首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Philippine geothermal systems occur in the vicinity of large Holocene calc-alkaline volcanic complexes. Wells drilled in these areas encountered multiple intrusions; the latest dikes are the subsurface manifestations of the youngest heat source. Commonly, at least two hydrothermal regimes are juxtaposed in a single area, with the latest being in equilibrium with the present temperature and chemical regime.Alteration by neutral-pH water is pervasive and abundant. A contact-metamorphic aureole also occurs near intrusives. Alteration due to acid-sulfate fluids is generally confined to permeable structures. Neutral-pH alteration is divided into four zones on the basis of key clay minerals, and two subzones are defined by calc-silicates. These are the smectite (ambient to 180°C), transition (180–230°C), illite (230–320°C) and biotite (270–340°C) zones. Subzones are defined by epidote (250–340°C) and amphibole (280–340°C). The four main zones of acid alteration are: kaolinite (ambient to 120°C), dickite ± kaolinite (120–200°C), dickite ± pyrophyllite (200–250°C), and pyrophyllite ± illite (230–320°C). Where relict high-temperature alteration reaches the surface, the area being drilled is usually the outflow zone of the present system.These hydrothermal mineral assemblages are used: (1) as geothermometers; (2) to assist in determining the depth at which the production casing will be set during drilling; (3) to estimate fluid pH and other chemical parameters; (4) to predict possible corrosion and scaling tendencies of the fluids; (5) as a measure of permeability and possible cold water influx into wells; (6) as a guide to field hydrology; and (7) to estimate roughly the thickness of the eroded overburden.  相似文献   

2.
Hydrothermal alteration zones have been investigated by X-ray diffraction, mineralogical–petrographical techniques, and geochemical analysis. Examination of cores and cuttings from two drill sites, obtained from a depth of about 814–1020 m, show that the hydrothermal minerals occuring in the rock include: K-feldspar, albite, chlorite, alunite, kaolinite, smectite, illite, and opaque minerals.In the studied area, silicified, smectite, illite, alunite, and opal zones have been recognized. These alteration mineral assemblages indicate that there are geothermal fluids, which have temperatures of 150–220°C in the reservoir.The distribution of the hydrothermal minerals shows changes in the chemical composition of the hydrothermal fluid, which are probably due not only to interaction with host rock, but also to dilution of the Na–K–Cl-rich hydrothermal fluid of the deep reservoir by cold sea water at shallow levels. Geochemical analyses of the solid and liquid phases indicate that the hydrothermal fluids of the Tuzla geothermal system are in equilibrium with alteration products.The tectonic structure of the studied area is caused by NW–SE and NE–SW directional forces. The volcanic rocks where hydrothermal zones are observed in the studied area are of Lower–Middle Miocene age comprise latite, andesite, dacite, rhyolite-type lavas, tuff, and ignimbrites.  相似文献   

3.
The Kızılcahamam geothermal field is emplaced in Tertiary-aged volcanic units 70 km NW of Ankara (Turkey). Data for this low-temperature (74–86°C) geothermal field regarding the fracture zone system were obtained from surface manifestations (hot springs, alteration zones), five exploration wells (MTA-2, -3, -4, -5, -6) and two production wells (KHD-1, MTA-1). The Kızılcahamam reservoir developed along the Kızılcahamam fault zone and so the production wells (180–1556 m) effect each other due to their limited separation. Meteoric water enters from a recharge area NE of Kızılcahamam, circulates and gains heat through the fault zone, and discharges to the surface.Detailed petrographical studies have been carried out with samples taken from surface rocks, cores, and cuttings from three wells (KHD-1, MTA-2, -3). X-ray diffraction techniques were also used in the present study. Kaolinite and montmorillonite zones were identified at outcrop samples. Chloritization, clay mineralization, sericitization and carbonization were determined in the ground mass of samples from wells. The observed alteration mineral assemblages indicate that Kızılcahamam geothermal system has been cooling since the alteration minerals formed.The exploration well MTA-3 seems to be more suitable for a reinjection well than the other wells (MTA-2, -6), even if the cost of surface piping to transport the waste water to MTA-3 is higher than to another well (MTA-6).  相似文献   

