首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The Tongshankou Cu-Mo deposit, located in southeast Hubei province, is a typical skarn–porphyry type ore deposit closely related to the Tongshankou granodiorite porphyry, characterized by a high Sr/Y ratio.Detailed in situ analyses of the trace elements and U–Pb and Lu–Hf isotopes in zircons from the Tongshankou granodiorite porphyry were performed.Scarcely any inherited zircons were observed, and the analyzed zircons yielded highly concordant results with a weighted mean 206Pb/238 U age of 143.5 ± 0.45 Ma(n=20, mean square weighted deviation was 0.75), which was interpreted to represent the crystallization age of the Tongshankou granodiorite porphyry.The chondrite-normalized rare-earth element pattern was characterized by a slope that steeply rises from the light-group rare-earth elements(LREE) to the heavy-group rare-earth elements(HREE) with a positive Ce-anomaly and inconspicuous Eu-anomaly, which was coincident with the pattern of the zircons from the Chuquicamata West porphyry, Chile.The analyzed zircons also had relatively low 176Hf/177 Hf ratios of 0.282526–0.282604.Assuming t=143 Ma, the corresponding calculated initial Hf isotope compositions(εHf(t)) ranged from-5.6 to-2.9.The results of the in situ analysis of trace elements and U–Pb and Lu–Hf isotopes in zircons from the Tongshankou granodiorite porphyry suggest that a deep-seated process involving a thickened-crust/enriched-mantle interaction may play an important role in the generation of high Sr/Y-ratio magma and potentially in the generation of porphyry Cu-Mo systems.  相似文献   

2.
Abstract: The Shijuligou deposit was separated by an arcuate ductile shear zone cross the center of the deposit region, resulting in the difference between the southern and northern ore bodies. The lead (Pb) isotopic data of ores of the Shijuligou copper deposit have averages of 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb in 17.634, 15.444, and 37.312, respectively. It has been shown that ore-forming metals originated from intrusive and extrusive rocks in the upper part of ophiolites. The sulfur isotopic data of pyrite and chalcopyrite in the northern part change from +7.61‰ to +8.09‰ and +4.95‰ to +8.88‰ in the southern part. Isotopes of δ18O in the Shijuligou copper deposit are between +11.1‰ and +18.6‰, with the calculated δ18OH2O at +0.65‰. It is suggested that the mineralized fluid is a mixture of magma fluid, meteorological water, and seawater through circulating and leaching metals from the volcanic rocks. The zircon uranium-lead (U–Pb) dating of gabbro is 457.9±1.2 Ma, and the lower crossing age of the discordant and concordia curves of pyroxene spilite of zircon is 454±15 Ma. It is indicated that the Shijuligou deposit formed in a new ocean crust (ophiolite) of the back-arc basin in the late Ordovician. Mineralization should occur in the intermittence period after strong volcanic activity, and the age should be the late Ordovician. Moreover, the mineralization of ophiolite-hosted massive sulfide deposits in the ancient orogenic belt of the late Ordovician in the northern Qilian Mountains was controlled by the primary fault/fracture, with the forming of a metallogenic hydrothermal system by a mixture of volcanic magma fluid and seawater, which circularly leached the metallogenic metals from the volcanic rocks, resulting in their accumulation. The ore bodies were transformed with morphology and metallogenic elements. Jasperoid is an important sign for prospecting such deposits. There were many island arcs in the continent of China. This study provides evidence for understanding and exploration of ophiolite-hosted massive sulfide deposits in western China, especially in the area of northern Qilian Mountains.  相似文献   

