首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
《岩土力学》2017,(Z1):123-130
基于室内盾构模拟试验,研究管隧垂直、斜交和平行工况下盾构开挖对管线变形的影响。以合肥在建地铁为工程背景,主要对管线的沉降、变形和相对转角等规律进行模拟试验研究。研究结果表明,二次扰动更容易使土体产生沉降,对土体中的地下管线的位移影响更大;隧道在开挖过程中沿隧道轴向的管线变形与沿隧道环向的影响范围不同,隧道开挖对地下管线产生的环向变形影响大于轴向变形影响;隧道开挖使管线下方土压力发生变化,中间段管线下方产生荷载临空区域,土压力逐渐减小,两边缘端产生附加应力逐渐增大。研究成果可为盾构施工对地下管线变形影响的预测提供相应的控制破坏依据。  相似文献   

2.
双线平行盾构隧道施工引起的三维土体变形研究   总被引:4,自引:0,他引:4  
魏纲  庞思远 《岩土力学》2014,35(9):2562-2568
基于双线水平平行盾构施工中土体损失引起的土体变形二维解析解,建立土体变形三维解析解。取不同的纵向位置作为变量,建立土体损失率沿纵向的变化方程;考虑先行隧道施工对后行隧道的影响,分别计算两条盾构隧道施工引起的土体变形,叠加得到双线平行盾构施工引起的土体总变形。其方法能够计算土体深层沉降和水平位移,较精确地反映土体三维变形。算例分析结果表明:预测值与实测值较为吻合;土体沉降随着离开挖面距离的增加而不断增大,最终在x = -40 m左右时趋于稳定;随着先行隧道与后行隧道开挖距离的接近,最大土体总沉降量逐渐增大;土体沉降会随着深度z的增大而略微增加,但沉降槽宽度将略微减小;随着两条隧道轴线水平距离L的增大,最大土体沉降逐渐减小,沉降曲线形状慢慢由V型转变成W型,不再符合正态分布规律。  相似文献   

3.
HTSS以大连地铁2号线香沙区间盾构隧道下穿铁路桥特殊地段为依托,通过三维有限元程序仿真模拟以及工程现场动态监测,研究盾构施工法对周围地层变形的影响和盾构下穿铁路桥造成的沉降特征。结果表明:盾构开挖引起的地表沉降经历了5个阶段,即初期扰动沉降、开挖面前部沉降、盾构机正上方沉降、盾构通过沉降、后期固结沉降;地表沉降整体为一个凹槽形,即隧道中心线地表沉降大,隧道两边沉降较小,按隧道横截面轴线左右对称,符合地表沉降机理,并与现场监测数据一致;距离开挖隧道越近,总体沉降位移越大,盾构开挖小于20 m时,其沉降位移沿着横向与纵向都有扩展,隧道开挖至40 m时,沉降位移主要沿着纵向扩展,横向扩展不明显;不同深度的上部土体沉降呈漏斗形,即隧道正上方沉降最大,两边沉降递减,沉降曲线基本对称,地表右侧受右线隧道开挖影响,沉降量略大于左侧;桥桩底端处于隧道拱顶上,且整个桩身处于破裂面之上,属于短桩范畴,桥桩变形主要以受土体作用而产生的竖向沉降变形为主。  相似文献   

4.
为探究新建盾构隧道近距离侧穿既有隧道的相互影响,以武汉市轨道交通5号线盾构施工平行侧穿既有2号线区间工程为背景,使用FLAC3D软件建立了盾构隧道与既有隧道的数值模型,研究新建盾构隧道施工对既有隧道变形的影响规律,分析新建盾构隧道在列车动荷载作用下的拱顶变形特点,并结合现场监测数据进行了验证.研究结果表明:距离盾构开挖...  相似文献   