4.
Utilizing chemical data derived from the various fault zone architectural components of the Clark strand of the San Jacinto fault, southern California, USA, we apply for the first time non-central principal component analysis to calculate a compositional linear trend within molar A–CN–K space. In this procedure A–CN–K are calculated as the molar proportions of Al2O3 (A), CaO* + Na2O (CN), and K2O (K) in the sum of molar Al2O3, Na2O, CaO*, and K2O. CaO* is the molar CaO after correction for apatite. We then derive translational invariant chemical alteration intensity factors, t, for each architectural component through orthogonal projection of analyzed samples onto the compositional linear trend. The chemical alteration intensity factor t determines the relative change in composition compared to the original state (i.e., the composition of the altered wall rocks). It is dependent on the degree of intensity to which the process or processes responsible for the change in composition of each architectural component has been active. These processes include shearing, fragmentation, fluid flow, and generation of frictional heat. Non-central principal component analysis indicates that principal component 1 explains 99.7 % of the spread of A–CN–K data about the calculated compositional linear trend (i.e., the variance). The significance level for the overall one-way analysis of variance (ANOVA) is 0.0001. Such a result indicates that at least one significant difference across the group of means of t values is different at the 95 % confidence level. Following completion of the overall one-way ANOVA, the difference in means t test indicated that the mean of the t values for the fault core are different than the means obtained from the transition and damage zones. In contrast, at the 95 % confidence level, the means of the t values for the transition and damage zones are not statistically distinguishable. The results of XRD work completed during this study revealed that the <2 µm fraction is composed primarily of illite/smectite with ~15 % illite in the damage zone, of illite/smectite with ~30 % illite in the transition zone, and of discreet illite with very minor smectite in the fault core. These changes parallel the increasing values of the chemical alteration intensity factors (i.e., t). Based on the above results, it is speculated that when fault zones are derived from tonalitic wall rocks at depths of ~400 ± 100 m, the onset of the illite/smectite to illite conversion will occur when t values exceed 0.20 ± 0.12, the average chemical alteration intensity factor calculated for the transition zone. Under such conditions during repeated rupturing events, frictional heat is produced and acidic fluids with elevated temperatures (≥ ~125 °C) are flushed through the fault core. Over time, the combination of shearing, fragmentation, and frictionally elevated temperatures eventually overcomes the kinetic barrier for the illite/smectite to illite transition. Such settings and processes are unique to fault zones, and as a result, they represent an underappreciated setting for the development of illite from illite/smectite. The success of non-central principal component analysis in this environment offers the first statistically rigorous methodology for establishing the existence of compositional linear trends in fault zones. This method also derives quantifiable alteration intensity factors that could potentially be used to compare the intensity of alteration at different segments of a fault, as well as offer a foundation to interpret the potential driving forces for said alteration and differences therein.  相似文献   

5.
Magnetotelluric (MT) measurements were conducted at Iwate volcano, across the entirety of the mountain, in 1997, 1999, 2003, 2006, and 2007. The survey line was 18 km in length and oriented E–W, comprising 38 measurements sites. Following 2D inversion, we obtained the resistivity structure to a depth of 4 km. The surface resistive layer (~ several hundreds of meters thick) is underlain by extensive highly conductive zones. Based on drilling data, the bottom of the highly conductive zone is interpreted to represent the 200 °C isotherm, below which (i.e., at higher temperatures) conductive clay minerals (smectite) are rare. The high conductivity is therefore mainly attributed to the presence of hydrothermally altered clay. The focus of this study is a resistive body beneath the Onigajo (West-Iwate) caldera at depths of 0.5–3 km. This body appears to have impeded magmatic fluid ascent during the 1998 volcanic unrest, as inferred from geodetic data. Both tectonic and low-frequency earthquakes are sparsely distributed throughout this resistive body. We interpret this resistive body as a zone of old, solidified intrusive magma with temperatures in excess of 200 °C. Given that a similar relationship between a resistive body and subsurface volcanic activity has been suggested for Asama volcano, structural controls on subsurface magmatic fluid movement may be a common phenomenon at shallow levels beneath volcanoes.  相似文献   