3.
The Feidong district is located in the southern segment of the Tan–Lu fault zone that separates the South China Block (NCB) from the North China Craton (NCC). We report zircon U-Pb geochronology and Hf isotope data, as well as whole-rock geochemistry for Xishanyi granodiorite and Jianshan granite in the Feidong district. Zircon U-Pb dating results show that the emplacement ages of the Xishanyi and Jianshan intrusions are 124 ± 3 Ma and 130 ± 1 Ma respectively, coeval with magmatic events linked to large-scale lithospheric thinning in eastern China. The whole-rock geochemistry of the Xishanyi and Jianshan intrusions demonstrate that they are peraluminous, high potassium calc-alkaline I-type granites with adakitic characteristics. Both intrusions underwent weak crustal assimilation during emplacement. The in situ zircon εHf(t) values of the Xishanyi granodiorites range from ?26.4 to ?21.8, with TDM2 model ages of 2552 to 2841 Ma. The in situ zircon εHf(t) values of the Jianshan granite are from ?27.5 to ?23.0 with TDM2 model ages of 2632 to 2904 Ma. The peak age of inherited zircon grains from the Xishanyi granodiorite and the Jianshan granite were ~2.07 Ga and ~1.94 Ga, respectively. After compared with the regional magmatism, we suggest that both the Xishanyi and Jianshan granitoid intrusions were derived from partial melting of the NCC lower crust.  相似文献   

4.
Abstract: The Fengshan porphyry-skarn copper–molybdenum (Cu–Mo) deposit is located in the south-eastern Hubei Province in east China. Cu–Mo mineralization is hosted in the Fengshan granodiorite porphyry stock that intruded the Triassic Daye Formation carbonate rocks in the early Cretaceous (~140 Ma), as well as the contact zone between granodiorite porphyry stock and carbonate rocks, forming the porphyry-type and skarn-type association. The Fengshan granodiorite stock and the immediate country rocks are strongly fractured and intensely altered by hydrothermal fluids. In addition to intense skarn alteration, the prominent alteration types are potassic, phyllic, and propylitic, whereas argillation is less common. Mineralization occurs as veins, stock works, and disseminations, and the main ore minerals are chalcopyrite, pyrite, molybdenite, bornite, and magnetite. The contents of palladium, platinum and gold (Pd, Pt and Au) are determined in nine samples from fresh and mineralized granodiorite and different types of altered rocks. The results show that the Pd content is systematically higher than Pt, which is typical for porphyry ore deposits worldwide. The Pt content ranges from 0.037 to1.765 ppb, and the Pd content ranges between 0.165 and 17.979 ppb. Pd and Pt are more concentrated in porphyry mineralization than skarn mineralization, and have negative correlations with Au. The reconnaissance study presented here confirms the existence of Pd and Pt in the Fengshan porphyry-skarn Cu–Mo deposit. When compared with intracontinent and island arc geotectonic settings, the Pd, Pt, and Au contents in the Fengshan porphyry Cu–Mo deposit in the intracontinent is lower than the continental margin types and island are types. A combination of available data indicates that Pd and Pt were derived from oxidized alkaline magmas generated by the partial melting of an enriched mantle source.  相似文献   

5.
The Anqing Cu-Fe deposit is one of the representative large Cu-Fe deposits along the Yangtze River in Anhui province, with controversial metallogenic mechanism. Based on the ore-forming geological characteristics, this paper focus on the sulfur, carbon and oxygen isotopic compositions of the ores and surrounding rocks, and discuss the sources and evolution processes of the ore-forming materials. The Cu-Fe deposit occurs in the contact zone between the early Yanshanian Yueshan diorite and Triassic marble, with clear horizontal zonings in the skarns and ore bodies. The garnet skarn and thick massive magnetite ore body commonly occur within the external contact zone, which have clear boundaries with the surrounding rocks; whereas the diopside skarns with disseminated copper sulfide commonly occur within the internal contact zone and show gradual and transitional relations with the diorite. The δ34S values of the ores range from -6.5‰ to 10.6‰, and show a V-shaped trend from the diorite to the outer marble. This compositional variation indicates that most of the sulfur may come from magma, with involvement of some pre-Triassic clastic strata sulfur and Triassic marine sulfates in the later stage. The δ13C values of the gangue minerals range from -5.5‰ to 2.0‰, which decrease from the external contact zone to internal contact zone, indicating that the carbons of the ore-forming fluids may be mainly derived from magma, with some Triassic carbonate stratigraphic carbon involved. The marbles nearby the orebody show δ18O values lower than those of the Triassic strata, indicating that they have been remolded by the low δ18O magmatic hydrothermal fluids. The magnetite have some magma filling geological features and extremely low δ18O value, may be the result from the filling of the high temperature iron-rich fluids along the contact zone and fault. This study shows that the ore-magma filling type and hydrothermal-metasomatic type ore bodies coexist in the Anqing Fe-Cu deposit. The immiscibility between iron oxide and silicate melt occurred in magma chamber, which resulted in the formation of iron-rich fluid. The fluid migrated upward and eventually precipitated in a favorable tectonic area or contact zone, and the magnetite ore bodies were formed in the outer contact zone. By the later fluid mixing, filling metasomasis, and water-rock reaction between the differentiated hydrothermal solutions and diorite, the copper ore bodies and the copper-bearing altered diorite were formed in the internal contact zone. © 2018, Science Press. All right reserved.  相似文献   

