首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A steady-state groundwater flow model of three Quaternary intertill aquifers in the eastern part of Lithuania has been compiled. The distinction of separate modelled layers is based on hydraulic and isotope-hydrochemistry data criteria. 3H data were used to estimate the corrected groundwater age and were coupled with a groundwater-flow-dynamics model of the Quaternary aquifer system along a cross-section flow pathway from the Baltic Upland recharge area in eastern Lithuania towards the discharge area in the lowlands near the city of Kaunas in central Lithuania. The bicarbonate content in groundwater (214–462 mg/l) increases downgradient towards the lowland area. The other major constituents and total dissolved solids (TDS) have a trend analogous to the bicarbonate. The 14C activity of dissolved inorganic carbon (DIC) in the groundwater ranges from 41.4 to 85.7 pMC. With aquifer-system depth, active precipitation of aqueous solution takes place by dissolving minerals of calcite and dolomite and leakage of “old” groundwater from lower aquifers; the process is also traced by lower 14C and 3H activities and by more positive δ18O values in lowland areas.  相似文献   

2.
Isotopic compositions of sulphur, carbon, and oxygen have been determined for constituents from a total of 103 samples of sedimentary rocks, mafic and ultramafic igneous rocks, nickel ores, and gold ores from the Archaean Yilgarn Block.

Sulphides in the bulk of the sedimentary rocks have δ34S values close to 0‰ and appear to have precipitated from solutions which incorporated magmatic sulphur (either juvenile or derived from older rocks). There is no evidence for widespread sulphate reduction.

δ34S values of sulphides in the nickel deposits and associated mafic/ultramafic igneous rocks are within the magmatic range. The small, high‐grade deposits of the Kambalda‐Nepean‐Scotia type have small positive δ34S values, and the large, low‐to‐medium grade dunite‐associated deposits of the Mount Keith‐Perseverance type have small negative δ34S values.

Sulphides in the Kalgoorlie gold ores are enriched in 32S relative to those in their host dolerite, supporting an epigenetic origin for the gold, under moderately high fO2 conditions.

The δ13C values do not provide unequivocal evidence for the source(s) of the reduced carbon (kerogen) in the sedimentary rocks. Whilst they are compatible with biogenic derivation, it is not possible to rule out contributions from pre‐biotic organic ‘soup’ or from hydrothermal solutions of deep‐seated origin.

Carbonate in the sedimentary rocks are predominantly in epigenetic, sulphide‐bearing veinlets. In many cases, their δ13C values suggest precipitation from hydro‐thermal solutions containing magmatically derived CO2. In only two samples are the petrographic features and δ13C values compatible with marine carbonates. Talc‐carbonate altered ultramafic igneous rocks have δ13C values consistent with their incorporation of magmatically derived CO2.

The ?δ13C (carbonate‐kerogen) values for most of the sedimentary rock studied fall in a narrow range around +10‰, suggesting isotopic exchange between oxidized and reduced carbon species at moderately high temperatures (>250°C).

δ18O values of carbonate from both sedimentary rocks and igneous rocks are mainly within the range +7.2‰ to +18.0‰. If the values are primary they are consistent with the formation of carbonate from hydrothermal solutions of magmatic and/or metamorphic origin. However, it is also possible the δ18O values are the result of post‐depositional equilibration with meteoric waters.  相似文献   