6.
An audio-magnetotelluric investigation in Terceira Island (Azores)   总被引:2,自引:0,他引:2  
Ten audio-magnetotelluric soundings have been carried out along a profile crossing the Serra do Cume caldera in the eastern part of the Terceira Island (Azores). The main objectives of this investigation were to detect geoelectrical features related with tectonic structures and to characterize regional hydrological and hydrothermal aspects mainly those related to geothermal fluid dynamics.Three-dimensional numerical investigation showed that the data acquired at periods shorter than 1 s are not significantly affected by ocean effect. The data was analysed using the Smith's decomposition method in order to investigate possible distortions caused by superficial structures and to estimate a global regional strike. The results suggest that in general the soundings were not distorted. A regional N55°W strike was chosen for the two-dimensional data inversion.The low-resistivity zones (10–30 ohm-m) displayed in the central part of the 2-D geoelectrical model have been interpreted as caused by hydrothermal circulation. The low-resistivity anomalies at the ends of the profile might be attributed to alteration zones with interaction of seawater intrusion. High-resistivity (> 300 ohm-m) values have been related with less permeable zones in the SW of Cinco Picos and Guilherme Moniz caldera walls.  相似文献   

7.
The first and second members of the Nenjiang Formation (K2n1+2) in the Songliao Basin, northeast China, are an interval of dark-colored mudstone. Paleoenvironmental studies of these strata are useful for understanding the terrestrial environment under a greenhouse climate and hydrocarbon accumulation in lake basins. In this study, clay mineralogy of the K2n1+2 from four borehole or outcrop sections is investigated to understand terrestrial paleoenvironment during the depositional period in the Late Cretaceous. In the mudstone samples, smectite and illite are the predominant clay minerals, and were derived from weathering of parent rocks in a temperate, sub-humid to sub-arid climate; kaolinite and chlorite are minor clay species. The difference in the clay-mineral assemblages between the eastern and western margins of the basin was primarily controlled by provenance lithology, and the high smectite content in the western basin resulted from alteration of volcanic rocks exposed in the Greater Xing’an Range area. The increasing illite content and ratio of illite/smectite percentages in the upper part of the first member of the Nenjiang Formation indicate paleoenvironmental change. This temporal change in the clay-mineral composition was primarily caused by a regionally cooler and drier paleoclimate, consistent with previous paleoenvironmental reconstructions.  相似文献   

8.
Yangtze- and Taiwan-derived sediments on the inner shelf of East China Sea   总被引:13,自引:0,他引:13  
X-ray diffraction (XRD) mineralogical and grain-size analyses indicate that inner continental shelf sediments in the East China Sea (ECS) represent a unique mixing of clays derived from the Yangtze River and silts/sands from small western Taiwanese rivers. Taiwanese (e.g., Choshui) clays (<2 μm) display no smectite but the best illite crystallinity and are only distributed along southeastern Taiwan Strait. Both Yangtze and Taiwanese river clays are illite-dominated, but the poor illite crystallinity and the presence of smectite and kaolinite indicate that Taiwan Strait clays are mainly Yangtze-dominated. In contrast, medium silts (20–35 μm) and very fine sands (63–90 μm) in the Taiwan Strait are characterized by low feldspar/quartz, low K-feldspar/plagioclase and high kaolinite/quartz, indicating their provenance from Taiwanese rivers. Taiwanese silts and sands are introduced primarily by the way of typhoon-derived floods and transported northward by the Taiwan Warm Current during summer–fall months. Yangtze clays, in contrast, are widely dispersed southward about 1000 km to the western Taiwan Strait, transported by the China Coastal Current during winter–spring months. Since most Taiwan Strait samples were collected in May 2006, clay results in this paper might only represent the winter–spring pattern of the dispersal of Yangtze sediments.  相似文献   

