首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 664 毫秒
1.
The chemistry and isotope ratios of He, C (δ13C) and H (δD) of free gases collected in the San Vittorino plain, an intramontane depression of tectonic origin, were determined to shed light on mantle degassing in central Italy. The C isotopic composition of CO213C–CO2 −2.0‰ to −3.8‰) and He isotope ratios (R/RA 0.12–0.27) were used to calculate the fraction of CO2 originating from mantle degassing vs. sedimentary sources. The results show that CO2 predominantly (average of 75%) derives from the thermo-metamorphic reaction of limestone. Between 6% and 22% of the CO2 in the samples derives from organic-rich sedimentary sources. The mantle source accounts for 0–6% of the total CO2; however, in two samples, located in proximity to the most important faults of the plain, the mantle accounts for 24% and 42%. The presence of faults and fractures allows upward gas migration from a deep source to the Earth’s surface, not only in the peri-Tyrrhenian sector, as generally reported by studies on natural gas emissions in central Italy, but also in the pre-Apennine and Apennine belts. Isotope ratios of CH413C–CH4 −6.1‰ to −22.7‰; δD–CH4 −9‰ to −129‰) show that CH4 does not appear to be related to mantle or magma degassing, but it is the product of thermal degradation of organic matter (i.e. thermogenic origin) and/or the reduction of CO2 (i.e. geothermal origin). Most of the samples appear to be affected by secondary microbial oxidation processes.  相似文献   

2.
《Applied Geochemistry》2001,16(3):323-338
Chemical and isotopic compositions are reported for water, and CO2 and noble gases in groundwater and soda springs from Bioko, Principé, São Tomé and Annobon, all islands located in the off-shore part of the Cameroon Volcanic Line in West Africa. The soda spring waters are of Ca–Mg–HCO3 type, with δD and δ18O values that range from −20 to −8‰ and −5.4 to −2.7‰ respectively, indicative of a meteoric origin. CO2 is the main gas species in the springs. δ13C–CO2 values vary from −2.8 to −5.0‰, overlapping the observed mantle C range (−3 to −8‰). CO2/3He ratios (3–9×109) suggest that most C (∼90%) in the samples is derived from the mantle. Neon has atmospheric isotopic compositions, while Ar is slightly enriched in radiogenic 40Ar. 3He/4He ratios (3.0 to 10.1×10−6 or 2.1 to 7.2Ra, where Ra is the atmospheric ratio of 1.4×10−6) are much higher than those for typical crustal fluids (∼10−8) but lower than those expected for fluids derived from ‘high-3He/4He’ hotspots like Loihi and Iceland. This precludes significant contributions of such fluids in the source regions of the gases, and by inference, in the magmatism of these oceanic islands. Alternatively, approximately 90% of the He in São Tomé gases is inferred to be derived from a source similar to the MORB source. The 3He/4He ratio for the Bioko gas (6.6×10−6) may be derived from a source with a higher time integrated (U+Th)/3He ratio than the MORB source.  相似文献   

3.
We investigate the helium, carbon and oxygen–hydrogen isotopic systematics and CO2/3He ratios of 8 water and 6 gas samples collected from 12 geothermal fields in western Anatolia (Turkey). 3He/4He ratios of the samples (R) normalized to the atmospheric 3He/4He ratio (RA = 1.39 × 10? 6) range from 0.27 to 1.67 and are significantly higher than the crustal production value of 0.05. Fluids with relatively high R / RA values are generally found in areas of significant heat potential (K?z?ldere and Tuzla fields). CO2/3He ratios of the samples, ranging from 1.6 × 109 to 2.3 × 1014, display significant variation and are mostly higher than values typical of an upper mantle source (2 × 109). The δ13C (CO2) and δ13C (CH4) values of all fluids vary from ? 8.04 to + 0.35‰ and ? 25.80 to ? 23.92‰ (vs. PDB), respectively. Stable isotope values (δ18O–δD) of the geothermal waters are conformable with the Mediterranean Meteoric Water Line and indicate a meteoric origin. The temperatures calculated by gas geothermometry are significantly higher than estimates from chemical geothermometers, implying that either equilibrium has not been attained for the isotope exchange reaction or that isotopic equilibration was disturbed due to gas additions en route to the surface.Evaluation of He–CO2 abundances indicates that hydrothermal degassing and calcite precipitation (controlled probably by adiabatic cooling due to degassing) significantly fractionate the elemental ratio (CO2/3He) in geothermal waters. Such processes do not affect gas phase samples to anywhere near the same extent. For the gas samples, mixing between mantle and various crustal sources appears to be the main control on the observed He–C systematics: however, crustal inputs dominate the CO2 inventory. Considering that limestone is the main source of carbon (~ 70 to 97% of the total carbon inventory), the carbon flux from the crust is found to be at least 20 times that from the mantle. As to the He-inventory, the mantle-derived component is found to vary up to 21% of the total He content and is probably transferred to the crust by fluids degassed from deep mantle melts generated in association with the elevated geotherm and adiabatic melting accompanying current extension. The range of 3He/enthalpy ratios (0.000032 to 0.19 × 10? 12 cm3 STP/J) of fluids in western Anatolia is consistent with the release of both helium and heat from contemporary additions of mantle-derived magmas to the crust. The deep faults appear to have facilitated the deep circulation of the fluids and the transport of mantle volatiles and heat to the surface.  相似文献   