6.
The Shizitou molybdenum(Mo) deposit in Yongping, Jiangxi, is an important, recently discovered deposit in the eastern section of the Qin–Hang metallogenic belt. The Mo deposit is located in the outer contact zone between the porphyritic biotite granite and the Neoproterozoic migmatite, and present in the deep central part of the intrusion. Re–Os dating and S and Pb isotopic analysis have been conducted to assess the metallogenesis of the Shizitou Mo deposit. S, Pb and Re isotopes show that the ore–forming materials were derived from the porphyritic biotite granitic magma, which originated from the mixing of mantle and crust. Re–Os dating of molybdenite from the ores gives a model age from 156.9±2.2 to 158.5±2.4 Ma, with a weighted mean age of 158±1 Ma and an isochron age of 158.0±2.5 Ma. Geological and geochemical characteristics of the ore deposit and the related granitoids indicate that the Shizitou deposit is a Climax–type Mo deposit. Based on previous studies of the Qin–Hang metallogenic belt, two metallogenic events are believed to have occurred during 172–145 Ma and 137–132 Ma. These two metallogenic periods are consistent with the timing of two metallogenic peaks during the middle to late Jurassic and the Cretaceous in South China. These events represent responses to the partial back–arc extension associated with the subduction of the Izanagi plate beneath the Eurasian continent and the rapid northeastward movement of the subducting Izanagi plate.  相似文献   

7.
The Tiegelongnan Cu(Au,Ag)deposit in central Tibet contains more than 10 Mt of copper ranking 29 th in the world.It is characterized by typical porphyry-epithermal alteration and mineralization.In order to improve the understanding of porphyry-epithermal copper deposit in Tibet,new zircon U-Pb age and sulfur isotope data along with published data in the Tiegelongnan are presented to investigate the formation and preservation mechanism.Ore-related intrusive rocks in the Tiegelongnan including Early Cretaceous(about 120 Ma)granodiorite porphyry and diorite porphyry are closely related to the northward subduction of Bangongco-Nujiang ocean.Sulfur mainly comes from deep magma,and ore-forming fluid is affected by both magmatic and meteoric water.The metallogenic setting of Tiegelongnan is consistent with those of Andean porphyry copper deposits in South America.The cover of the Meiriqiecuo Formation volcanic rocks,Lhasa-Qiangtang collision and India-Eurasian collision have significance in the preservation and uplift of the deposit.The formation,preservation and discovery of Tiegelongnan play an important role in exploration of ancient porphyry-epithermal deposits in Tibet.  相似文献   