9.
To understand the crustal electric structure of the Puga geothermal field located in the Ladakh Himalayas, wide band (1000 Hz–0.001 Hz) magnetotelluric (MT) study have been carried out in the Puga area. Thirty-five MT sites were occupied with site spacing varying from 0.4 to 1 km. The measurements were carried out along three profiles oriented in east–west direction. After the preliminary analysis, the MT data were subjected to decomposition techniques. The one-dimensional inversion of the effective impedance data and the two-dimensional inversion of the TE (transverse electric) and TM (transverse magnetic) data confirm the presence of low resistive (5–25 Ω m) near surface region of 200–300 m thick in the anomalous geothermal part of the area related to the shallow geothermal reservoir. Additionally, the present study delineated an anomalous conductive zone (resistivity less than 10 Ω m) at a depth of about 2 km which is possibly related to the geothermal source in the area. A highly resistive basement layer separates the surface low resistive region and anomalous conductive part. The estimated minimum temperature at the top of conductive part is about 250 °C. The significance of the deeper conductive zone and its relation to the geothermal anomaly in the area is discussed.  相似文献   

10.
Thermal waters hosted by Menderes metamorphic rocks emerge along fault lineaments in the Simav geothermal area. Thermal springs and drilled wells are located in the Eynal, Çitgöl and Na a locations, which are part of the Simav geothermal field. Studies were carried out to obtain the main chemical and physical characteristics of thermal waters. These waters are used for heating of residences and greenhouses and for balneological purposes. Bottom temperatures of the drilled wells reach 163°C with total dissolved solids around 2225 mg/kg. Surface temperatures of thermal springs vary between 51°C and 90°C. All the thermal waters belong to Na–HCO3–SO4 facies. The cold groundwaters are Ca–Mg–HCO3 type. Dissolution of host rock and ion-exchange reactions in the reservoir of the geothermal system shift the Ca–Mg–HCO3 type cold groundwaters to the Na–HCO3–SO4 type thermal waters. Thermal waters are oversaturated at discharge temperatures for aragonite, calcite, quartz, chalcedony, magnesite and dolomite minerals giving rise to a carbonate-rich scale. Gypsum and anhydrite minerals are undersaturated with all of the thermal waters. Boiling during ascent of the thermal fluids produces steam and liquid waters resulting in an increase of the concentrations of the constituents in discharge waters. Steam fraction, y, of the thermal waters of which temperatures are above 100°C is between 0.075 and 0.119. Reservoir pH is much lower than pH measured in the liquid phase separated at atmospheric conditions, since the latter experienced heavy loss of acid gases, mainly CO2. Assessment of the various empirical chemical geothermometers and geochemical modelling suggest that reservoir temperatures vary between 175°C and 200°C.  相似文献   

11.
Seventeen K/Ar dates were obtained on illitic clays within Valles caldera (1.13 Ma) to investigate the impact of hydrothermal alteration on Quaternary to Precambrian intracaldera and pre-caldera rocks in a large, long-lived hydrothermal system ( 1.0 Ma to present). Clay samples came from scientific core hole VC-2B (295°C at 1762 m) which was spudded in the Sulphur Springs thermal area and drilled into the boundary between the central resurgent dome and the western ring-fracture zone. Six illitic clays within Quaternary caldera-fill debris flow, tuffaceous sediment, and ash-flow tuff (48 to 587 m depth) yield ages from 0.35 to 1.09 Ma. Illite from Miocene pre-caldera sandstone (765 m) gives an age of 6.74 Ma. Two dates on illite from sandstones in Permian red beds (1008 and 1187 m) are 4.33 and 4.07 Ma, respectively. Surprisingly, three dates on illites from altered andesite pebbles within the red beds (1010–1014 m) are 0.95 to 1.06 Ma. Four illite dates on variably altered Precambrian quartz monzonite (1615–1762 m) range from 2.90 to 276 Ma.Post-Valles age illite is not correlated with alteration style (argillic to propylitic). Rather, post-Valles ages are uniformly obtained from illites in highly fractured, intensely altered, caldera-fill rocks and the Permian volcanic clasts. Generally, finer clay fractions from identical samples yield younger ages. Plots of 40Ar/36Ar versus 40K/36Ar and 40Ar* versus 40K for the illites in caldera-fill rocks lie close to a 1-Ma isochron. Most illite dates older than Valles caldera are difficult to interpret because they correspond to the ages of pre-Valles volcanic and hydrothermal episodes in the Jemez volcanic field ( 13 Ma). In addition, older dates may be caused by co-mingling of different illites during sample preparation, or by inherited argon or lost argon in illites from rocks with potentially complex hydrothermal histories. However, the range of ages obtained from illites in Permian sands and pebbles and from Precambrian crystalline rocks indicates that Valles hydrothermal activity is overwhelming illite produced by earlier geologic events.  相似文献   