3.
Microorganisms are ubiquitous in deep subsurface environments, but their role in the global carbon cycle is not well-understood. The natural abundance δ13C and Δ14C values of microbial membrane phospholipid fatty acids (PLFAs) were measured and used to assess the carbon sources of bacteria in sedimentary and granitic groundwaters sampled from three boreholes in the vicinity of the Tono Uranium Mine, Gifu, Japan. Sample storage experiments were performed and drill waters analyzed to characterize potential sources of microbial contamination. The most abundant PLFA structures in all waters sampled were 16:0, 16:1ω7c, cy17:0, and 18:1ω7c. A PLFA biomarker for type II methanotrophs, 18:1ω8c, comprised 3% and 18% of total PLFAs in anoxic sedimentary and granitic waters, respectively, sampled from the KNA-6 borehole. The presence of this biomarker was unexpected given that type II methanotrophs are considered obligate aerobes. However, a bacterium that grows aerobically with CH4 as the sole energy source and which also produces 56% of its total PLFAs as 18:1ω8c was isolated from both waters, providing additional evidence for the presence of type II methanotrophs. The Δ14C values determined for type II methanotroph PLFAs in the sedimentary (−861‰) and granite (−867‰) waters were very similar to the Δ14C values of dissolved inorganic carbon (DIC) in each water (∼−850‰). This suggests that type II methanotrophs ultimately derive all their carbon from inorganic sources, whether directly from DIC and/or from CH4 produced by the reduction of DIC. In contrast, δ13C values of type II PLFAs in the sedimentary (−93‰) and granite (−60‰) waters indicate that these organisms use different carbon assimilation schemes in each environment despite very similar δ13CCH4 values (∼−95‰) for each water. The δ13CPLFA values (−28‰ to −45‰) of non-methanotrophic bacteria in the KNA-6 LTL water do not clearly distinguish between heterotrophic and autotrophic metabolisms, but Δ14CPLFA values indicate that >65% of total bacteria filtered from the KNA-6 LTL water are heterotrophs. Ancient Δ14C values (∼−1000‰) of some PLFAs suggest that many heterotrophs utilize ancient organic matter, perhaps from lignite seams within the sedimentary rocks. The more negative range of δ13CPLFA values determined for the KNA-6 granitic water (−42‰ to −66‰) are likely the result of a microbial ecosystem dominated by chemolithoautotrophy, perhaps fuelled by abiogenic H2. Results of sample storage experiments showed substantial shifts in microbial community composition and δ13CPLFA values (as much as 5‰) during 2-4 days of dark, refrigerated, aseptic storage. However, water samples collected and immediately filtered back in the lab from freshly drilled MSB-2 borehole appeared to maintain the same relative relationships between δ13CPLFA values for sedimentary and granitic host rocks as observed for samples directly filtered under artesian flow from the KNA-6 borehole of the Tono Uranium Mine.  相似文献   

4.
The objective of this paper is to build a general correction model that takes into account all the different radiocarbon-dilution reactions and resolving the processes that are geochemically “aging” the groundwater in the Neogene Aquifer. For this, δ13C and radiocarbon in groundwater are investigated with their relationship to other chemical components in groundwater. The δ13C values in the Neogene Aquifer are influenced by various geochemical reactions like calcite dissolution, oxidation of organic matter and methanogenesis. Calcite dissolution and CH4 production increase δ13C while the oxidation of organic matter decreases δ13C in the groundwater. The reactions that modify δ13C also influence the 14C activity. Due to the complex geochemical environment, existing correction models are not applicable to this situation. A correction model for initial 14C activity is formulated in which the different C sources that influence 14C activity are taken into account. It is observed that recent dissolved organic matter plays an important role in redox reactions. The corrected 14C ages lie between −0.792 and 6.425 ka representing the maximum age. If a part of the organic matter that oxidises is fossil, the determined age will represent an overestimated age.  相似文献   