5.
针对新建地铁盾构隧道近距离上穿施工引发运营地铁线路不均匀变形问题,将既有线盾构管片视为一系列位于Pasternak基础上由拉伸弹簧、压缩弹簧和剪切弹簧连接的弹性地基短梁,考虑了管片间转动效应和剪切效应以及管片与土体相互作用,建立了基于Mindlin理论的新建盾构隧道施工引起的附加应力以及基于最小势能原理的既有隧道纵向变形的计算方法。结合实测数据与已有方法对比,验证了方法的适用性,并根据工程实例,采用该方法对影响纵向变形的管片连接、土体力学参数、新线与既有线相对位置参数及加固效果进行了分析。结果表明:新建隧道施工至上穿部位时摩擦力f和注浆压力p对既有隧道变形影响较大,穿越既有隧道后纵向变形主要受卸荷附加应力F影响;随着管片间剪切刚度ks、抗拉刚度k T增大,既有线路隆起变形减小,其中ks影响相对较大,工程中可从增强ks和kT的角度控制隧道变形;环形支撑加固措施能有效控制既有线纵向变形,且环间距1.5 m、交叉点左右各3~5环可取得良好效果。  相似文献   

6.
《岩土力学》2017,(4):1133-1140
多线叠交盾构隧道在地下空间内布置形式繁多,土体-隧道间相互作用机制复杂。针对多线叠交盾构垂直上穿、垂直下穿和上、下夹穿3种典型穿越施工形式,根据盾构隧道近距离施工的技术特点和控制要求,采用排液法重点分析了施工中因地层损失和开挖卸荷引起的地表沉降以及既有隧道纵向变形规律,并通过构建三维弹塑性有限元动态模型,与部分试验结果进行了对比验证。研究结果表明:上穿施工中,地表沉降较大,既有隧道均呈现上浮趋势;下穿施工时,地表沉降较小,既有隧道均呈现下沉趋势;先下后上穿越施工在各阶段引起的地表沉降变化均匀,最终地表沉降量相对较小;先上后下穿越施工时既有隧道变形曲线曲率大,既有隧道变形呈现反复震荡变化。成果可为类似多线叠交隧道工程的施工提供理论指导。  相似文献   

7.
魏新江  魏纲  丁智 《岩土力学》2007,28(Z1):505-510
在建筑物高度集中的城区,盾构施工会使周围一定范围内的既有建筑物受到影响。在考虑土体扰动的情况下,采用二维有限元方法,对邻近不同位置建筑物工况下的盾构隧道施工进行了模拟和分析。研究表明,建筑物的存在会增大隧道开挖引起的地面沉降和衬砌的受力与变形,同时隧道开挖也会使邻近建筑物产生附加应力和变形;当隧道轴线与建筑物中心线的水平距离与隧道外径之比L/D = 0.5~2时产生较大的地面沉降,建筑物的首尾沉降差较大,该区域内的建筑物比较危险;衬砌内力值也明显增大,在该区域以外对建筑物影响较小。  相似文献   

8.
地铁隧道施工对邻近建筑物影响的研究   总被引:6,自引:0,他引:6  
姜忻良  贾勇  赵保建  王涛 《岩土力学》2008,29(11):3047-3053
以某框架结构办公楼为研究对象,将建筑物和开洞地基看作一个有机的整体,按照结构-土体-隧道共同作用进行分析。利用有限元软件ANSYS10.0建立三维非线性有限元模型,研究计算了盾构法地铁隧道穿越建筑物时对建筑物自身沉降和内力的影响。分析结果表明,建筑物基础的沉降主要发生在地铁隧道穿越建筑物的区间段内;建筑物的横向倾斜随着盾构的掘进逐渐增大,而其纵向倾斜量最大值则出现在开挖面在建筑物中线附近时;在盾构穿越建筑物的过程中柱子的等效应 力增幅可达20.1 %;相对于弯矩而言,建筑物构件的扭矩变化更为显著;当开挖面越过建筑物20 m时其变形和内力均趋于稳定。  相似文献   

9.
盾构施工引起的固结沉降分析   总被引:1,自引:0,他引:1  
敖日汗  张义同 《岩土力学》2011,32(7):2157-2161
盾构在低渗透性土层中开挖,常常伴随着地表下沉,究其原因为超孔隙水压力消散引起固结沉降的结果。为对盾构施工引起土体的固结沉降进行研究,首先,根据隧道施工前后土体应力的变化值,应用Henkel超孔隙水压力理论,推导了隧道开挖引起的初始超孔隙水压力的计算公式,并采用数值分析方法,考虑了由于土体的固结引起的沉降变形。研究成果应用到上海地铁2号线,根据具体的地质条件进行理论计算分析。结果表明,隧道开挖引起的初始超孔隙水压力最大值位于隧道起拱线处,地表固结沉降预测值与实测值吻合较好。  相似文献   