12.
Results of a chemical study of the fluids from drill holes and hot springs of Puga and Chumatang areas in the northwestern part of the Himalaya are presented and discussed in this paper. The thermal waters of Puga and Chumatang are of Na-HCO3-Cl and Na-HCO3 types, respectively. A comparison between these waters, their chemical classification and activity studies suggest a flow path within a quartzitic-schistose basement, containing quartz, K-feldspar and illite, and in clayey terrains containing montmorillonite and illite.The chemistry of thermal waters also indicate their association with magmatic activity. The chemical geothermometers indicate the possible existence of a geothermal reservoir at Puga with temperature ≈250°C. The Chumatang area has a comparatively cooler reservoir with a temperature of 150–180°C.  相似文献   

13.
Active thermal areas are concentrated in three areas on Mauna Loa and three areas on Kilauea. High-temperature fumaroles (115–362° C) on Mauna Loa are restricted to the summit caldera, whereas high-temperature fumaroles on Kilauea are found in the upper East Rift Zone (Mauna Ulu summit fumaroles, 562° C), middle East Rift Zone (1977 eruptive fissure fumaroles), and in the summit caldera. Solfataric activity that has continued for several decades occurs along border faults of Kilauea caldera and at Sulphur Cone on the southwest rift zone of Mauna Loa. Solfataras that are only a few years old occur along recently active eruptive fissures in the summit caldera and along the rift zones of Kilauea. Steam vents and hot-air cracks also occur at the edges of cooling lava ponds, on the summits of lava shields, along faults and graben fractures, and in diffuse patches that may reflect shallow magmatic intrusions.  相似文献   

14.
Thermal state, rheology and seismicity in the pannonian basin, Hungary   总被引:1,自引:0,他引:1  
On the basis of data on crustal structure and terrestrial heat flow, a 3-D geothermal model for the lithosphere in the Pannonian basin, Hungary, has been calculated. This model, together with information on crustal composition, laboratory data on rock friction, and certain assumptions about fluid conditions and strain-rate levels within the lithosphere, has been used to construct a rheological model of the area.The results obtained show a layered rheological structure where an aseismic part of the crust is “sandwiched” between an upper and a lower seismogenic crustal layers. According to the proposed rheological model, seismic activity in the upper crust may be expected down to depths of 10–12 km, which is confirmed well by the observed depth distribution of seismicity. The model also predicts a lower crustal seismogenic layer down to 20–22 km. Because of infrequent occurrences of deep earthquakes and/or a generally small number of reliable hypocenter depth determinations in the study area, this seismogenic zone is less constrained by observations.The depth of the different rheologic horizons within the crust is governed mainly by thermal conditions. The lower boundary of both seismogenic layers appears isothermal. Brittle-ductile transition in the upper crust coincides with the ˜200 °C isotherm, while in the lower crust it coincides with the ˜ 375 °C isotherm. The lowermost crust and the upper mantle beneath Hungary show ductile behavior, thus the possibility of siesmic activity at these horizons can be excluded.  相似文献   

