the backarc basin in the Ol’khon Group and the ensialic basement of the island arc in the Talanchanskaya Formation).  相似文献   

7.
 Latest Devonian to early Carboniferous plutonic rocks from the Odenwald accretionary complex reflect the transition from a subduction to a collisional setting. For ∼362 Ma old gabbroic rocks from the northern tectonometamorphic unit I, initial isotopic compositions (εNd=+3.4 to +3.8;87Sr/86Sr =0.7035–0.7053;δ18O=6.8–8.0‰) and chemical signatures (e.g., low Nb/Th, Nb/U, Ce/Pb, Th/U, Rb/Cs) indicate a subduction-related origin by partial melting of a shallow depleted mantle source metasomatized by water-rich, large ion lithophile element-loaded fluids. In the central (unit II) and southern (unit III) Odenwald, syncollisional mafic to felsic granitoids were emplaced in a transtensional setting at approximately 340–335 Ma B.P. Unit II comprises a mafic and a felsic suite that are genetically unrelated. Both suites are intermediate between the medium-K and high-K series and have similar initial Nd and Sr signatures (εNd=0.0 to –2.5;87Sr/86Sr=0.7044–0.7056) but different oxygen isotopic compositions (δ18O=7.3–8.7‰ in mafic vs 9.3–9.5‰ in felsic rocks). These characteristics, in conjunction with the chemical signatures, suggest an enriched mantle source for the mafic magmas and a shallow metaluminous crustal source for the felsic magmas. Younger intrusives of unit II have higher Sr/Y, Zr/Y, and Tb/Yb ratios suggesting magma segregation at greater depths. Mafic high-K to shoshonitic intrusives of the southern unit III have initial isotopic compositions (εNd=–1.1 to –1.8;87Sr/86Sr =0.7054–0.7062;δ18O=7.2–7.6‰) and chemical characteristics (e.g., high Sr/Y, Zr/Y, Tb/Yb) that are strongly indicative of a deep-seated enriched mantle source. Spatially associated felsic high-K to shoshonitic rocks of unit III may be derived by dehydration melting of garnet-rich metaluminous crustal source rocks or may represent hybrid magmas. Received: 7 December 1998 / Accepted: 27 April 1999  相似文献   

8.
 Isotopic and trace element data from mantle and granulite xenoliths are used to estimate the relative contributions of mantle and crustal components to a large ignimbrite, referred to as the upper ignimbrite, that is representative of the voluminous mid-Cenozoic rhyolites of northwestern Mexico. The study also uses data from the volcanic rocks to identify deep crustal xenoliths that are samples of new crust created by the Tertiary magmatism. The isotopic composition of the mantle component is defined by mantle-derived pyroxenites that are interpreted to have precipitated from mid-Cenozoic basaltic magmas. This component has ɛNd≈+1.5, 87Sr/86Sr≈0.7043 and 206Pb/204Pb≈18.6. Within the upper ignimbrite and associated andesitic and dacitic lavas, initial 87Sr/86Sr is positively correlated with SiO2, reaching 0.7164 in the ignimbrite. Initial 206Pb/204Pb ratios also show a positive correlation with silica, whereas ɛNd values have a crude negative correlation, reaching values as low as −2. Of the four isotopically distinct crustal components identified from studies of granulite xenoliths, only the sedimentary protolith of the paragneiss xenoliths can be responsible for the high initial 87Sr/86Sr of the upper ignimbrite. The Nd, Sr, and Pb isotopic compositions of the upper ignimbrite can be modeled with relatively modest assimilation (≤20%) of the sedimentary component ± Proterozoic granulite. Gabbroic composition granulite xenoliths have distinctive Nd, Sr, and Pb isotope ratios that cluster closely within the range of compositions found in the andesitic and dacitic lavas. These mafic granulites are cumulates, and their protoliths are interpreted to have precipitated from the intermediate to silicic magmas at 32–31 Ma. These mafic cumulate rocks are probably representative of much of the deep crust that formed during mid-Cenozoic magmatism in Mexico. Worldwide xenolith studies suggest that the relatively great depth (≤20 km) at which assimilation-fractional crystallization took place in the intermediate to silicic magma systems of the La Olivina region is the rule rather than the exception. Oligocene ignimbrites of the southwestern United States (SWUS) have substantially lower ɛNd values (e.g. <−6) than the upper ignimbrite and other rhyolites from Mexico. This difference appears to reflect a greater crustal contribution to ignimbrites of the SWUS, perhaps due to a higher temperature of the lower crust prior to the emplacement of the Oligocene basaltic magmas. Received: 16 December 1994 / Accepted: 13 September 1995  相似文献   

