首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the relation between the magnitude of the Balmer discontinuity and the effective temperature of main sequence stars. We show that the observed Balmer discontinuities exhibit a systematic divergence from the theoretical discontinuities obtained using the Kurucz models. We discuss the possible reasons for this discrepancy.Translated fromAstrofizika, Vol. 38, No. 3, 1995.  相似文献   

2.
New BVRI observations for 40 and spectrophotometric measurements for 3 F to G LMC supergiant candidates (and 3 galactic F to G supergiants) are presented. The errors of the BVRI data are 0.01 to 0.03 mag in most cases. The wavelength range of the spectra is 3400 to 6400 Å, their resolution 10 Å. The mean error of the fluxes is 0.03 mag. Spectral indices measuring the strengths of the Hβ, Hγ, Hδ, NaD and CaII H+K lines, the CHα0 and CNβ0 bands, of the Balmer jump and the slope of the continuum redwards are discussed as measures of effective temperature and luminosity on the basis of galactic stars with accurate MK types and parallaxes. The Hγ line and the continuum gradient are very good temperature criteria, the CHα0 band and especially the Balmer jump for luminosity. The luminosity classification given for F to G supergiant candidates in the LMC in the literature is often doubtful. 5 of the 3 stars observed spectrophotometrically turn out to be probably galactic foreground dwarfs on the basis both of the Balmer jump and the comparison of their flux distributions with synthetic ones based on the Kurucz model atmospheres. Surface gravities derived purely on the basis of flux distributions and such ones given by models of stellar evolution agree with each other for dwarfs and giants only. For supergiants the former are about 1.0 dex higher than the latter. As a consequence effective temperatures and metallicities given by these two methods deviate from each other for such stars, too. The intrinsic colours and temperatures of galactic and LMC supergiants do not differ. With absolute magnitudes up to -9.6 mag the upper luminosity limit in the LMC does not exceed that in the Galaxy, where Ia-0 supergiants have MV of up to -9.5 mag. The metallicities of the supergiants show a rather large scatter. Nevertheless the mean metallicities of 0.0 ± 0.09 dex for the Galaxy and -0.6 ± 0.10 dex for the LMC agree well with other observations.  相似文献   

3.
We re‐discuss the evolutionary state of upper main sequence magnetic stars using a sample of Ap and Bp stars with accurate Hipparcos parallaxes and definitely determined longitudinal magnetic fields. We confirm our previous results obtained from the study of Ap and Bp stars with accurate measurements of the mean magnetic field modulus and mean quadratic magnetic fields that magnetic stars of mass M < 3 M are concentrated towards the centre of the main‐sequence band. In contrast, stars with masses M > 3 M seem to be concentrated closer to the ZAMS. The study of a few known members of nearby open clusters with accurate Hipparcos parallaxes confirms these conclusions. Stronger magnetic fields tend to be found in hotter, younger and more massive stars, as well as in stars with shorter rotation periods. The longest rotation periods are found only in stars which spent already more than 40% of their main sequence life, in the mass domain between 1.8 and 3 M and with log g values ranging from 3.80 to 4.13. No evidence is found for any loss of angular momentum during the main‐sequence life. The magnetic flux remains constant over the stellar life time on the main sequence. An excess of stars with large obliquities β is detected in both higher and lower mass stars. It is quite possible that the angle β becomes close to 0. in slower rotating stars of mass M > 3 M too, analog to the behaviour of angles β in slowly rotating stars of M < 3 M. The obliquity angle distribution as inferred from the distribution of r ‐values appears random at the time magnetic stars become observable on the H‐R diagram. After quite a short time spent on the main sequence, the obliquity angle β tends to reach values close to either 90. or 0. for M < 3 M. The evolution of the obliquity angle β seems to be somewhat different for low and high mass stars. While we find a strong hint for an increase of β with the elapsed time on the main sequence for stars with M > 3 M, no similar trend is found for stars with M < 3 M. However, the predominance of high values of β at advanced ages in these stars is notable. As the physics governing the processes taking place in magnetised atmospheres remains poorly understood, magnetic field properties have to be considered in the framework of dynamo or fossil field theories. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Among the intensities, determined at about 200 wavelengths between 3000 and 4100 Å in the spectrum of the centre of the sun's disk (Houtgast, 1965), the 32 highest ones (windows) were plotted and compared with absolute intensities given by other authors.The intensities in between the Fraunhofer lines from 3600 to 4000 Å, as determined here for the first time with high dispersion, reveal a detailed picture of several absorption features, one of which can be attributed to a Balmer jump of 0.03, a value in accordance with that found for stars and in agreement with the strengths of the high Balmer lines.The much higher value of the Balmer jump for the sun, as quoted in literature, in reality refers to the total intensity jump between 4000 and 3600 Å, which is mainly due to the crowding of Fraunhofer lines.  相似文献   