15.
汶川地震断层岩的矿物学和地球化学特征揭示出地震断层经历了漫长时间演化和复杂的水岩相互作用.间震期水岩相互作用导致断层岩中的破碎矿物蚀变,尤其是长石等矿物含量渐渐减少甚至消失,而黏土矿物(蒙脱石、伊利石、伊/蒙混层、绿泥石等)含量逐渐增高,以及如黄铁矿、石膏、重晶石、坡缕石等热液系统中常见的矿物大量出现;Mg、P、Ti、Mn、Fe等元素倾向富集在断层带中,而Si、K和Na等出现明显的亏损;元素的大量迁移导致断层带的体积巨量亏损.实验结果表明,黏土矿物的亲水性引起水渗透率比干燥气体渗透率明显偏低,并且二者偏差无法通过Klinkenberg校正消除.蒙脱石吸水膨胀和黏土矿物颗粒表面吸附孔隙流体造成孔隙度降低是导致水渗透率偏低的重要原因.断层岩碎屑结构使得其中的孔隙可能在600 MPa围压下得以保存,从而有助于流体沿断层带下渗,并在断层带深部形成高流体孔隙压.地震断层的主要矿物学及粒度分布特征并非在地震破裂过程中形成,因此利用断层岩粒度分布资料估算地震破裂能并不合适.  相似文献   

16.
Illite, a distinctive kind of clay minerals of potassium alteration within the hydrothermal alteration zone, frequently occurs at the Tongchang porphyry copper deposit ore field. The illite crystallinity (IC) value and expandability are mainly affected by water/rock ratio or fluid flux. It was formed by illitization of plagioclase and micas during hydrothermal fluid-rock interaction within the porphyry body and near the contact zone with wall rocks. Moreover, the negative correlation between illite index (IC) and copper grade indicates that within the alteration zone, the smaller the illite crystallinity value, the higher the alteration degree, and the higher the copper grade due to higher water/rock ratio. At lower levels of the porphyry body, however, the illite crystallinity (IC) values are mainly controlled by temperature and time duration.  相似文献   

17.
The Taupo Volcanic Zone (TVZ) of New Zealand is characterised by extensive volcanism and by high rates of magma production. Associated with this volcanism are numerous high-temperature (> 250 °C) geothermal systems through which the natural heat output of 4200 ± 500 MW is channelled. Outside the geothermal fields the heat flow is negligible. The average heat flux from the central 6000 km2 of the TVZ, which contains most of the geothermal fields, is 700 mW/m3. This heat flux appears to be more concentrated along the eastern margin of the TVZ.Schlumberger resistivity measurements (AB/2 of 500 m and 1000 m) have identified 17 distinct geothermal fields with natural heat outputs greater than 20 MW. An additional six, low-heat-output geothermal fields also occur, and may represent formerly more active systems now in decline. Two extinct fields have also been identified. The average spacing between fields is 10–15 km. The distribution of geothermal fields does not appear to be directly associated with individual volcanic features except for the geothermal system that occurs within Lake Taupo and which occupies the vent of the 1800 yr.B.P. Taupo eruption. The positions of the geothermal fields do not appear to have varied for at least the last 200,000 years. These data are consistent with a model of large-scale convection occurring throughout the TVZ, in which the geothermal fields represent the upper portion of the rising, high-temperature, convective plumes. The majority of the recharge to the convection system is provided by the downward movement of cold meteoric water between the fields which suppresses the heat flow in these regions.Gravity measurements indicate that to a depth of about 2.5 km the upper layers of the TVZ consist of low-density pyroclastic infill. A seismic refraction interface with velocity change from 3.2 km/s to 5.5 km/s occurs at a similar depth. The cross-sectional area of the convection plumes (identified electrically) appears to increase at depths of 1–2 km, consistent with a decrease in permeability at the depth at which the velocity and density increase.The seismicity is dominated by swarm activity which accounts for about half of all earthquakes and is highly variable in both space and time. The small number of seismic events (and swarms) that have well determined depths show a cut off of seismicity at depths of 7–9 km. The depth of the transition from brittle to ductile behaviour of the rocks is identified with the transition from a regime where heat is transported by (hydrothermal) convection and pore pressures are near-hydrostatic to a regime where heat transport is dominantly conductive and pore pressures are lithostatic. Within the convective region, temperatures are moderated by the circulation of water so that the depth of the transition from convective to conductive heat transfer can be linked to the bottom of the seismogenic zone. Rocks must become ductile within about 1 km of the bottom of the overlying convective zone.Seismic refraction studies suggest that the crust beneath the TVZ is highly thinned with a seismic velocity of about 7.5 km/ s, typical of the upper mantle, occurring at depth of 15 km. Seismological studies indicate the upper mantle is highly attenuating beneath the TVZ. Conductive heat transfer between the bottom of the convective system, at about 8 km, and the base of the material with crustal velocities, at 15 km, is not able to provide all the heat that is discharged at the surface. Repeated intrusion from the mantle may provide the additional heat transport required.  相似文献   