4.
《Applied Geochemistry》2001,16(7-8):883-894
Total CO2 output from fumaroles, bubbling and water dissolved gases and soil gases was investigated at Pantelleria Island volcano, Italy. The preliminary results indicate an overall output of 0.39 Mt a−1 of CO2 from the island. The main contribution to the total output was from diffuse soil degassing (about 0.32 Mt a−1), followed by dissolved CO2 (0.034 Mt a−1), focussed soil degassing (0.028 Mt a−1) and bubbling CO2 (0.013 Mt a−1). The contribution of CO2 from fumarole gases was found to be negligible (1.4×10−6 Mt a−1). Carbon-13 values for CO2 coupled with those for associated He in gases from fumaroles and sites of focussed soil degassing clearly rule out any significant organic CO2 component and suggest a common mantle origin for these gas species. The inferred mantle source beneath Pantelleria would seem to have peculiar geochemical characteristics, quite distinct from those of mantle producing MORB but compatible with those of magmatic sources of central Mediterranean and central European volcanoes. These findings indicate that the Pantelleria volcanic complex is a site of active mantle degassing that is worthy of attention for future geochemical surveillance of the island.  相似文献   

5.
Chemical and isotopic compositions have been measured for N2-He-rich bubbling gases discharging from hot springs in the Hainan Island, Southern China. Observed 3He/4He ratios (0.1–1.3 RA) indicate the occurrence of a mantle component throughout the island, which has been highly diluted by a crustal radiogenic 4He component. The occurrence of mantle-derived helium is high in the northern island (12%–16% of total He) and gradually decreases towards southern coast (1%–3% of total He). Such a distribution pattern is most likely controlled by the Pleocene-Quaternary volcanic activities in the northern island and groundwater circulation along the deep major faults. The 40Ar/36Ar and N2/Ar ratios suggest that N2 and Ar of the hot spring gases are mostly meteoric. Although δ13C values of CO2 (–20‰ to –27‰) with low concentrations are consistent with the biogenic origin, the combination of 3He/4He and d13CCO2 suggests a two end-member mixing of mantle and crustal components with CO2/3He ratios of 2×109 and 8×1011, respectively. However, the low CO2/3He ratios (1–22×106) can not be ascribed in terms of the simple mixing but has to be explained by the addition of radiogenic 4He and loss of CO2 by calcite precipitation in the hydrothermal system, which is most likely controlled by the degree of gas-water-rock interaction.  相似文献   