5.
Hydrochemical and isotope data in conjunction with hydraulic head and spring discharge observations were used to characterize the regional groundwater flow dynamics and the role of the tectonic setting in the Gidabo River Basin, Ethiopian Rift. Both groundwater levels and hydrochemical and isotopic data indicate groundwater flow from the major recharge area in the highland and escarpment into deep rift floor aquifers, suggesting a deep regional flow system can be distinguished from the shallow local aquifers. The δ18O and δ2H values of deep thermal (≥30 °C) groundwater are depleted relative to the shallow (<60 m below ground level) groundwater in the rift floor. Based on the δ18O values, the thermal groundwater is found to be recharged in the highland around 2,600 m a.s.l. and on average mixed with a proportion of 30 % shallow groundwater. While most groundwater samples display diluted solutions, δ13C data of dissolved inorganic carbon reveal that locally the thermal groundwater near fault zones is loaded with mantle CO2, which enhances silicate weathering and leads to anomalously high total dissolved solids (2,000–2,320 mg/l) and fluoride concentrations (6–15 mg/l) exceeding the recommended guideline value. The faults are generally found to act as complex conduit leaky barrier systems favoring vertical mixing processes. Normal faults dipping to the west appear to facilitate movement of groundwater into deeper aquifers and towards the rift floor, whereas those dipping to the east tend to act as leaky barriers perpendicular to the fault but enable preferential flow parallel to the fault plane.  相似文献   

6.
3H, δ13C and hydrochemical data were used to estimate the corrected groundwater age derived from conventional 14C age of dissolved inorganic carbon (DIC). The Middle-Upper Devonian aquifer system from the Baltic upland recharge area in eastern Lithuania towards the discharge area on the Baltic Sea coast in the west was considered. The concentration of total dissolved solids (TDS) in groundwater changes from 300 to 24,000  mg/L and increases downgradient towards the coast. The other major constituents have the same trend as the TDS. The hydrochemical facies of groundwater vary from an alkali-earth carbonates facies at the eastern upland area to an alkali-earth carbonate-sulfate and chloride facies at transit and discharge areas. Meteoric water percolating through the Quaternary and Devonian aquifers regulate the initial 14C activities of groundwater involving two main members of DIC: soil CO2 with modern 14C activity uptake and dissolution of 14C-free aquifer carbonates. Other sources of DIC are less common. 14C activity of DIC in the groundwater ranged from 60 to 108 pMC at the shallow depths. With an increase of the aquifers depth the dolomitization of aqueous solution and leakage of the “old” groundwater from lower aquifers take place, traced by lower activities (7–30 pMC).  相似文献   

7.
C and O isotope composition of Middle-Upper Miocene and Lower Pliocene carbonates from Kerch-Taman Region (Eastern Paratethys) have been studied in order to reconstruct palaeoenvironmental variability and post-sedimentation changes. The δ13C and δ18О values of the Upper Sarmatian to Lower Pliocene organogenic carbonates reflect the desalinization of paleobasins, global Late Miocene Cooling, and increase in seasonal temperature fluctuations. Isotopic composition of the Middle Sarmatian organogenic carbonates was strongly influenced by evaporation processes, high bioproductivity, and local submarine methane emissions. Warm climate and low bioproductivity together with unstable hydrological regime during the Late Chokrakian and the Karaganian times influenced the isotope composition of primary carbonates. Calcite shell of Spiratella sp. (δ13C =–0.4‰ and δ18О =–0.4‰) from Tarkhanian sediments was formed in warm marine environment. Dolomitization prevails over other secondary mineralization in the studied carbonate rocks. Two groups of secondary dolomites that are characterized by negative and positive δ13C values have been recognized. Lowe δ13C values (up to–31.4‰) in dolomites indicate the influence of both dissolved inorganic carbon (DIC) from oxidized organic matter (Сorg) and methane. Dolomites with positive δ13C values (7.0 and 7.8‰) associat with migration of CO2- and CH4-containing saline groundwater.  相似文献   