9.
 Fifty-six new oxygen isotope analyses of minerals separated from nine Mesozoic anorogenic complexes of Damaraland in northwest Namibia have been used to estimate the δ18O values of the original magmas (δmagma). These complexes range in composition from nepheline syenite to alkaline and peraluminous granites, often with a variety of rock types present at a single centre. The silica-undersaturated rock types show a relatively small spread of values of δmagma from 6.0 to 7.0‰ (mean 6.6‰), which is consistent with their derivation from the mantle with little or no subsequent crustal contamination. The silica-oversaturated rocks show a wide range of δmagma values from 4.9 to 12.0‰, with a mean value of 8.3‰. The high values of δmagma in the silica-oversaturated rocks can only be explained with considerable involvement of the continental crust in their petrogenesis, and those rocks with δmagma>10‰ are interpreted as essentially crustal melts. It is generally accepted that the Damaraland complexes were generated as a result of rifting across the Tristan plume, with the plume providing both mantle-derived magma and with it the heat required for crustal melting. In addition to their mantle-like oxygen isotope ratios, the undersaturated rocks of the Damaraland complexes possess the trace element characteristics (e.g. low Zr/Nb ratios) of ocean island basalt, suggesting that their parental magmas were produced from the plume itself. In contrast, the oversaturated complexes generally have higher Zr/Nb ratios that are consistent with a larger crustal input. The highest values of δmagma in the Damaraland complexes are found in granitic rocks that intrude the central zone of the Pan-African Damara Orogen where presumably there is a substantial component of sedimentary origin in the lower to middle crust. Received: 3 April 1995/Accepted: 24 July 1995  相似文献   

10.
 In the Klamath Mountains, voluminous tonalite-trondhjemite magmatism was characteristic of a short period of time from about 144 to 136 Ma (Early Cretaceous). It occurred about 5 to 10 m.y. after the ∼165 to 159 Ma Josephine ophiolite was thrust beneath older parts of the province during the Nevadan orogeny (thrusting from ∼155 to 148 Ma). The magmatism also corresponds to a period of slow or no subduction. Most of the plutons crop out in the south-central Klamath Mountains in California, but one occurs in Oregon at the northern end of the province. Compositionally extended members of the suite consist of precursor gabbroic to dioritic rocks followed by later, more voluminous tonalitic and trondhjemitic intrusions. Most plutons consist almost entirely of tonalite and trondhjemite. Poorly-defined concentric zoning is common. Tonalitic rocks are typically of the low-Al type but trondhjemites are generally of the high-Al type, even those that occur in the same pluton as low-Al tonalite. The suite is characterized by low abundances of K2O, Rb, Zr, and heavy rare earth elements. Sr contents are generally moderate (∼450 ppm) by comparison with Sr-rich arc lavas interpreted to be slab melts (up to 2000 ppm). Initial 87Sr/86Sr, δ 18O, and ɛ Nd are typical of mantle-derived magmas or of crustally-derived magmas with a metabasic source. Compositional variation within plutons can be modeled by variable degrees of partial melting of a heterogeneous metabasaltic source (transitional mid-ocean ridge to island arc basalt), but not by fractional crystallyzation of a basaltic parent. Melting models require a residual assemblage of clinopyroxene+garnet±plagioclase±amphibole; residual plagioclase suggests a deep crustal origin rather than melting of a subducted slab. Such models are consistent with the metabasic part of the Josephine ophiolite as the source. Because the Josephine ophiolite was at low T during Nevadan thrusting, an external heat source was probably necessary to achieve significant degrees of melting; heat was probably extracted from mantle-derived basaltic melts, which were parental to the mafic precursors of the tonalite-trondhjemite suite. Thus, under appropriate tectonic and thermal conditions, heterogeneous mafic crustal rocks can melt to form both low- and high-Al tonalitic and trondhjemitic magmas; slab melting is not necessary. Received: 1 September 1994 / Accepted: 28 August 1995  相似文献   