6.
Deep-sea exploration is rapidly improving our understanding of volatiles geochemistry in mid-ocean-ridge igneous products. It is also placing greater constraints on degassing processes of the Earth’s mantle, with the result that degassing models based on vapour-melt equilibrium are no longer able to explain the increasing number of data. In fact, such models force to postulate an upper mantle strongly heterogeneous at any scale, and cannot account for the widespread carbon supersaturation of the recovered igneous products. Here we review the global He-Ar-CO2 dataset of fluid inclusions in mid-ocean-ridge glasses using the framework of advanced modelling of multicomponent bubble growth in magmas. We display that non-equilibrium fractionations among He, Ar and CO2, driven by their different diffusivities in silicate melts, are common in most of the natural conditions of magma decompression and their signature strongly depends on pressure of degassing. Due to the comparable Ar and CO2 diffusivity, magma degassing at low pressure fractionates both the He/Ar and He/CO2 ratio by a similar extent, while the slower CO2 diffusion at high pressure causes early kinetic effects on Ar/CO2 ratio and dramatically changes the degassing path. On this ground, the very different geochemical signatures among suites of data coming from different ridge segments mainly depend on the depth of the magma chamber where the melt was stored. Besides, the variations inside a single suite highlight variable ascent speed and cooling rate of the emplaced lava. The large variations in both the He/CO2 and Ar/CO2 ratios at almost constant He/Ar, displayed in glasses coming from the Mid-Atlantic Ridge 24-30°N segment and the Rodriguez Triple Junction, are therefore interpreted as a high-pressure signature. In contrast, the simultaneous increase in both He/CO2 and He/Ar of the East Pacific Rise, Pito Seamount and South-East Indian Ridge data sets suggests the dominance of low-pressure fractionation, implying that the shallow magma chambers are at a lower depth than those of the Mid-Atlantic Ridge 24-30°N and Rodriguez Triple Junction. Our conclusions support the presence of a relationship between spreading rate and depth of high-temperature zones below ridges, and are consistent with the depth of magma chambers as suggested from seismic studies. Non-equilibrium degassing explains the volatile systematics of mid-ocean-ridge basalts by starting from a single mantle-derived magma, dispensing with the supposed need for heterogeneities in abundance ratios of volatiles in the mantle below oceanic ridges.  相似文献   

7.
《Chemical Geology》2002,182(2-4):637-654
The inner sector of the Eastern Carpathians displays a large number of Na–HCO3, CO2-rich, meteoric-originated cold springs (soda springs) and bore wells, as well as dry mofettes. They border the southern part of the Pliocene–Quaternary Calimani–Gurghiu–Harghita (CGH) calc-alkaline volcanic chain. Both volcanic rocks and CO2-rich emissions are situated between the eastern part of the Transylvanian Basin and the main east Carpathian Range, where active compression tectonics caused diapiric intrusions of Miocene halite deposits and associated saline, CO2-rich waters along active faults. The regional patterns of the distribution of CO2 in spring waters (as calculated pCO2) and the distribution pattern of the 3He/4He ratio in the free gas phases (up to 4.5 Rm/Ra) show their maximum values in coincidence with both the maximum heat-flow measurements and the more recent volcanic edifices. Moving towards the eastern external foredeep areas, where oil fields and associated brines are present, natural gas emissions become CH4-dominated. Such a change in the composition of gas emissions at surface is also recorded by the 3He/4He ratios that, in this area, assume ‘typical’ crustal values (Rm/Ra=0.02).In spite of the fact that thermal springs are rare in the Harghita volcanic area and that equilibrium temperature estimates based on geothermometric techniques on gas and liquid phases at surface do not suggest the presence of shallow active hydrothermal systems, a large circulation of fluids (gases) is likely triggered by the presence of mantle magmas stored inside the crust. If total 3He comes from the mantle or from the degassing of magmas stored in the crust, CO2 might be associated to both volcanic degassing and thermometamorphism of recently subducted limestones.  相似文献   

8.
In the Northern Jiangsu basin there are high pure CO2 gas pools, low condensed oil-containing CO2 gas pools, high condensed oil-containing CO2 gas pools and He-containing natural gas pools, with the δ13Cco2 (PDB) values ranging from -2.87‰ to -6.50‰, 3He/4He 3.71×10-6 to 6.42×10-6, R/Ra 2.64 to 4.5, 40Ar/36Ar 705 to 734, belonging to typical mantle source inorganic gas pools which are related to young magmatic activity. The gas layers occur in two major reservoir-caprock systems, the terrestrial Meso-Cenozoic clastic rock system and the marine Meso-Palaeozoic carbonate rock-clastic rock system. Controlled by the difference in the scale of traps in the two reservoir-caprock systems, large and medium-scale inorganic gas pools are formed in the marine Meso-Palaeozoic Group and only small ones are formed in the terrestrial Meso-Cenozoic strata. Inorganic gas pools in this basin are distributed along the two deep lithospheric faults on the west and south boundaries of the basin. Gas pools are developed  相似文献   