8.
The Fenghuangshan skarn-type Cu deposit, Tongling Ore Cluster, Anhui Province, is an important component in the Middle–Lower Yangtze River ore-forming belt. To better understand magmatism and its relationship to mineralization, we investigated geochemical features, ore-forming fluids, and geochronology of the Xinwuli intrusion and the related Fenghuangshan Cu deposit. Lithogeochemical characteristics show that the Xinwuli quartz monzodiorite is formed by mixing magma derived from upper mantle alkaline basalt that has been contaminated by crust materials. C, H and O isotopes indicate that ore-forming fluids mainly come from the magma, with minor amounts of meteoric fluids involved at the late stage. S and Pb isotopic components indicate that ore-forming materials are derived from the mantle. Molybdenite Re–Os isotopic dating yields Re–Os model ages ranging from 139.1±2.4 Ma to 142.0±2.2 Ma, with an isochronal age of 141.1±1.4 Ma, which is consistent with sensitive, high-resolution ion microprobe (SHRIMP) zircon U–Pb ages of quartz monzodiorite and granodiorite in the mining area. Dating analysis yields ages from 136.0±2.0 Ma to 143.0±2.4 Ma for the quartz monzodiorite (a weighted average of 139.4±1.2 Ma) and ages from 136.7±2.0 Ma to 145.3±2.4 Ma for granodiorite (a weighted average of 141.0±1.1 Ma).  相似文献   

9.
The carbonaceous-siliceous-argillitic rock type uranium deposit in the Zoige area is located in the northeastern margin of the Tibetan Plateau, and has gained much attention of many geologists and ore deposit experts due to its scale, high grade and abundant associated ores. Because of the insufficient reliable dating of intrusive rocks, the relationship between mineralization and the magmatic activities is still unknown. In order to study this key scientific issue and the ore-forming processes of the Zoige uranium ore field, the LA-ICP-MS zircon U-Pb dating of magmatic rocks was obtained:64.08±0.59 Ma for the granite-prophyry and ~200 Ma for the dolerite. U-Pb dating results of uraninite from the Zoige uranium ore field are mainly concentrated on ~90 Ma and ~60 Ma. According to LA-ICP-MS U-Pb zircon dating, the ages for the dolerite, porphyry granite and granodiorite are 200 Ma, 64.08 Ma approximately and 226.5-200.88 Ma, respectively. This indicates that the mineralization has close relationship with activities of the intermediate-acidic magma. The ages of the granite porphyry are consistent with those uraninite U-Pb dating results achieved by previous studies, which reflects the magmatic and ore-forming event during the later Yanshanian. Based on the data from previous researches, the ore bodies in the Zoige uranium ore field can be divided into two categories:the single uranium type and the uranium with polymetal mineralization type. The former formed at late Cretaceous(about 90 Ma), while the latter, closely related to the granite porphyry, formed at early Paleogene(about 60 Ma). And apart from ore forming elemental uranium, the latter is often associated with polymetallic elements, such as molybdenum, nickel, zinc, etc.  相似文献   

10.
Using high-precision zircon U-Pb ID-TIMS geochronology, tuffs from the Chang 9 shale and the Chang 7 shale were dated. The tuff in the Chang 9 shale is 241.47 ± 0.17 Ma, which falls between the top tuff age of 241.06 ± 0.12 Ma and the bottom tuff age of 241.558 ± 0.093 Ma in the Chang 7 shale. These reveal that the Chang 9 and Chang 7 shales are contemporaneous, belonging to the Ladinian stage of the Middle Triassic. This insight expands the region of the main source rock of Chang 7 to the north...  相似文献   