11.
The isotope-geochemical study of the Eocene-Oligocene magmatic rocks from the Western Kamchatka-Koryak volcanogenic belt revealed a lateral heterogeneity of mantle magma sources in its segments: Western Kamchatka, Central Koryak, and Northern Koryak ones. In the Western Kamchatka segment, magmatic melts were generated from isotopically heterogeneous (depleted and/or insignificantly enriched) mantle sources significantly contaminated by quartz-feldspathic sialic sediments; higher 87Sr/86Sr (0.70429–0.70564) and lower 143Nd/144Nd(ɛNd(T) = 0.06–2.9) ratios in the volcanic rocks from the Central Koryak segment presumably reflect the contribution of enriched mantle source; the high positive ɛNd(T) and low 87Sr/86Sr ratios in the magmatic rocks from the Northern Koryak segment area indicate their derivation from isotopically depleted mantle source without significant contamination by sialic or mantle material enriched in radiogenic Sr and Nd. Significantly different contamination histories of the Eocene-Oligocene mantle magmas in Kamchatka and Koryakia are related to their different thermal regimes: the higher heat flow beneath Kamchatka led to the crustal melting and contamination of mantle suprasubduction magmas by crustal melts. The cessation of suprasubduction volcanism in the Western Kamchatka segment of the continentalmargin belt was possibly related to the accretion of the Achaivayam-Valagin terrane 40 Ma ago, whereas suprasubduction activity in the Koryak segment stopped due to the closure of the Ukelayat basin in the Oligocene time.  相似文献   

12.
The composite Oberkirch pluton consists of three compositionally different units of peraluminous biotite granite. The northern unit is relatively mafic (SiO2∼64%) and lacks cordierite. The more felsic central and southern units (SiO2=67.8 to 70.4%) can only be distinguished from each other by the occurrence of cordierite in the former. Mafic microgranular enclaves of variable composition, texture and size occur in each of these units and are concentrated in their central domains. Most abundant are large (dm to m) hornblende-bearing enclaves with dioritic to tonalitic compositions (SiO2=50.8 to 56.3 wt%; Mg#=63 to 41) and fine grained doleritic textures that suggest chilling against the host granite magma. Some of these enclaves are mantled by hybrid zones. Less common are microtonalitic enclaves containing biotite as the only primary mafic phase (SiO2=53.7 to 64.4%) and small hybrid tonalitic to granodioritic enclaves and schlieren. Synplutonic dioritic dikes (up to 6 m thick) with hybrid transition zones to the host granite occur in the southern unit of the pluton. In chemical variation diagrams, samples from unmodified hornblende-bearing mafic enclaves and dikes form continuous trends that are compatible with an origin by fractionation of olivine, clinopyroxene, hornblende and plagioclase. Chemical and initial isotopic signatures (e.g. high Mg#, low Na2O, ɛNd=−1.2 to −5.1, 87Sr/86Sr=0.7055 to 0.7080, δ18O=8.0 to 8.8‰) exclude an origin by partial melting from a mafic meta-igneous source but favour derivation from a heterogeneous enriched lithospheric mantle. Samples from the granitic host rocks do not follow the chemical variation trends defined by the diorites but display large scatter. In addition, their initial isotopic characteristics (ɛNd=−4.5 to −6.8, 87Sr/86Sr=0.7071 to 0.7115, δ18O=9.9 to 11.9‰) show little overlap with those of the diorites. Most probably, the granitic magmas were derived from metapelitic sources characterized by variable amounts of garnet and plagioclase. This is suggested by relatively high molar ratios of Al2O3/(MgO+FeOtot) and K2O/Na2O, in combination with low ratios of CaO/(MgO+FeOtot), variable values of Sr/Nd, Eu/Eu*[=Eucn/(Smcn × Gdcn)0.5] and (Tb/Yb)cn (cn=chondrite-normalized) as well as variable abundances of Sc and Y. Whole-rock initial isotopic signatures of mafic microtonalitic enclaves (ɛNd=−4.6 to −5.2; 87Sr/86Sr=0.7060 to 0.7073; δ18O ∼8.1‰) are similar to those of the low ɛNd diorites. Plagioclase concentrates from a granite sample and a mafic microtonalitic enclave are characterized by initial 87Sr/86Sr ratios that are significantly higher than those of their bulk rock systems suggesting incorporation of high 87Sr/86Sr crustal material into the magmas. Field relationships and petrographic evidence suggest that the Oberkirch pluton originated by at least three pulses of granitic magma containing mafic magma globules. In-situ hybridization between the different magmas was limited. Late injection of dioritic magma into the almost solidified granitic southern unit resulted in the formation of more or less continuous synplutonic dikes surrounded by relatively thin hybrid zones. Received: 30 April 1999 / Accepted: 6 August 1999  相似文献   