9.
Gas concentrations and isotopic compositions of He and CO2 were determined on free gas samples from ten hot springs of the Rehai geothermal field, Tengchong, China. The results showed that hot-spring CO2 gas, together with He,was derived mainly from the mantle, indicating the accumulation of mantle-derived volatiles beneath the survey area. The δ^13C values of CO2, higher than those of the typical mantle-derived carbon and the isotopic composition of hot-spring-free CO2 in unequilibrium with dissolved CO2, are recognized only in the Rehai geothermal field, suggesting that there seems to be a still-degassing magmatic intrusion at depths, which provides mantle-derived volatiles to the hydrothermal system above. The accumulation of those volatiles has probably played an important role in triggering earthquakes in this region.In addition, the isotopic characteristics of He and C also indicate that the magmatic intrusion seems to have been derived from the MORB source, and could be contaminated by crustal materials during its upwelling through the continental crust.  相似文献   

10.
Niutuozhen geothermal field is located in the Jizhong graben, belonging to the northern part of Bohai Bay Basin in North China. Chemical and isotopic analyses were carried out on 14 samples of the geothermal fluids discharged from Neogene Minghuazhen (Nm), Guantao (Ng), and Jixianian Wumishan (Jxw) formations. The δ2H and δ18O in water, δ13C in CH4, δ13C in CO2, and 3He/4He ratio in the gases were analyzed in combination with chemical analyses on the fluids in the Niutuozhen geothermal field. The chemical and isotopic compositions indicate a meteoric origin of the thermal waters. The reservoir temperatures estimated by chemical geothermometry are in the range between 60 and 108 °C. The results show that the gases are made up mainly by N2 (18.20–97.42 vol%), CH4 (0.02–60.95 vol%), and CO2 (0.17–25.14 vol%), with relatively high He composition (up to 0.52 vol%). The chemical and isotopic compositions of the gas samples suggest the meteoric origin of N2, predominant crustal origins of CH4, CO2, and He. The mantle-derived He contributions are calculated to be from 5 to 8% based on a crust–mantle binary mixing model. The deep temperatures in the Jxw reservoir were evaluated based on gas isotope geothermometry to be in the range from 141 to 165 °C. The mantle-derived heat fraction in the surface heat flow is estimated to be in the range of 48–51% based on 3He/4He ratios.  相似文献   

11.
Chemical and isotopic compositions have been measured for CO2-rich bubbling gases discharging from cold springs in Wudalianchi intra-plate volcanic area, NE China. Observed 3He/4He ratios (2–3 RA) and δ13C values of CO2 (−5‰ to −3‰) indicate the occurrence of a mantle component released and transferred to the surface by the Cenozoic extension-related magmatic activities. The CO2/3He ratios are in wide range of (0.4–97 × 109). Based on the apparent mixing trend in a 3He/4He and δ13C of CO2 diagram from all published data, the extracted magmatic end-member in the Wudalianchi Volcano has 3He/4He, δ13C and CO2/3He value of ∼3.2 RA, ∼−4.6‰ and ∼6 × 1010, respectively. These values suggest that the volatiles originate from the sub-continental lithospheric mantle (SCLM) in NE China and represent ancient fluids captured by prior metasomatic events, as revealed by geothermal He and CO2 from the adjacent Changbaishan volcanic area.  相似文献   