8.
《Applied Geochemistry》2002,17(9):1241-1257
This study aimed to develop a methodology for assessing the hydrochemical evolution of a groundwater system, using fracture-filling and fracture-lining calcite. Fracture calcite in deep (to ca. 1000 m) granitic rocks of the Tono area, central Japan, was investigated by optical and electron microscopy, and chemical and isotopic analysis. Coupled with geological evidence, these new data imply 3 main origins for the waters that precipitated calcite: (1) relatively high-temperature hydrothermal solutions, precipitating calcite distinguished by δ18OSMOW from −3 to ca. 10‰, and with δ13CPDB from ca. −18 to −7‰; (2) seawater, probably partly of Miocene age, which precipitated calcite distinguished by δ13CPDB of ca. 0‰ and δ18OSMOW > ca. 20‰; (3) fresh water, with a variable δ13CPDB composition, but which precipitated calcite distinguished by δ13CPDB that was significantly < 0‰ and as low as ca. −29‰ and δ18OSMOW > ca. 17‰. Data for 14C suggest that at least some of the fresh-water calcite formed within the last 50 ka. The present day hydrogeological regime in the Tono area is also dominated by fresh groundwater. However, the marine calcite of probable Miocene age found at depth has shown no evidence for dissolution and many different calcite crystal forms have been preserved. Studies of other groundwater systems have correlated similar crystallographic variations with variations in the salinity of coexisting groundwaters. When this correlation is applied to the Tono observations, the calcite crystal forms imply a similar range of groundwater salinity to that inferred from the isotopic data. Thus, the present study suggests that even in presently low-salinity groundwater systems, calcite morphological variations may record the changing salinity of coexisting groundwaters. It is suggested that calcite morphological data, coupled with isotopic data, could provide a powerful palaeohydrogeological tool in such circumstances.  相似文献   

9.
This study uses 3H concentrations, 14C activities (a14C), 87Sr/86Sr ratios, and δ13C values to constrain calcite dissolution in groundwater from the Ovens catchment SE Australia. Taken in isolation, the δ13C values of dissolved organic C (DIC) and 87Sr/86Sr ratios in the Ovens groundwater imply that there has been significant calcite dissolution. However, the covariance of 3H and 14C and the calculated initial 14C activities (a014C) imply that most groundwater cannot have dissolved more than 20% of 14C-free calcite under closed-system conditions. Rather, calcite dissolution must have been partially an open-system process allowing 13C and 14C to re-equilibrate with CO2 in the unsaturated zone. Recognising that open-system calcite dissolution has occurred is important for dating deeper groundwater that is removed from its recharge area in this and other basins. The study is one of the first to use 14C and 3H to constrain the degree of calcite dissolution and illustrates that it is a valuable tool for assessing geochemical processes in recharge areas.  相似文献   

10.
The Regional Deep Cretaceous Aquifer (RDCA) is the principal groundwater resource in Syria. Isotope and hydrochemical data have been used to evaluate the geographic zones in terms of renewable and non-renewable groundwater and the inter-relation between current and past recharge. The chemical and isotopic character of groundwater together with radiometric 14C data reflect the existence of three different groundwater groups: (1) renewable groundwater, in RDCA outcropping areas, in western Syria along the Coastal and Anti-Lebanon mountains. The mean δ18O value (?7.2 ‰) is similar to modern precipitation with higher 14C values (up to 60–80 pmc), implying younger groundwater (recent recharge); (2) semi-renewable groundwater, which is located in the unconfined section of the RDCA and parallel to the first zone. The mean δ18O value (?7.0 ‰) is also similar to modern precipitation with a 14C range of 15–45 pmc; (3) non-renewable groundwater found in most of the Syrian interior, where the RDCA becomes confined. A considerable depletion in δ18O (?8.0 ‰) relative to the modern rainfall and low values of 14C (<15 pmc) suggest that the large masses of deep groundwater are non-renewable and related to an older recharge period. The wide scatter of all data points around the two meteoric lines in the δ18O-δ2H diagram indicates considerable variation in recharge conditions. There is limited renewable groundwater in the mountain area, and most of the stored deep groundwater in the RDCA is non-renewable, with corrected 14C ages varying between 10 and 35 Kyr BP.  相似文献   