13.
The high-K, calcalkaline granitic rocks of the 370 Ma, post-orogenic Harcourt batholith in southeastern Australia have I-type affinities but are mildly peraluminous and have remarkably radiogenic isotope characteristics, with 87Sr/86Srt in the range 0.70807 to 0.714121 and εNdt in the range ??5.6 to ??4.3. This batholith appears to be a good example of magmas that were derived through partial melting of distinctly heterogeneous source rocks that vary from intermediate meta-igneous to mildly aluminous metasedimentary rocks, with the balance between the two rock types on the metasedimentary side. Such transitional S-I-type magmas, formed from mainly metasedimentary source rocks, may be more common than is generally realised. The Harcourt batholith also contains mainly granodioritic igneous microgranular enclaves (IMEs). Like their host rocks, the IMEs are peraluminous and have rather radiogenic isotope signatures (87Sr/86Srt of 0.71257–0.71435 and εNdt of ??7.3 to ??4.3), though some are hornblende-bearing. Origins of these IMEs by mixing a putative mantle end member with the host granitic magma can be excluded because of the variability in whole-rock isotope ratios and, for the same reason, the IME magmas cannot represent quench cumulates (autoliths) from the host magmas. Less abundant monzonitic to monzosyenitic IMEs cannot represent accumulations of magmatic biotite and/or alkali feldspar because K-feldspar is absent, and there is no co-enrichment of K2O and FeO?+?MgO, nor can they be mixtures of anything plausible with the host-rock magma. The granodioritic IMEs probably originated through high degrees of assimilation of a range of crustal materials (partial melts?) by basaltic magmas in the deep crust, and the monzonitic IMEs as melts of enriched subcontinental mantle. Such enclave suites provide little or no information on the chemical evolution of their host granitic rocks.  相似文献   

14.
The origin of the Sondalo gabbroic complex has been unravelled by means of a petrological study of the least evolved rocks, troctolites to norites containing up to 20% of anhedral clinopyroxene and titanian pargasite. Pyroxenes and titanian pargasite from the troctolites have higher Mg, Al and Cr, and lower Mn than those from the norites, whereas plagioclase does not show systematic compositional variations (An ca. 65 mol%). The variation trend of anorthite content of plagioclase versus the forsterite content of olivine differs from that of arc-related gabbroic rocks. Plagioclase, clinopyroxene, orthopyroxene and titanian pargasite were analyzed for REE and selected trace elements by ion microprobe. Application of crystal/liquid partition coefficients to trace element mineral compositions suggests that the parental liquids of both troctolites and norites had tholeiitic affinity and were slightly LREE and LILE enriched relative to N-MORB. A troctolite and a norite give Sm-Nd mineral isochron ages of 300 ± 12 Ma and 280 ± 10 Ma. Plagioclase-amphibole Rb-Sr isochron ages are 266 ± 10 Ma and 269 ± 16 Ma for the same rock samples, and they are interpreted to represent cooling ages. The Nd-Sr-O isotopic compositions indicate that a substantial crustal contribution was involved in the petrogenesis of the norite, which has low ɛNd(290 Ma), high 87Sr/86Sr(290 Ma) and high δ18OPx (−2.6, 0.7057 and +7.9‰, respectively) compared with the troctolites. We thus conclude that the troctolite/norite association formed by concomitant fractional crystallization and crustal assimilation. The somewhat elevated δ18OCpx (+6.4‰) and the relatively low forsterite contents in olivine suggest that the parental liquids of the troctolites had already been evolved through an AFC type process. The ɛNd(290 Ma) and 87Sr/86Sr(290 Ma) of these rocks (ranging from +2.8 to +4.4 and from 0.7037 to 0.7040, respectively) probably do not reflect the ɛNd and Sr isotopic compositions of their mantle source, and it is thus unclear whether the primary melts were derived from a slightly enriched or from a depleted mantle source. The Sondalo gabbroic complex was most likely associated with the post-Variscan gabbroic complexes of the Alpine belt. These gabbroic complexes can be ascribed to the intrusion at different crustal levels of tholeiitic mantle-derived melts and were emplaced in the time span of 300–270 Ma. Received: 14 September 1998 / Accepted: 4 January 1999  相似文献   