12.
《Applied Geochemistry》2001,16(4):419-436
The chemical and isotopic compositions of gases from hydrocarbon systems of the Taranaki Basin of New Zealand (both offshore and onshore) show wide variation. The most striking difference between the western and south-eastern groups of gases is the helium content and its isotopic ratio. In the west, the Maui gas is over an order of magnitude higher in helium concentration (up to 190 μmol mol−1) and its 3He/4He ratio of 3.8 RA (where RA=the air 3He/4He ratio of 1.4×10−6) is approximately half that of upper mantle helium issuing from volcanic vents of the Taupo Volcanic Zone. In the SE, the Kupe South and most Kapuni natural gases have only a minor mantle helium input of 0.03–0.32 RA and low total helium concentrations of 10–19 μmol mol−1. The 3He/C ratio (where C represents the total carbon in the gas phase) of the samples measured including those from a recent study of on-shore Taranaki natural gases are generally high at locations where the surface heat flow is high. The 3He/CO2 ratio of the Maui gases of 5 to 18×10−9 is higher than the MORB value of 0.2 to 0.5×10−9, a feature found in other continental basins such as the Pannonian and Vienna basins and in many high helium wells in the USA. Extrapolation to zero CO2/3He and CO2/C indicates δ13C(CO2) values between −7 and −5‰ close to that of MORB CO2. The remaining CO2 would appear to be mostly organically-influenced with δ13C(CO2) c.−15‰. There is some evidence of marine carbonate CO2 in the gases from the New Plymouth field. The radiogenic 4He content (Herad) varies across the Taranaki Basin with the highest Herad/C ratios occurring in the Maui field. δ13C(CH4) becomes more enriched in 13C with increasing Herad and hydrocarbon maturity. Because 3He/4He is related to the ratio of mantle to radiogenic crustal helium and 3He/C is virtually constant in the Maui field, there is a correlation between RC/RA (where RC=air-corrected 3He/4He) and δ13C(CH4) in the Maui and New Plymouth fields, with the more negative δ13C(CH4) values corresponding to high 3He/4He ratios. A correlation between 3He/4He and δ13C(CO2) was also observed in the Maui field. In the fields adjacent to Mt Taranaki (2518 m andesitic volcano), correlations of some parameters, particularly CO2/CH4, C2H6/CH4 and δ13C(CH4), are present with increasing depth of the gas reservoir and with distance from the volcanic cone.  相似文献   

13.
《Applied Geochemistry》1993,8(2):141-152
The results of analysis of natural emanations in Réunion Island show a clear magmatic origin for CO2 and He, while N2 and Ar are predominantly derived from the atmosphere. The distribution of magmatic gases in the Piton des Neiges massif fits the local volcanotectonic context well and suggests that the areas concerned are still subject to volcanic activity at depth. A simple method is proposed for correcting gas concentration and isotope composition for water degassing. In doing so, the isotope and elemental (C, He) composition of gases is homogeneous for the two volcanoes. The isotope ratio of He (12.5 ± 0.5R/Ra) in the present discharges is in agreement with the results of previous studies on rocks of various ages from the two volcanoes. The isotope ratio of C(δ13C= −5 ‰ to −4 ‰ vs PDB) and the C/3 He ratio (∼4 × 109) are similar to those found in other Hot Spot volcanic systems such as Kilauea (Hawaii) and Hengill (Iceland). These similarities suggest comparable volatile history for the respective mantle sources, the main differences being in the relative proportions of radiogenic 4He. In detail, Hot Spots appear enriched in C having a light composition with respect to MORB, possibly due to the addition of a C-rich (e.g. subducted) component, in addition to a relatively undegassed, 3He-rich, component.  相似文献   

14.
We report new stepped heating He, Ar, CO2 and water data on a petrogenetically diverse suite of lavas from the Manus back-arc basin, where a plume component has previously been identified. The aim of this study is to evaluate the superimposed effects of degassing and contamination in order to identify mantle source characteristics. CO2 abundances and carbon isotopes in both the vesicle ([CO2] up to 180ppm; δ13C as low as -33.6 ‰) and glass ([CO2] up to 270ppm; δ13C as low as -34.3 ‰) phases reveal that samples have been modified by varying degrees of degassing. High water concentration samples (back-arc basin basalts (BABB) and arc type samples) show the highest degrees of degassing (i.e. lower δ13C values and lower CO2 contents). The results are modelled for both the glass and vesicle phases using batch and fractional degassing models. Parental melt compositions can be constrained to show the following CO2 concentration trend: arc-type > BABB s.r. (southern rift) > MORB-2, E-MORB, X-BABB (extreme BABB), BABB > MORB-1 and MORB-smt. 4He/40Ar∗ ratios of samples (14.6-1100) are consistent with residual volatiles from a degassed source. Variations in CO2/3He values are likely due to degassing, followed by contamination from a crustal source (either the subducting Solomon Sea Plate or the pre-existing crust through which the lavas erupt), as evidenced by high K2O/TiO2 ratios and low δ13C. The CO2/3He of the Manus plume is best estimated by the MORB-smt and MORB-1 samples at 3.1 ± 0.6 x 109. This value is similar to previous estimates of plume CO2/3He values, which are either equal to or slightly greater than the upper mantle average of 2 x 109.  相似文献   