11.
The recharge and origin of groundwater and its residence time were studied using environmental isotopic measurements in samples from the Heihe River Basin, China. δ18O and δD values of both river water and groundwater were within the same ranges as those found in the alluvial fan zone, and lay slightly above the local meteoric water line (δD=6.87δ18O+3.54). This finding indicated that mountain rivers substantially and rapidly contribute to the water resources in the southern and northern sub-basins. δ18O and δD values of groundwater in the unconfined aquifers of these sub-basins were close to each other. There was evidence of enrichment of heavy isotopes in groundwater due to evaporation. The most pronounced increase in the δ18O value occurred in agricultural areas, reflecting the admixture of irrigation return flow. Tritium results in groundwater samples from the unconfined aquifers gave evidence for ongoing recharge, with mean residence times of: less than 36 years in the alluvial fan zone; about 12–16 years in agricultural areas; and about 26 years in the Ejina oasis. In contrast, groundwater in the confined aquifers had 14C ages between 0 and 10 ka BP.  相似文献   

12.
The karst groundwater in northern China is an important source of water supply. Its capacity for self-renewal is a key factor affecting its sustainable use. The Pingyi–Feixian karst aquifer in central and southern Shandong Province is a typical karst water source, contributing 54% to the total groundwater taken from the region. In this study, 25 groups of water samples were collected from the Pingyi–Feixian karst aquifer in November 2013. The compositions of isotopes of tritium (3H), carbon-13 (13C), and carbon-14 (14C) were measured. As indicated by the tritium values between 7.1 and 12.2 TU, the Pingyi–Feixian karst groundwater is primarily originated from both historical atmospheric precipitation and modern precipitation. The 14C ages corrected by δ13C were between 146 and 5403 years. Specifically, the shallow groundwater is younger than deep groundwater. Groundwater age tends to increase along the flow path. The ages of the groundwater in recharge area were between 146 and 1348 years, while the ages of deep groundwater in flowing area were generally between 2000 and 4000 years. The ages of the groundwater in discharge area with little anthropic exploitation were larger than 4500 years, whereas these with large amounts of exploitation were less than 1500 years. The shallower the groundwater, the stronger its capacity for renewal. The renewable capacity of karst groundwater in discharge area was significantly affected by anthropic exploitation. The karst groundwater in the areas with less exploitation showed the weakest capacity, whereas that in the area with intensive exploitation was much older and had a stronger renewable capacity.  相似文献   

13.
Mixing is a dominant hydrogeological process in the hydrothermal spring system in the Cappadocia region of Turkey. All springs emerge along faults, which have the potential to transmit waters rapidly from great depths. However, mixing with shallow meteoric waters within the flow system results in uncertainty in the interpretation of geochemical results. The chemical compositions of cold and warm springs and geothermal waters are varied, but overall there is a trend from Ca–HCO3 dominated to Na–Cl dominated. There is little difference in the seasonal ionic compositions of the hot springs, suggesting the waters are sourced from a well-mixed reservoir. Based on δ18O and δ2H concentrations, all waters are of meteoric origin with evidence of temperature equilibration with carbonate rocks and evaporation. Seasonal isotopic variability indicates that only a small proportion of late spring and summer precipitation forms recharge and that fresh meteoric waters move rapidly into the flow system and mix with thermal waters at depth. 3H and percent modern carbon (pmC) values reflect progressively longer groundwater pathways from cold to geothermal waters; however, mixing processes and the very high dissolved inorganic carbon (DIC) of the water samples preclude the use of either isotope to gain any insight on actual groundwater ages.  相似文献   