5.
Existing photometry for NGC 2264 tied to the Johnson & Morgan (1953) UBV system is reexamined and, in the case of the original observations by Walker (1956), reanalyzed in order to generate a homogeneous data set for cluster stars. Color terms and a Balmer discontinuity effect in Walker's observations were detected and corrected, and the homogenized data were used in a new assessment of the cluster reddening, distance, and age. Average values of EBV = 0.075 ± 0.003 s.e. and V0MV = 9.45 ± 0.03 s.e. (d = 777 ± 12 pc) are obtained, in conjunction with an inferred cluster age of ∼5.5 × 106 yr from pre‐main‐sequence members and the location of the evolved, luminous, O7 V((f)) dwarf S Mon relative to the ZAMS. The cluster main sequence also contains gaps that may have a dynamical origin. The dust responsible for the initial reddening towards NGC 2264 is no more than 465 pc distant, and there are numerous, reddened and unreddened, late‐type stars along the line of sight that are difficult to separate from cluster members by standard techniques, except for a small subset of stars on the far side of the cluster embedded in its gas and dust and background B‐type ZAMS members of Mon OB2. A compilation of likely NGC 2264 members is presented. Only 3 of the 4 stars recently examined by asteroseismology appear to be likely cluster members. NGC 2264 is also noted to be a double cluster, which has not been mentioned previously in the literature (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
An αΩ dynamo is considered responsible for magnetic activity in late K/early M main sequence stars, which is expected to be enhanced in later types as the surface convection zone deepens. At about spectral type M3, where the star presumably becomes fully convective, the magnetic field is theorized to change in character, switching to a more uniform, turbulence‐generated surface field. As a consequence, the nature of activity is expected to change at later spectral types. In field stars, age, mass, rotation and perhaps metallicity play a role in determining the activity level, but the effects are difficult to disentangle. Therefore, open clusters with a more homogeneous sample can provide valuable information on the dynamo operation and magnetic activity of lower main sequence stars. We present preliminary results of our spectroscopic study for activity indicators among the lower main sequence stars of the intermediate age (700 My) open cluster Praesepe. Chromospheric activity as manifested by the presence/absence of Hα in late K/M stars is presented, and other activity indicators are discussed. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
A photometric study of a large sample of Be stars is reported. Infrared homogeneous observational data in theJHKL system are used to derive some photometric characteristics of Be stars, as a class. New infrared observations of 34 Be stars are included in the present paper. Infrared two-colour diagrams are used to investigate the presence of in frared emission in Be stars. The origin of infrared excess in relation to Balmer line emission in Be stars is discussed.  相似文献   

8.
On the basis of the effective temperature scale proposed previously for cool carbon stars (Paper I), other intrinsic properties of them are examined in detail. It is shown that the major spectroscopic properties of cool carbon stars, including those of molecular bands due to polyatomic species (SiC2, HCN, C2H2 etc.), can most consistently be understood on the basis of our new effective temperature scale and the theoretical prediction of chemical equilibrium. Various photometric indices of cool carbon stars also appear to be well correlated with the new effective temperatures. Furthermore, as effective temperatures of some 30 carbon stars are now obtained, the calibration of any photometric index is straightforward, and some examples of such a calibration are given. In general, colour index-effective temperature calibrations for carbon stars are quite different from those for K-M giant stars. It is found that the intrinsic (RI)0 colour is nearly the same for N-irregular variables in spite of a considerable spread in effective temperatures, and this fact is used to estimate the interstellar reddening of carbon stars. An observational HR diagram of red giant stars, including carbon stars as well as K-M giant stars, is obtained on the basis of our colour index-effective temperature calibrations and the best estimations of luminosities. It is shown that carbon stars and M giant stars are sharply divided in the HR diagram by a nearly vertical line at aboutT eff = 3200 K (logT eff = 3.50) and the carbon stars occupy the upper right region of M giant stars (except for some high luminosity, high temperature J-type stars in the Magellanic Clouds; also Mira variables are not considered). Such an observational HR diagram of red giant stars shows rather a poor agreement with the current stellar evolution models. Especially, a more efficient mixing process in red giant stars, as compared with those ever proposed, is required to explain the formation of carbon stars.  相似文献   