11.
Precise in situ zircon U-Pb dating and Lu–Hf isotopic measurement using an LA-ICP-MS system, whole-rock major and trace element geochemistry and Sr–Nd isotope geochemistry were conducted on the volcanic host rocks of the Tongyu copper deposit on the basis of further understanding of its geological characteristics. Three zircon samples from the volcanic host rocks yielded 206Pb/238 U weighted average ages ranging from 436±4 Ma to 440±5 Ma, which are statistically indistinguishable and coeval with the ca. 440 Ma northward subduction event of the Paleo-Qinling oceanic slab. The volcanic host rocks were products of magmatic differentiation that evolved from basalt to andesite to dacite to rhyolite, forming an integrated tholeiitic island arc volcanic rock suite. The primitive mantle-normalized trace element patterns for most samples show characteristics of island arc volcanic rocks, such as relative enrichment of LILE(e.g. Th, U, Pb and La) and depletion of HFSE(e.g. Nb, Ta, Ti, Zr and Hf). Discrimination diagrams of Ta/Yb vs Th/Yb, Ta vs Th, Yb vs Th/Ta, Ta/Hf vs Th/Hf, Hf/3 vs Th vs Nb/16, La vs La/Nb and Nb vs Nb/Th all suggest that both the volcanic host rocks from the Tongyu copper deposit and the volcanic rocks from the regional Xieyuguan Group were formed in an island arc environment related to subduction of an oceanic slab. Values of ISr(0.703457 to 0.708218) and εNd(t)(-2 to 5.8) indicate that the source materials of volcanic rocks from the Tongyu copper deposit and the Xieyuguan Group originated from the metasomatised mantle wedge with possible crustal material assimilation. Most of the volcanic rock samples show good agreement with the values of typical island arc volcanic rocks in the ISr-εNd(t) diagram. The involvement of crustal-derived material in the magma of the volcanic rocks from the Tongyu copper deposit was also reflected in the zircon εHf(t) values, which range from-3.08 to 10.7, and the existence of inherited ancient xenocrystic zircon cores(2616±39 Ma and 1297±22 Ma). The mineralization of the Tongyu copper deposit shows syn-volcanic characteristics such as layered orebodies interbedded with the volcanic rock strata, thus, the zircon U-Pb age of the volcanic host rocks can approximately represent the mineralization age of the Tongyu copper deposit. Both the Meigou pluton and the volcanic host rocks were formed during the ca. 440 Ma northward subduction of the Paleo-Qinling Ocean when high oxygen fugacity aqueous hydrothermal fluid released by dehydration of the slab and the overlying sediments fluxed into the mantle wedge, triggered partial melting of the mantle wedge, and activated and extracted Cu and other ore-forming elements. The magma and ore-bearing fluid upwelled and erupted, and consequently formed the island arc volcanic rock suite and the Tongyu VHMS-type copper deposit.  相似文献   

12.
The multi-stage intrusions of intermediate-acid magma occur in the Bangpu mining district, the petrogenic ages of which have been identified. The times and sequences of their emplacement have been collated and stipulated in detail in this paper by using the laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) zircon U-Pb dating method. The ages of biotite monzogranite that were formed before mineralization in the southwest of this mining district are 70±1?Ma (mean square of weighted deviates (MSWD) =9.5, n=8) and 60.60±0.31?Ma (MSWD=3.8, n=16), which belong to the late Cretaceous–early Paleocene in age. That means, they are products of an early tectonic-magmatic event of the collision between the Indian and Asian continentals. The ages of ore-bearing monzogranite porphyry and ore-bearing diorite porphyrite are 16.23±0.19?Ma (MSWD=2.0, n=26) and 15.16±0.09?Ma (MSWD=3.9, n=5) separately, which belong to the middle Miocene in age; namely, they are products of the Gangdese post-collision extensional stage when crust-mantle materials melted and mixed as well as magmatic intrusion simultaneously occurred. Some zircons with ages of 203.6±2.2?Ma (MSWD=1.18, n=7) were captured in the ore-bearing diorite porphyrite, which shows that there had been tectono-magmatic events in the late Triassic–early Jurassic. Molybdenum (copper) ore-bodies produced in the monzogranite porphyry and copper (molybdenum) ore-bodies produced in the diorite porphyrite are the main ore types in this ore deposit. The model ages of Re-Os isotopic dating for the 11 molybdenite are 13.97–15.84?Ma, while isochron ages are 14.09±0.49?Ma (MSWD=26). The isochron ages of seven molybdenite from molybdenum (copper) ore with monzogranite porphyry type are 14.11±0.31?Ma (MSWD=5.2). There is great error in the isochron ages of four molybdenite from copper (molybdenum) ore with diorite porphyrite type, and their weighted average model ages of 14.6±1.2?Ma (MSWD=41), which generally represent the mineralization age. The results about the Re-Os isotopic dating of molybdenite in the ore of different types have limited exactly that, the minerlazation age of this ore deposits is about 14.09?Ma, which belongs to the middle Miocene mineralization. The Bangpu deposit has a uniform metallogenic dynamics background with the porphyry type and skarn-type deposits such as Jiama, Qulong and others.  相似文献   