18.
Thermal waters of the Ömer–Gecek geothermal field, Turkey, with temperatures ranging from 32 to 92°C vary in chemical composition and TDS contents. They are generally enriched in Na–Cl–HCO3 and suggest deep water circulation. Silica and cation geothermometers applied to the Ömer–Gecek thermal waters yield reservoir temperatures of 75–155°C. The enthalpy–chloride mixing model, which approximates a reservoir temperature of 125°C for the Ömer–Gecek field, accounts for the diversity in the chemical composition and temperature of the waters by a combination of processes including boiling and conductive cooling of deep thermal water and mixing of the deep thermal water with cold water. It is also determined that the solubility of silica in most of the waters is controlled by the chalcedony phase. Equilibrium states of the Ömer–Gecek thermal waters studied by means of the Na–K–Mg triangular diagram, Na–K–Mg–Ca diagram, K–Mg–Ca geoindicator diagram, activity diagrams in the systems composed of Na2O–CaO–K2O–Al2O3–SiO2–CO2–H2O phases, log SI diagrams, and finally the alteration mineralogy indicate that most of the spring and low-temperature well waters in the area can be classified as shallow or mixed waters which are likely to be equilibrated with calcite, chalcedony and kaolinite at predicted temperature ranges similar to those calculated from the chemical geothermometers. It was also observed that mineral equilibrium in the Ömer–Gecek waters is largely controlled by CO2 concentrations.  相似文献   

19.
The Latera field (Vulsini volcanic complex, Latium, Italy) is one of the geothermal areas of the peri-Tyrrhenian belt along which a regional, high thermal anomaly has been detected. So far nine deep wells have been drilled within the Latera caldera and four of them have been productive. The geothermal reservoir is located within the fractured carbonatic rocks of the Tuscan nappe; the overlying volcanic units, sealed by hydrothermal minerals (mainly calcite and anhydrite), act as an impervious cover.The fluid produced by the wells comes from a deep aquifer (about 1000–1500 m depth) which at present is not connected with the shallow aquifer in the volcanoclastic units. Fluid temperatures range between 200 and 230°C; in-hole temperatures as high as 343°C at 2775 m depth have been measured in dry wells.The study of the newly formed mineral assemblages from both volcanic and sedimentary units as sampled from the geothermal wells can be used to reconstruct the thermal evolution of the geothermal field. The intrusion of a syenitic melt, up to a depth of about 2000 m, dated 0.86 Ma, represents the major thermal event for the units in the area and is assumed to represent the first step in the geothermal evolution of the Latera system.The above mentioned newly formed mineral assemblages can be divided into three groups: (a) “contact-metasomatic”: calcite, anhydrite, diopsidic pyroxene, grossularitic garnet, phlogopite, wollastonite or monticellite; (b) “high-temperature hydrothermal”: calcite, anhydrite, K-feldspar, vesuvianite, melanitic garnet, tourmaline, amphibole, epidote, sulphides; (c) “low-temperature hydrothermal”: calcite, anhydrite, K-feldspar, clay minerals, sulphides. Group (a) minerals are now relics. Part of (b) and all of (c) group are still in equilibrium with the existing conditions in different parts of the geothermal system.Thermodynamic calculations on the observed mineral assemblages permitted estimates of the P, T conditions and gas fugacities.  相似文献   

20.
Geochemical studies on fifteen geothermal manifestations (38–70°C) from the Konkan coast geothermal province of India have been used to evaluate the reservoir temperatures. Activity studies of the minerals and the waters present in the reservoirs suggest that the thermal waters are in equilibrium with montmorillonite, kaolinite and quartz at about 100°C. Reservoir temperatures of these geothermal systems as estimated by geochemical thermometers, are 88 to 128°C, and thus too low for economic electricity production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号