9.
The continuum energy distribution data of seven Be and five normal B stars have been presented in the wavelength range 3200–8000 Å. Empirical effective temperatures of these stars have been derived by comparing the observed continuum energy distributions with the computed energy distributions given by Kurucz (1979). The effective temperatures of all observed be stars except KX And found here are in fair agreement with those of normal B stars. The Be stars KY And, EW Lac, and LQ And show normal continuum energy distributions over the whole observed wavelength range. The Be stars ES Vul and 6 Cyg show moderate near-infrared excess emission longward of 6000 Å.o And shows Balmer jump slightly in absorption and 6 Cyg shows slightly in emission. The variable nature of the Be stars has been discussed.The Be star KX And shows a peculiar type of continuum energy distribution. The continuum energy distribution of KX And has been discussed in relation to its binary nature.No excess or deficiency in the mean flux of normal B stars was detected.  相似文献   

10.
The luminosity function derived for main sequence stars in the neighbourhood of the Sun shows evidence for a flattening in the interval 5≲M v ≲8. An interpretation of this feature by means of theoretical models enables us to deduce the mass function for stars belonging to the main sequence.
Sommario Viene ricavata la funzione di luminosità per stelle di sequenza principale vicine al Sole. Si evidenzia un pianerottolo per 5≲M v ≲8. II confronto con i modelli teorici consente di desumere la funzione di massa della sequenza principale.
  相似文献   

11.
We present 50 and 100µm photometry and size information for several main sequence stars surrounded by dust shells. The observations from NASA's Kuiper Airborne Observatory include the Vega-like stars, Beta Pic, Fomalhaut, as well as four stars suggested by Walker and Wolstencroft to belong possibly to the same class. The results of our observations are best interpreted as upper limits to the far-infrared sizes of the dust clouds around all of the stars except Fomalhaut and Beta Pic. We have also fit simple, optically thin models to the Beta Pic data to explore the range of shell parameters consistent with our limits and with previous observations.  相似文献   

12.
The current knowledge of the evolution of Population II stars, as observed in galactic halos and globular clusters, is outlined. The recent theoretical results provided by an improved physical understanding of the stars are reported, with a particular emphasis upon those stellar evolutionary phases which are the keystones of the interpretation of globular cluster stars. Within the up–to–date theoretical scenario, the luminosity of the turn–off stars and horizontal branch stars, which are of fundamental importance for distance and age determinations, turns out to be fainter and brighter, respectively, in comparison with previous theoretical computations. The predicted absolute magnitude of RR Lyrae stars is consistent with the bright values suggested from the long distance scale (Sandage 1993), but the slope of the relation between and metallicity ([Fe/H]) agrees with that suggested from the short distance scale (see, e.g., Carney et al. 1992, Clementini et al. 1995), at least with [Fe/H]-1.3. As to the globular cluster ages, the new computations provide younger ages ( 10 Gyr–13 Gyr), weakening the conflict with current cosmological estimates. The recent results derived from the fitting of HIPPARCOS parallaxes of field subdwarfs to the fiducial main sequence of globular clusters are consistent with the up–to–date theoretical models. However, the direct determinations of , which are based on the HIPPARCOS proper motions and trigonometric parallaxes of field RR Lyrae stars, give fainter absolute magnitudes than those obtained from the improved evolutionary models. This seems to suggest that the problem of the globular cluster distance and age is still open. Received 6 April 1998  相似文献   

13.
This series of high quality elemental abundance analyses of mostly main‐sequence band normal and peculiar B, A, and F stars defines their properties and provides data for the comparison with the analyses of somewhat similar stars and with theoretical predictions. Most use high dispersion and high S/N (≥ 200) spectrograms obtained with CCD detectors at the long camera of the Coudé spectrograph of the 1.22‐m Dominion Astrophysical Observatory telescope. Here we reanalyze 21 Aql with better quality spectra and increase the number of stars consistently analyzed in the spectral range B5 to A2 by analyzing three new stars for this series. In the early A stars the normal and non‐mCP stars have abundances with overlapping ranges. But more stars are needed especially in the B5 to B9 range. ξ2 Cet on average has a solar composition with a few abundances outside the solar range while both 21 Aql and ι Aql have abundances marginally less than solar. The abundances of ι Del are greater than solar with a few elements such as Ca being less than solar. It is an Am star (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The mass-radius, mass-orbital period, spectral type-orbital period and absolute magnitude-orbital period relationships for the secondary star components of cataclysmic variable (CV) binary stars are discussed. By comparing these with those expected for systems containing Roche lobe-filling main sequence stars, using empirical data for low-mass main sequence stars, it is shown thatas a group the CV secondaries do not differ significantly from main sequence stars.  相似文献   

15.
The proper motions of stars in the main sequence and of luminosity class III giants are analyzed kinematically. A new method has been used for reliably separating all the parameters of the Ogorodnikov-Milne model based on representing the proper motions of the stars in coordinate systems whose poles lie on each of the three principal axes of the galactic trihedron. Solutions for stars in different spectral classes are obtained. The main sequence is found to subdivide into two zones (near and far stars) with a fairly sharp boundary at B-V=0.5. It is shown that the Parenago effect may be related to the different distances from the sun of the main sequence stars.  相似文献   