15.
Nature of the crust in Maine,USA: evidence from the Sebago batholith   总被引:7,自引:0,他引:7  
 Neodymium and lead isotope and elemental data are presented for the Sebago batholith (293±2 Ma), the largest exposed granite in New England. The batholith is lithologically homogeneous, yet internally heterogeneous with respect to rare earth elements (REE) and Nd isotopic composition. Two-mica granites in the southern/central portion of the batholith (group 1) are characterized by REE patterns with uniform shapes [CeN/YbN (chondrite normalized) = 9.4–19 and Eu/Eu* (Eu anomaly) = 0.27–0.42] and ɛ Nd(t) = −3.1 to −2.1. Peripheral two-mica granites (group 2), spatially associated with stromatic and schlieric migmatites, have a wider range of total REE contents and patterns with variable shapes (CeN/YbN = 6.1–67, Eu/Eu* = 0.20–0.46) and ɛ Nd(t) = −5.6 to −2.8. The heterogeneous REE character of the group 2 granites records the effects of magmatic differentiation that involved monazite. Coarse-grained leucogranites and aplites have kinked REE patterns and low total REE, but have Nd isotope systematics similar to group 2 granites with ɛ Nd(t) = −5.5 to −4.7. Rare biotite granites have steep REE patterns (CeN/YbN = 51–61, Eu/Eu* = 0.32–0.84) and ɛ Nd(t) = −4.6 to −3.8. The two-mica granites have a restricted range in initial Pb isotopic composition (206Pb/204Pb = 18.41–18.75; 207Pb/204Pb = 15.60–15.68; 208Pb/204Pb = 38.21–38.55), requiring and old, high U/Pb (but not Th/U) source component. The Nd isotope data are consistent with magma derivation from two sources: Avalon-like crust (ɛ Nd>−3), and Central Maine Belt metasedimentary rocks (ɛ Nd<−4), without material input from the mantle. The variations in isotope systematics and REE patterns are inconsistent with models of disequilibrium melting which involved monazite. Received: 8 December 1995 / Accepted: 29 April 1996  相似文献   

16.
The 365-Ma You Yangs batholith is a mainly I-type monzogranitic body, containing rocks with both clinopyroxene and hornblende, but with a 2–2.5?km-wide rim of S-type rocks. In places, the margins of the intrusion wedge out laterally. A laccolithic shape may explain there being only low-grade contact metamorphism of the Ordovician metasedimentary wall rocks. The chemical and isotopic characteristics of the granitic rocks suggest that the magmas formed by partial melting of a source that contained some meta-igneous rocks but was dominated by chemically immature metasedimentary types, to impart an evolved Sr isotope signature (87Sr/86Srt?=?0.70877–0.71066 for the main monzogranitic rocks), combined with relatively non-radiogenic εNdt (–2.4 to –1.9). Crystal fractionation played little role in shaping the compositions of the granitic magmas, with the main variations interpreted to be source-inherited. Igneous-textured microgranular enclaves (IMEs) are prominent in the monzogranitic rocks. The IMEs probably had an ultimate enriched-mantle source, and their magmas did not mix significantly with the crustally derived granitic host magmas. The characteristics of the monzogranitic rocks hosting the enclaves suggest the possibility that an unrecognised metasediment-dominated terrane of ancient arc crust may be present beneath the Bendigo Zone.  相似文献   