10.
盾构隧道穿越苏州河对防汛墙的影响分析   总被引:1,自引:0,他引:1  
陈峰  田利勇  卢伟华 《岩土力学》2010,31(12):3855-3860
轨道交通11号线盾构隧道穿越苏州河将会对防汛墙的安全造成影响。为保证盾构顺利实施,拔高影响盾构穿越的桩基,采用双跨门洞式的结构型式对防汛墙结构加固改造。在保证防汛墙安全的前提下,为隧道穿越预留了足够空间。运用有限元数值模拟方法建立计算模型,对隧道穿越前后防汛墙结构的受力和变形形态进行分析。研究结果表明,隧道穿越前底板呈连续梁变形规律,长桩桩身中部和短桩桩端呈向外侧扩张的趋势,整个结构受力性状符合门洞式刚架结构的特性。隧道穿越后,底板的变形趋势与隧道穿越前变形规律相似,最大变形位于隧道上部跨中部位,而桩基变形形态则完全不同,隧道开挖引起长桩桩身中部和短桩桩端向隧道侧的变形,长桩呈挠曲变形,桩身最大变形位于隧道拱轴线附近,短桩呈刚体变形,最大变形位于桩端。经与实测沉降数据对比,盾构的穿越对防汛墙变形的影响处于可控状态,整体防汛墙计算沉降值与实测值较为接近。  相似文献   

11.
研究盾构隧道施工对周围地面以及建筑物沉降造成的影响,是软土地区盾构隧道安全施工和正常运营的基础课题。为了分析宁波轨道交通5号线同德路站—石碶站区间双线盾构隧道施工对周边地表和建筑物的影响,本文在建立盾构隧道动态施工过程三维有限元模型的基础上,基于地表以及建筑物沉降数值模拟结果与现场监测值的对比,分析了隧道开挖对隧道周围地表沉降与建筑物沉降的影响。结果表明,掘进完成时,开挖方向沉降槽往上行线隧道方向偏移、呈现倒梯形形态,横断面影响区域为距离双线隧道轴线中心小于3倍隧道直径;上行线在下行线开挖后并不会增加地表沉降,但增大了沉降槽宽度;下行线到达前产生的沉降占最终累计沉降的67%;当盾构掘进面刚到达建筑物时、建筑物的倾斜方向与盾构掘进方向一致,当盾构掘进面离开建筑物时、建筑物将沿着盾构掘进的反方向倾斜;建筑物两侧沉降值较中部沉降值降低了83%;双线贯通后建筑物沉降呈“U”形分布,最大沉降量发生在远离隧道一侧距建筑物中心0.5 m处。  相似文献   

12.
姜晓婷  路平  郑刚  崔玉娇  崔涛 《岩土力学》2014,35(Z2):535-542
以天津地铁2号线下穿多层建筑物的盾构隧道为例,建立了盾构下穿空旷场地以及下穿建筑物的有限元模型,计算结果与现场实测数据进行了对比验证。在此基础上分析了在天津软土地区盾构隧道施工对地表沉降及多层砌体结构建筑物差异沉降的影响,并对采用小应变土体本构模型与硬化土本构模型的计算结果进行比较。结果表明,采用小应变本构模型的地表最大沉降和横向沉降槽宽度与实测数据吻合良好。盾构斜下穿砌体结构房屋时,建筑物有偏向隧道轴线方向的倾斜,采用小应变土体本构模型的计算结果可以更好地反映建筑物的倾斜斜率的变化。因此,研究软土地区盾构掘进对上方建筑物沉降影响的精细化分析时应考虑土体小应变的影响。  相似文献   