13.
The Qinling Orogen in Central China records the history of a complex geological evolution and tectonic transition from compression to extension during the Late Mesozoic,with concomitant voluminous granitoids formation.In this study,we present results from petrological,geochemical,zircon U-Pb-Lu-Hf isotopic studies on the Lengshui felsic dykes from Luanchuan region in the East Qinling Orogen.We also compile published geochronological,geochemical,and Hf isotopic data from Luanchuan region and present zircon Hf isotopic contour maps.The newly obtained age data yield two group of ages at~145 Ma and 140 Ma for two granite porphyries from the Lengshui felsic dykes,with the ~145 Ma interpreted as response to the peak of magmatism in the region,and the ~140 Ma as the timing of formation of the felsic dykes.The corresponding Hf isotopic data of the granite porphyries display negativeeHit)values of-16.67 to-4.61,and Hf crustal model ages(T_(DM~C_)of 2255-1490 Ma,indicating magma sourced from the melting of Paleo-to Mesoproterozoic crustal materials.The compiled age data display two major magmatic pulses at 160-130 Ma and 111-108 Ma with magmatic quiescence in between,and the zircon Hf isotopic data display/ε_(Hf)(t)values ranging from-41.9 to 2.1 and T_(DM)~c values of3387-1033 Ma,suggesting mixed crustal and mantle-derived components in the magma source,and correspond to multiple tectonic events during the Late Mesozoic.The Luanchuan granitoids are identified as 1-type granites and most of these are highly fractionated granites,involving magma mixing and mingling and crystal fractionation.The tectonic setting in the region transformed from the Late Jurassic syn-collision setting to Early Cretaceous within-plate setting,with E-W extension in the Early Cretaceous.This extension is correlated with the N-S trending post-collisional extension between the North China Craton and Yangtze Craton as well as the E-W trending back-arc extension triggered by the westward Paleo-Pacific Plate subduction,eventually leading to lithospheric thinning,asthenospheric upwelling,mafic magma underplating,and crustal melting in the East Qinling Orogen.  相似文献   

14.
The North Tianshan Orogenic Belt contains the youngest ophiolites in the Tianshan and provides some information on timing of the last closure of the Junggar-Balkhash Ocean. LA-ICP-MS zircon U-Pb dating was conducted to define the formation age of the Arbasay Formation in the Shichang Region of North Tianshan, which is exposed near the suture zone but its age remains debated. The Arbasay Formation is mainly composed of volcanic and volcaniclastic rocks with tuff interlayers. The zircons from the tuffs yield two age populations of 315 ± 3 Ma and 304± 2 Ma, constraining the commencement and demise timings of volcanism, respectively. Furthermore, zircon U-Pb age spectra of the tuffaceous sandstones display the youngest peak age at 308 Ma, indicating a 308 Ma age for the depositional age of volcaniclastic rocks. The volcaniclastic rocks therefore were likely to deposit together with the syn-sedimentary volcanism during Late Carboniferous. This means that the Arbasay Formation in Shichang Region should be re-assigned to Late Carboniferous in age. Given that the Arbasay Formation was likely to be formed during the tectonic transition from compression to extension, the Junggar-Balkhash Ocean possibly closed during Late Carboniferous.  相似文献   