17.
The Closepet batholith in South India is generally considered as a typical crustal granite emplaced 2.5 Ga ago and derived through partial melting of the surrounding Peninsular Gneisses (3.3 to 3.0 Ga). In the field, it appears as a composite batholith made up of at least two groups of intrusions. (a) An early SiO2-poor group (clinopyroxene quartz-monzonite and porphyritic phyritic monzogranite) is located in the central part of the batholith. These rocks display a narrow range in both initial 87Sr/86Sr (0.7017–0.7035) and Nd(–0.9to –4.1). (b) A later SiO2-rich group (equigranular grey and pink granites) is located along the interface between the SiO2-poor group and the Peninsular Gneisses. They progressively grade into migmatised Peninsular Gneisses, thus indicating their anatectic derivation. Their isotopic characteristics vary over a wide range (87Sr/86Sr ratios=0.7028–0.7336 and Nd values from-2.7 to-8.3, at 2.52 Ga). Field and geochronological evidence shows that the two groups are broadly contemporaneous (2.518–2.513 Ga) and mechanically mixed. This observation is supported by the chemical data that display well defined mixing trends in the Sr vs Nd and elemental variation diagrams. The continuous chemical variation of the two magmatic bodies is interpreted in terms of interaction and mixing of two unrelated end-members derived from different source regions (enriched peridotitic mantle and Peninsular Gneisses). It is proposed that the intrusion of mantle-derived magmas into mid-crustal levels occurred along a transcurrent shear zone; these magmas supplied additional heat and fluids that initiated anatexis of the surrounding crust. During this event, large-scale mixing occurred between mantle and crustal melts, thus generating the composite Closepet batholith. The mantle-derived magmatism is clearly associated with granulite facies metamorphism 2.51±0.01 Ga ago. Both are interpreted as resulting from a major crustal accretion event, possibly related to mantle plume activity.  相似文献   

18.
Young volcanic rocks from different sections of the Aleutian Islands-Alaska Peninsula Arc have been measured for 87Sr/86Sr, 143Nd/144Nd and some trace elements. We found the 143Nd/144Nd to be highly restricted in range ( Nd=6 to 7) and low as compared to midocean ridge ba-salts (MORB). This indicates that the source of the Aleutian Arc magmas is different from MORB and remarkably isotopically homogeneous with respect to Nd. The range reported here for arc rocks is substantially smaller than found by other workers. However, the Sr isotope ratios vary considerably ( Sr=–24 to –14). Those samples from small volcanic centers north of the main arc (second arc) are characterized by low Sr. Our data in combination with previous studies suggest that there are slight geochemical differences between discrete sections of the arc. The general uniformity of Nd isotope ratios are thought to be the surface expression of an efficient mixing or homogenization process beneath the arc plate, but which still causes a wide dispersion in Sr isotopic composition.To relate the arc rocks to the broader tectonic setting and to identify possible sources of arc magmas, measurements were done on volcanic and sedimentary rocks from the North Pacific/Bering Sea area. Alkali basalts from the back-arc islands St. George, Nunivak and St. Lawrence and alkali-rich tholeiites from the fore-arc have Nd=+4 to +9 and are correlated on the Sr- Nddiagram parallel to the mantle array but shifted to lower Sr. These samples are thought to be isotopically representative of the mantle transported to that region. A tholeiitic basalt from the Kamchatka Basin ocean floor (back-arc), however, yielded typical MORB values ( Nd=10, Sr=–24). Composite sediment samples were made from DSDP cores in the Aleutian Abyssal Plain, Gulf of Alaska and the Alka Basin which represent mixtures of continentally and arc-derived materials. These composites have intermediate Nd isotopic ( Nd= –2 and +2) and high Sr isotopic values ( Sr=+9 and +37). These data show that possible source materials of the Aleutian Arc volcanics are isotopically different from and much more heterogeneous than the arc rocks themselves.On the basis of this study and of literature data, we developed a set of alternative models for volcanic arc magma generation, based on the restricted range in Nd and the wider range in Sr for arc rocks. Different isotopic and trace element characteristics found in different arcs or arc sections are explained by varying mixing proportions or concentrations in source materials. The basic observations require rather strict mixing ratios to obtain constant Nd. The preferred model is one where the melting of subducted oceanic crust is controlled by the amount of trapped sediment with the melting restricted to the upper part of the altered basaltic layer. Homogenization within the upper part of the oceanic crust is brought about by hydrothermal circulation attending dewatering of the slab during subduction and possibly some oxygen exchange of the magmas on ascent.Division Contribution Number 3849 (411)  相似文献   