14.
The Yakima River, a major tributary of the Columbia River, is currently overallocated in its surface water usage in part because of large agricultural water use. As a result, groundwater availability and surface water/groundwater interactions have become an important issue in this area. In several sub-basins, the Yakima River water is diverted and applied liberally to fields in the summer creating artificial recharge of shallow groundwater. Major ion, trace element, and stable isotope geochemistry of samples from 26 groundwater wells from a transect across the Yakima River and 24 surface waters in the Kittitas sub-basin were used to delineate waters with similar geochemical signatures and to identify surface water influence on groundwater. Major ion chemistry and stable isotope signatures combined with principal component analysis revealed four major hydrochemical groups. One of these groups, collected from shallow wells within the sedimentary basin fill, displays temporal variations in NO3 and SO4 along with high δ18O and δD values, indicating significant contribution from Yakima River and/or irrigation water. Two other major hydrochemical groups reflect interaction with the main aquifer lithologies in the basin: the Columbia River basalts (high-Na groundwaters), and the volcaniclastic rocks of the Ellensburg Formation (Ca–Mg–HCO3 type waters). The fourth major group has interacted with the volcaniclastic rocks and is influenced to a lesser degree by surface waters. The geochemical groupings constrain a conceptual model for groundwater flow that includes movement of water between underlying Columbia River basalt and deeper sedimentary basin fill and seasonal input of irrigation water.  相似文献   

15.
Groundwater in the Cambrian–Vendian aquifer system has a strongly depleted stable isotope composition (δ18O values of about −22‰) and a low radiocarbon concentration, which suggests that the water is of glacial origin from the last Ice Age. The aim of this paper was to elucidate the timing of infiltration of glacial waters and to understand the geochemical evolution of this groundwater. The composition of the dissolved inorganic C (DIC) in Cambrian–Vendian groundwater is influenced by complex reactions and isotope exchange processes between water, organic materials and rock matrix. The δ13C composition of dissolved inorganic C in Cambrian–Vendian water also indicates a bacterial modification of the isotope system. The corrected radiocarbon ages of groundwater are between 14,000 and 27,000 radiocarbon years, which is coeval with the advance of the Weichselian Glacier in the area.  相似文献   

16.
Corrected groundwater 14C ages from the carbonate aquifer in Yucca Flat at the former Nevada Test Site (now the Nevada National Security Site), USA, were evaluated by comparing temporal variations of groundwater 36Cl/Cl estimated with these 14C ages with published records of meteoric 36Cl/Cl variations preserved in packrat middens (piles of plant fragments, fecal matter and urine). Good agreement between these records indicates that the groundwater 14C ages are reasonable and that 14C is moving with chloride without sorbing to the carbonate rock matrix or fracture coatings, despite opposing evidence from laboratory experiments. The groundwater 14C ages are consistent with other hydrologic evidence that indicates significant basin infiltration ceased 8,000 to 10,000 years ago, and that recharge to the carbonate aquifer is from paleowater draining through overlying tuff confining units along major faults. This interpretation is supported by the relative age differences as well as hydraulic head differences between the alluvial and volcanic aquifers and the carbonate aquifer. The carbonate aquifer 14C ages suggest that groundwater velocities throughout much of Yucca Flat are about 2 m/yr, consistent with the long-held conceptual model that blocking ridges of low-permeability rock hydrologically isolate the carbonate aquifer in Yucca Flat from the outlying regional carbonate flow system.  相似文献   

17.
Tufas, which are freshwater carbonates, are potential archives of terrestrial paleoclimate. Time series of stable isotopic compositions commonly show regular seasonal patterns controlled by temperature-dependent processes, and some perturbation intrinsic to the locality. We examined three tufa-depositing sites in southwestern Japan with similar temperate climates, to understand the origin of local characteristics in the isotopic records. Seasonal change in the oxygen isotope is principally reflected by temperature-dependent fractionation between water and calcite but was perturbed after heavy rainfalls overwhelming the stability of the δ18O value of the groundwater at one site. Isotopic mass balance indicates an undersaturated and relatively small aquifer at this locality. Water δ18O values at the other two sites were stable, reflecting a regular seasonal change in the δ18O value of tufa. Perturbation of the δ13C values in tufa is largely due to CO2 degassing from the stream, which significantly increases the δ13C values of dissolved inorganic carbon (DIC). At a site with remarkably high pCO2 in springwater and a sensitive response of flow rate to rainfall, the amount of CO2 degassing changed distinctly with flow rate. In contrast, the other two sites having low pCO2 springwater reflect a regular seasonal pattern of δ13C in DIC and tufa specimens.  相似文献   