15.
The East Kunlun Orogenic Belt(EKOB) provides an important link to reconstruct the evolution of the Proto-Tethys and Paleo-Tethys realm. The EKOB is marked by widespread Early Paleozoic magmatism.Here we report the petrology, bulk geochemistry, zircon Ue Pb dating and, Lue Hf and SreN d isotopic data of the Early Paleozoic granitic rocks in Zhiyu area of the southern EKOB. Based on the zircon U-Pb dating, these granitoids, consisting of diorite, granodiorite and monzogranite, were formed during 450 -430 Ma the Late Ordovician to Middle Silurian. The diorite and granodiorite are high Sr/Y ratio as adakitic affinities, and the monzogranite belongs to highly fractionated I-type. Their(~(87)Sr/~(86)Sr)ivalues range from 0.7059 to 0.7085, εNd(t) values from -1.6 to -6.0 and the zircon εHf(t) values show large variations from +9.1 to -8.6 with Hf model ages(T_(DM2)) about 848 Ma and 1970 Ma. The large variations of whole-rock Nd and zircon Hf isotopes demonstrate strong isotopic heterogeneity of the source regions which probably resulted from multi-phase underplating of mantle-derived magmas. Geochemical and isotopic studies proved that the diorite and granodiorite had been derived from partial melting of heterogeneous crustal source with variable contributions from ancient continental crust and juvenile components, and the monzogranites were representing fractional crystallization and crustal contamination for arc magma. The Early Paleozoic adakitic rocks and high-K calc-alkaline granitoids in the southern EKOB were likely emplaced in a continental marginal arc setting possibly linked to the southwards subduction of the Paleo Kunlun Ocean and the magma generation is linked to partial melting of thickened continental crust induced by underplating of mantle-derived magmas.  相似文献   

16.
Located in the eastern part of the East Qinling molybdenum belt, the Donggou deposit is a superlarge porphyry molybdenum deposit discovered in recent years. The authors performed highly precise dating of the mineralized porphyry and ores in the Donggou molybdenum deposit. A SHRIMP U-Pb zircon dating of the Donggou aluminous A-type granite-porphyry gave a rock-forming age of 112±1 Ma, and the ICP-MS Re-Os analyses of molybdenite from the molybdenum deposit yielded ReOs model ages ranging from 116.5±1.7 to 115.5±1.7 Ma for the deposit. The ages obtained by the two methods are quite close, suggesting that the rocks and ores formed approximately at the same time. The Donggou molybdenum deposit formed at least 20 Ma later than the Jinduicheng, Nannihu, Shangfanggou and Leimengou porphyry molybdenum deposits in the same molybdenum belt, implying that these deposits were formed in different tectonic settings.  相似文献   

17.
The platinum-group element geochemistry of rocks and ores from Jinchuan super-large copper-nickel sulfide deposit is systemically studied in this paper. The Cu/Pd mean ratio of Jinchuan intrusion is lower than that of original mantle magma, which indicates that these ultrabasic rocks were crystallized from magma that lost Pd in the form of melting segregation of sulfides. The PGE of the rocks show trend of partial melting, similar to that of mantle peridotite, which shows that magma formation occurs during rock-forming and ore-forming processes. The chondrite normalized PGE patterns of the rocks and ores are well related to each other, which signifies the signatures of multi-episode magmatic intrusion, melting and differentiation in the formation processes of rocks and ores. In addition, analyses about the relation between PGE and S, and study on Re-Os isotopes indicate that few contamination of the crustal substances occurred during the magmatic intrusion and the formation of deposit. However, contamination by crustal substances helps to supply part of the S for the enrichment of PGE. Meanwhile, the hydrothermal process is also advantageous for the enrichment of PGE, especially lbr Pt and Pd, due to deep melting segregation. The characteristic parameters (such as Pt/(Pt+Pd), (Pt+Pd)/(Ru+Ir+Os), Pd/Ir, Cu/(Ni+Cu), and so on.) for platinum-group elements for Jinchuan sulfide copper-nickel deposit show the same features as those for sulfide copper-nickel deposit related to basic magma, which also illustrates its original magma property representative of Mg-high tholeiite. Therefore, it is the marie (not ultramafic) magma that resulted in the formation of the superlarge sulfide copper-nickel deposit enriched in Cu and PGE. To sum up, the geochemical characteristics of platinum-group elements in rocks and ores from Jinchuan copper-nickel sulfide deposit are constrained by the continental rift tectonic environment, the parent magma features, the enriched mantel magma source, the complex metallogenesis and PGE geochemical signatures, and this would be rather significant for the study about the genetic mechanism of copper-nickel sulfide deposits.  相似文献   