13.
以天津地铁2号线隧道盾构施工为背景,取沿盾构轴线右侧一6层框架居民楼为研究对象,基于ABAQUS软件,建立了隧道和邻近建筑物及其桩基的计算模型,分析盾构施工对邻近建筑物及其桩基础变形的影响。结果表明,隧道盾构施工导致地表沉降,引起框架结构及其桩基变形,框架整体向隧道盾构一侧倾斜。其中框架梁靠近中柱一端沉降较大,而框架中柱及其桩基也较两侧边柱及其桩基的沉降大。同时表明,盾构施工对邻近建筑物及地下桩基变形产生的影响是整体相关的,在隧道盾构施工时应引起相关设计与施工部门的注意。   相似文献   

14.
王晓睿  蔡松  杨伟  郑培信 《地球科学》2022,47(4):1483-1491
基于土压盾构在极软岩地层中近距离下穿既有建筑的背景,采用ABAQUS有限元数值模拟与现场实测相结合的方法,从地表和建筑物竖向位移变化及其控制的角度出发研究既有建筑对盾构施工的影响.实测结果表明:地表和建筑物在盾构下穿过程中会呈现出先隆起后沉降的趋势,其中在盾尾脱出阶段地表和建筑物会产生较大速率的沉降.数值模拟结果表明:...  相似文献   

15.
马险峰  陈斌  田小芳  王俊淞 《岩土力学》2012,33(12):3604-3610
随着地铁网络不断完善,越来越多的新建盾构隧道近距离穿越既有隧道,然而对于盾构隧道近距离穿越既有隧道影响的研究尚不够完善。以上海典型软弱地层为背景,通过离心模型试验,研究了不同注浆率下的盾构上穿越施工对既有隧道以及周围地层的影响。选用排液法在离心场中模拟盾构施工,在不停机状态下成功模拟隧道开挖卸载、地层损失和注浆效应。分析了在不同的注浆率条件下,既有隧道在上穿越施工期和工后长期的位移、周围孔压和纵向应力的变化规律。试验结果表明,新建隧道近距离上穿越既有隧道时,隧道开挖的卸载效应等会导致既有隧道的隆起,但随着注浆率增大,既有隧道的隆起量减小。但过高注浆率对周围土体扰动较大,从而导致工后既有隧道的沉降也越大。  相似文献   

16.
郑刚  李志伟 《岩土力学》2012,33(8):2491-2499
在考虑土体的小应变现象及建筑物初始变形的基础上,研究了邻近建筑物与基坑相对距离的变化及自身刚度变化对建筑物不均匀沉降的影响。对于纵墙垂直于基坑边,且跨越坑外沉降槽最低点时,墙体产生的下凹挠曲变形与建筑物的初始变形趋势相同,初始变形将在一定程度上增大墙体的拉应变,尤其是对于刚度较小的建筑物,初始变形对墙体拉应变的影响将更为显著,此时考虑建筑物的初始变形是很有必要的;而当纵墙垂直于基坑边,且处于坑外土体上凸区域时,初始挠曲与基坑开挖产生的挠曲变形趋势相反,此时不考虑建筑物的初始变形则是偏于保守的。当建筑物部分处于下凹区、部分处于上凸区时,对于建筑物的下凹区部分也应考虑其初始变形的影响。  相似文献   

17.
上海长江隧道过民房段地表变位预测及控制研究   总被引:1,自引:0,他引:1  
复杂环境条件下大型泥水盾构施工诱发的地表变位的预测与控制是亟待深入研究的重要课题。结合上海长江隧道超大型泥水盾构推进工程,对其上行线隧道穿越民房段前试验段的地表沉降监测数据进行了分析,并采用随机介质理论预测了2条隧道单独及共同施工引起的横向地表变形和位移,据以制定了民房段施工地表变位控制措施。实例分析证明,预测方法和控制措施具有科学性、有效性,有一定的实用价值。  相似文献   

18.
人工土层冻结法加固在盾构出洞施工中的应用   总被引:10,自引:0,他引:10  
秦爱芳  李永和 《岩土力学》2004,25(Z2):449-452
软土地区盾构出洞施工中洞口土体易失稳、渗水,上海明珠线二期工程浦东大道站至张扬路站区间,隧道在盾构出洞施工中,为确保地面建筑及地下管线的安全及正常使用,首次采用了人工土层冻结加固,取得了良好的效果;本文介绍了该工程出洞口土体加固的方案选择、关键技术处理及实际取得的效果,并探讨了人工土层冻结加固在含水松软土层的地下工程中的应用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号