15.
李理  钟大赉  杨长春  赵利 《岩石学报》2016,32(7):2209-2216
幔源CO_2气的形成和分布与不同级别断层早白垩世以来的活动密切相关。郯庐断裂带是研究区最主要的成气断层,拆离断层和变换断层这些地壳断层是次要的成气断层,二者于早白垩世143Ma、124Ma、新生代~43Ma、~24Ma和~8Ma的走滑或伸展活动,以及与之准同时的新生代碱性玄武岩浆活动,控制了幔源CO_2气的分散和聚集。它们与基底断裂、盖层断裂共同组成运移通道,其中拆离滑脱处的低速带和盖层断裂中的顺层断层是重要的水平运移通道。早白垩世古太平洋板块俯冲脱水脱气,产生的幔源CO_2气沿着郯庐断裂带向上分散聚集;新生代以来受控于太平洋板块俯冲方向和速度的改变以及印欧板块碰撞的远程效应,形成幔源CO_2气。与此同时郯庐断裂带切割深度亦逐渐加大,~43Ma碱性岩浆活动亦开始形成幔源CO_2气并主要位于断裂带,24Ma和8Ma(5Ma)为新近纪碱性岩浆活动脱气两个主要形成时期。郯庐断裂带的活动使地幔脱气形成的CO_2沿断层走向向上运移,并在作为重要横向运移通道的拆离断层拆离滑脱处,与因岩浆脱气形成的CO_2汇合,再通过陡倾斜、缓倾斜基底断层、盖层断层的接力传递在浅部聚集成藏。预测郯庐断裂带附近是无机成因油气重要的聚集分布区带。  相似文献   

16.
In the Czech-German border region of the Vogtland and NW Bohemia (western Eger rift, Central Europe), chemical and isotopic compositions (C, N, He, Ar) of free gas from a thermal water escape (fluorite mine, Schönbrunn), two mineral springs (“Eisenquelle,” Bad Brambach; “Sprudel III,” Bad Elster) and a mofette (Bublak) located along an ∼40-km long traverse are reported. The gases of Bublak and Bad Brambach are CO2-rich (>99 vol.%) and have δ13C values of −1.95 and −4.29‰, respectively. With distance from the center of CO2 degassing (Bublak) the δ13C values decrease, most likely due to physico-chemical fractionation of CO2 between gaseous and aqueous phases rather than to admixture of organic/biogenic CO2. The δ15N values range between −3.2 and −0.6‰, compared to an upper mantle value of −4.0 ± 1.0‰. The four locations are characterized by 3He/4He ratios decreasing from 5.9 Ra in the center (Bublak) to 0.8 Ra in the periphery (Schönbrunn) and give evidence for mixing of He from a deep-seated magmatic source with a crustal source. The location with the highest 3He/4He ratio (5.9 Ra) is accompanied by the highest 40Ar/36Ar (550). We argue that the nitrogen of the Bublak mofette gas is a mixture of predominantly atmospheric and mantle-derived components, whereas at the other three locations crustal nitrogen may also be present. The Bublak δ15N value of ≈−4.5 ± 1.0‰ represents the first free gas δ15N reference from the European subcontinental mantle (ESCM) and indicates that, in contrast to the 3He/4He ratios, the δ15N values are equal for ESCM and MORB, respectively.  相似文献   