19.
A critical study of 311 published WR chemical analyses, isotopic and mineral chemistry of anorthosites and associated rocks from eight Proterozoic massif anorthosite complexes of India, North America and Norway indicates marked similarities in mineralogy and chemistry among similar rock types. The anorthosite and mafic-leucomafic rocks (e.g., leuconorite, leucogabbro, leucotroctolite, anorthositic gabbro, gabbroic anorthosite, etc.) constituting the major part of the massifs are characterized by higher Na2O + K2O, Al2O3, SiO2, Mg# and Sr contents, low in plagioclase incompatible elements and REE with positive Eu anomalies. Their δ 18O‰ (5.7–7.5), initial 87Sr/86Sr (0.7034–0.7066) and ɛ Nd values (+1.14 to +5.5) suggest a depleted mantle origin. The Fe-rich dioritic rocks occurring at the margin of massifs have isotopic, chemical and mineral composition more close to anorthosite-mafic-leucomafic rocks. However, there is a gradual decrease in plagioclase content, An content of plagioclase and XMg of orthopyroxene, and an increase in mafic silicates, oxide minerals content, plagioclase incompatible elements and REE from anorthosite-mafic-leucomafic rocks to Fe-rich dioritic rocks. The Fe-rich dioritic rocks are interpreted as residual melt from mantle derived high-Al gabbro melt, which produced the anorthosite and mafic-leucomafic rocks. Mineralogically and chemically, the K-rich felsic rocks are distinct from anorthosite-mafic-leucomafic-Fe-rich dioritic suite. They have higher δ 18O values (6.8–10.8‰) and initial 87Sr/86Sr (0.7067–0.7104). By contrast, the K-rich felsic suites are products of melting of crustal precursors.  相似文献   

20.
Copper–nickel sulfide mineralization in the Partridge River Intrusion of the 1.1 Ga Duluth Complex is restricted primarily to a 100 m thick zone near the base of the intrusion, which is heterogeneous at meter scales in terms of both sulfide contents and rock types, which include dunite, melatroctolite, troctolite, leucotroctolite, gabbro, olivine gabbro, gabbronorite, and rare norite. Olivine-rich troctolites and melatroctolites appear to have required mineral accumulation on a substrate, whereas augite troctolite and gabbros are thought to have formed via in situ crystallization of magmas ranging in composition from high-Al olivine tholeiite to high-Ti tholeiite. δ18O values of orthopyroxene-poor rocks in the Partridge River Intrusion range from 5.2 to 6.7‰. δ18O values of 6.7‰ are consistent with less than 20% contamination by high-18O metasedimentary country rock, either via devolatilization or local partial melting. Rocks with greater than ∼15% orthopyroxene, gabbronorites, and norites, are characterized by δ18O values in excess of 6.9‰, and required the assimilation of larger amounts of siliceous country rocks. Sulfur isotopic values in leucotroctolitic rocks that contain less than ∼400 ppm S and that overlie the basal zone range between −1.5 and 2‰, values that are consistent with those of mantle-derived sulfur. In contrast, δ34S values in the basal zone range from −1.4 to 10.5‰, where the 34S-enriched samples require an input of sulfur from metasedimentary country rocks. δ34S values of the rocks in the basal zone correlate with variations in olivine Fo content but not with S abundance. The wide range in δ34S values of rocks in the basal zone strongly suggests that magmas interacted with layers in the sedimentary country rocks that were themselves characterized by variable sulfide contents and δ34S values. The S isotopic data suggest that the heterogeneity observed in the basal zone results from the emplacement of relatively thin sheets of compositionally distinct magma. All rock types present in the basal zone can be produced as a result of variable degrees of fractionation of a parental high-Al olivine tholeiite, followed by varying degrees of contamination of derivative liquids by country rocks. The S-contamination process was essential for the development of Cu–Ni mineralization, and was restricted to the earliest stages in the development of the Duluth Complex at a time when volatile species such as S and H2O, and low-T partial melts of country rocks, were available to magmas. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号