18.
《Applied Geochemistry》1998,13(1):49-57
Isotopic analyses of shell material from the freshwater mussel Elliptio complanata produced mean C concentrations that were depleted in 14C and 13C relative to the lake water DIC. Depleted C isotope values were attributed to the incorporation of 12C-enriched metabolic C into the shell. Microsampling of longitudinal sections of shell revealed a seasonal pattern in the δ13C values. The seasonal pattern matched predictions that DIC δ13C and metabolic rate determine the final shell δ13C concentration. The greatest depletion of δ13C occurred in the summer. Similar δ13C patterns in marine and freshwater mollusks probably record not only temperature fluctuations, upwelling events, and phytoplankton blooms as reported, but also the changes in metabolic activity brought on by such events.  相似文献   

19.
The continuous abstraction of groundwater from Arusha aquifers in northern Tanzania has resulted in a decline in water levels and subsequent yield reduction in most production wells. The situation is threatening sustainability of the aquifers and concise knowledge on the existing groundwater challenge is of utmost importance. To gain such knowledge, stable isotopes of hydrogen and oxygen, and radiocarbon dating on dissolved inorganic carbon (DIC), were employed to establish groundwater mean residence time and recharge mechanism.14C activity of DIC was measured in groundwater samples and corrected using a δ13C mixing method prior to groundwater age dating. The results indicated that groundwater ranging from 1,400 years BP to modern is being abstracted from deeper aquifers that are under intensive development. This implies that the groundwater system is continuously depleted due to over-pumping, as most of the sampled wells and springs revealed recently recharged groundwater. High 14C activities observed in spring water (98.1?±?7.9 pMC) correspond with modern groundwater in the study area. The presence of modern groundwater suggests that shallow aquifers are actively recharged and respond positively to seasonal variations.  相似文献   

20.
In order to address the problem of realistic assessment of groundwater potential and its sustainability, it is vital to study the recharge processes and mechanism of groundwater flow in fractured hard rocks, where inhomogeneties and discontinuities have a dominant role to play. Wide variations in chloride, δ18O and 14C concentrations of the studied groundwaters observed in space and time could only reflect the heterogeneous hydrogeological setting in the fractured granites of Hyderabad (India). This paper, based on the observed isotopic and environmental chloride variations of the groundwater system, puts forth two broad types of groundwaters involving various recharge processes and flow mechanisms in the studied granitic hard rock aquifers. Relatively high 14C ages (1300 to ~6000 yr B.P.), δ18O content (?3.2 to ?1.5‰) and chloride concentration (<100 mg/l) are the signatures that identified one broad set of groundwaters resulting from recharge through weathered zone and subsequent movement through extensive sheet joints. The second set of groundwaters possessed an age range Modern to ~1000 yr B.P., chloride in the range 100 to ~350 mg/l and δ18O from ?3.2 to +1.7‰. The δ18O enrichment and chloride concentration, further helped in the segregation of the second set of groundwaters into three sub-sets characterized by different recharge processes and sources. Based on these processes and mechanisms, a conceptual hydrogeologic model has evolved suggesting that the fracture network is connected either to a distant recharge source or to a surface reservoir (evaporating water bodies) apart from overlying weathered zone, explaining various resultant groundwaters having varying 14C ages, chloride and δ18O concentrations. The surface reservoir contribution to groundwater is evaluated to be significant (40 to 70%) in one subset of groundwaters. The conceptual hydrogeologic model, thus evolved, can aid in understanding the mechanism of groundwater flow as well as migration of contaminants to deep groundwater in other fractured granitic areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号