17.
松辽盆地含CO_2火山岩气藏的形成和分布   总被引:2,自引:0,他引:2  
松辽盆地特有的深部构造背景和裂谷演化特征,造成盆地内含CO_2火山岩气藏的形成和富集。松辽裂谷盆地中新生代火山岩浆活动发育,总体上具有多期喷发、分布广泛和储集条件良好的特点。火山活动以中心式喷发为主,主要发育中基性-酸性火山岩,发育流纹岩、凝灰岩等多种岩石类型,爆发相和溢流相2种火山岩相。中生代火山岩在盆地内分布广泛,营域组构成深层有利储层,新生代火山岩在盆地外围出露较多,而在盆内出露较少。盆地高含量的二氧化碳为无机幔源成因,由青山口期和新生代幔源岩浆脱气形成。含CO_2火山岩气藏的形成主要受深部构造背景、深大断裂和中新生代火山岩控制。已发现含CO_2火山岩气藏主要分布于古中央隆起带及其两侧断陷的营城组火山岩中,具有点状、带状分布,局部富集的特点。根据主控因素分析,预测了5个CO_2富集区带。  相似文献   

18.
深部物质运动的气体地球化学特征   总被引:10,自引:0,他引:10  
根据氦同位素地球化学资料讨论了中国东部和云南腾冲地区上地幔的脱气。尽管地球脱气作用主要发生在地球形成时的十亿年间,但是后期的脱气作用仍是影响大气圈演化的主要因素。在两种力学性质不同的构造带──中国东部大陆裂谷和位于欧亚板块与印度板块缝合带的腾冲火山区,采集了天然气样,并分析了气体组分和氦同位素组成,较高的3He/4He值和地质、地球物理资料表明天然气和温泉气中的氦相当一部分是来自上地幔。来自上地幔的氦和其他气体自第三纪以来不断在气藏中聚集或向大气中逃逸。伴有源于上地幔的岩浆活动的地幔脱气是深部物质运动的具体表现形式,它对新生代气候演变可能有直接影响。  相似文献   

19.
This study is focused on geothermal heat flow and the origin of non-hydrocarbons in natural gases in terms of the isotope geochemical characteristics of Ar, He, CO2 and N2 in natural gases from the Sanshui Basin, Guangdong Province. China.3He/4He ratios are of (1.60-6.39) × 10-6, and40Ar/36Ar ratios of 450–841. The carbon isotopic composition (δl3C PDB) of carbon dioxide ranges from -20‰ to -2‰. δl5N(air) ratios have a wider range of-57 ‰- +95 ‰. The isotope geochemical characteristics of non-hydrocarbons indicate that He, Ar and N2 in the gas reservoirs enriched in non-hydrocarbons were derived largely from the upper mantle. Non-hydrocarbons in gaseous hydrocarbon reservoirs consist mainly of crustal radiogenic He and40Ar and some mantle-derived He and Ar, as well as of13C-depleted carbon dioxide and nitrogen generated as a result of thermal decomposition of organic matter in strata. Carbon dioxide enriched in13C was derived largely from carbonate rocks and partially from the lower crust and upper mantle. Based on the relationship between geothermal heat flow (Q) and3He/4 He ratio in natural gases, the Q values for the area studied have been calculated. Similar Q values are reported from the upper mantle uplift area (77 mWm-2) in Huabei and the Tancheng-Lujiang Rift Zone (88 mWm-2). More than 60 percent of geothermal heat flow in the Sanshui Basin may have been derived from the upper mantle. The project is financially supported by the National Natural Science Foundation of China.  相似文献   

20.
A linear zone with high strain rates along the Japan Sea coast, the Niigata-Kobe Tectonic Zone (NKTZ), is considered to be associated with rheological heterogeneities in the lower crust and/or upper mantle. Helium isotope variations along the NKTZ reveal a close association with the geophysical evidence for rheological heterogeneities in the crust and mantle. In the southern NKTZ, the 3He/4He ratios lower than 3.4 Ra (Ra denotes the atmospheric 3He/4He ratio of 1.4 × 10−6) could be interpreted as a two-component mixture of helium stored in aqueous fluids driven off the subducting oceanic crust and radiogenic crustal helium. Higher 3He/4He ratios are observed in the central NKTZ where Quaternary volcanoes and high-temperature hot springs are concentrated, suggesting that the 3He emanation manifest in the central NKTZ results from the effective transfer of mantle helium by intrusion and degassing of mantle-derived magma in the crust. In the northern NKTZ where two large inland earthquakes occurred recently, there appears to be many samples with 3He/4He ratios significantly higher than those observed in the fore-arc side of northeast Japan. A plausible source of mantle helium could be attributed to upward mobilization of aqueous fluids generated by dehydration of the subducting Pacific Plate slab.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号