18.
The xenoliths in host rocks of hydrothermal gold deposits can generally provide much geochemical information of the deep rocks, which may have an implication for the sources of ore-forming materials. Geochronology and geochemical characteristics are reported for a granite xenolith, which is enclosed by the lamprophyre in the Zhenyuan gold deposit (Yunnan Province, SW China). This granite xenolith mainly consists of K-feldspar, quartz, and plagioclase with trace amounts of magnetite, titanite, apatite, zircon, and sulfides. Zircons from the granite xenolith yield a weighted average U-Pb age of 281.1 ± 1.3 Ma (MSWD = 2.1), which could represent the crystallization age of this granite xenolith. The Ti-in-zircon geothermometer and the Mn concentration in apatite calculate that this granite xenolith formed at 685 ± 43°C with the logfO2 values ranging from NNO + 3.7 to NNO + 6.4. The zircons in the granite xenolith have a restricted range of positive εHf(t) values ranging from +9.4 to +10.8, and the corresponding Hf TDM2 model ages range from 588 to 678 Ma. The zircon U-Pb age and the Hf isotopic compositions indicate this granite xenolith within the lamprophyre is mainly derived from partial melting of juvenile crustal rocks before the completed closure of the Ailaoshan Ocean. The pyrites in the granite xenolith have higher Bi concentrations, and lower As, Sb, and Tl concentrations than the gold-bearing pyrites of the ores in the Zhenyuan gold deposit. The low Au concentrations of the pyrites together with the ore-forming age of the Zhenyuan gold deposit (Oligocene) indicate the granite xenolith may have limited contribution to the gold mineralization of the Zhenyuan gold deposit.  相似文献   

19.
The Laocheng granitoid pluton is located in the South Qinling tectonic domain of the Qinling orogenic belt, southern Shaanxi Province, and consists chiefly of quartz diorite, granodiorite and monzogranite. A LA-ICP-MS zircon U-Pb isotopic dating, in conjunction with cathodoluminescence images, reveals that the quartz diorite and granodiorite were emplaced from 220 Ma to 216 Ma, while the monzogranite was emplaced at ~210 Ma. In-situ zircon Hf isotopic analyses show that the εHf(t) values of the quartz diorite and granodiorite range from -8.1 to +1.3, and single-stage Hf model ages from 809 Ma to 1171 Ma, while the εHf(t) values of the monzogranite are -14.5 to +16.7 and single-stage Hf model ages from 189 Ma to 1424 Ma. These Hf isotopic features reveal that the quartz diorite, granodiorite and monzogranite were formed from the mixing of the magmas derived from partial melting of the depleted mantle and the lower continent crustal materials, and there were two stages of continental crust growth during the Neoproterozoic (~800 Ma) and Indosinian (~210 Ma) eras, respectively, in the south Qinling tectonic domain of the Qinling orogrnic belt, Central China.  相似文献   

20.
The Naruo porphyry copper deposit containing more than 2 Mt of copper is located in the Duolong ore district in the west of the Bangongco–Nujiang belt in central Tibet. New zircon U-Pb, biotite 40Ar/39Ar, zircon (U-Th)/He ages, published age data together with thermal modeling were presented in this paper to investigate the thermal history of Naruo deposit. Thermal modeling reveals a prolonged magmatic-hydrothermal evolution firstly cooling from ~700°C to ~350°C at 120 Ma, then cooling to 230°C at 106 Ma and maintaining at 200°C from 106 to 90 Ma which is attributed to multiple magmatic events and thermal effect of strike-slip fault. Affected by thrust nappe structure, the sample was consistent with 120°C from 70 to 63 Ma. The Naruo deposit started to experience exhumation at a rate of ~0.07 km/Myr since 60 Ma which is related to India-Asia collision. The prolonged magmatic-hydrothermal evolution process might have important influence on the Naruo deposit. The ore-related intrusions preserved in the foot walls of strike-slip fault and thrust nappe structure are the objects of future exploration in the Duolong ore district.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号