16.
For an understanding of Galactic stellar populations in the SDSS filter system well defined stellar samples are needed. The nearby stars provide a complete stellar sample representative for the thin disc population. We compare the filter transformations of different authors applied to the main sequence stars from F to K dwarfs to SDSS filter system and discuss the properties of the main sequence. The location of the mean main sequence in colour‐magnitude diagrams is very sensitive to systematic differences in the filter transformation. A comparison with fiducial sequences of star clusters observed in g ′, r ′, and i ′ show good agreement. Theoretical isochrones from Padua and from Dartmouth have still some problems, especially in the (r i) colours. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Early-Type Stars     
Away from the young disk, several classes of early type stars are found. They include (i) the old, metal-poor blue horizontal branch stars of the halo and the metal-poor tail of the thick disk; (ii) metal-rich young A stars in a rapidly rotating subsystem but with a much higher velocity dispersion than the A stars of the young disk, and (iii) a newly discovered class of metal-poor young main sequence A stars in a subsystem of intermediate galactic rotation (Vrot ≈ 120 km s−1). The existence and kinematics of these various classes of early type stars provide insight into the formation of the metal-poor stellar halo of the Galaxy and into the continuing accretion events suffered by our Galaxy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The helium and nitrogen enrichment of the atmospheres of early B-type stars during the main sequence (MS) evolutionary phase is re-analysed. It is confirmed that the effect depends on both the aget and the stellar massM. For example, the helium abundanceHe/H increases by 0.04 (60–70% of initial value) for stars withM=8–13M and by 0.025 (about 30%) for stars withM=6M . The nitrogen abundance rises by three times forM=14M and by, two times forM=10M . According to the latest theoretical computations, the observed appearance of CNO-cycled material in surface layers of the stars can be a result of the rotationally induced mixing, in particular, of the turbulent diffusion. Carbon is in deficiency in B stars, but unexpectedly does not show any correlation with the stellar age. However it is shown that the total C+N abundance derived for early B stars conflicts with the theory.Basing on modern data the helium enrichment is first examined in O-type MS stars, as well as in components of binaries. As compared with early B stars, the He abundance for more massive O stars and for components of binaries show a different relation with the relative aget/t MS . Namely during short time betweent/t MS 0.5 and 0.7 a sharp jump is observed up toHe/H=0.2 and more. In particular, such a jump is typical for fast rotating O stars (v sini200 km s–1),. Therefore the effect of mixing depends on massM, relative aget/t MS , rotational velocityv and duplicity.The mass problem (the discrepancy betweenM ev andM sp ) is also analysed, because some authors consider it as a possible evidence of early mixing, too. It is shown that the accurate data for components of binaries lead to the conclusion that the discrepancy is less than 30%. Such a difference can be removed at the expense of theM ev lowering, if the displacement of evolutionary tracks, owing to the rotationally induced mixing is taken into consideration.  相似文献   

19.
Non-degenerate stars of essentially all spectral classes are soft X-ray sources. Their X-ray spectra have been important in constraining physical processes that heat plasma in stellar environments to temperatures exceeding one million degrees. Low-mass stars on the cooler part of the main sequence and their pre-main sequence predecessors define the dominant stellar population in the galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense, of X-ray spectra from the solar corona. The Sun itself as a typical example of a main-sequence cool star has been a pivotal testbed for physical models to be applied to cool stars. X-ray emission from cool stars is indeed ascribed to magnetically trapped hot gas analogous to the solar coronal plasma, although plasma parameters such as temperature, density, and element abundances vary widely. Coronal structure, its thermal stratification and geometric extent can also be interpreted based on various spectral diagnostics. New features have been identified in pre-main sequence stars; some of these may be related to accretion shocks on the stellar surface, fluorescence on circumstellar disks due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot stars clearly dominate the interaction with the galactic interstellar medium: they are the main sources of ionizing radiation, mechanical energy and chemical enrichment in galaxies. High-energy emission permits to probe some of the most important processes at work in these stars, and put constraints on their most peculiar feature: the stellar wind. Medium and high- resolution spectroscopy have shed new light on these objects as well. Here, we review recent advances in our understanding of cool and hot stars through the study of X-ray spectra, in particular high-resolution spectra now available from XMM-Newton and Chandra. We address issues related to coronal structure, flares, the composition of coronal plasma, X-ray production in accretion streams and outflows, X-rays from single OB-type stars, massive binaries, magnetic hot objects and evolved WR stars.  相似文献   

20.
In the first part of the paper the shifts of the last visible balmer lines as a function of the gas density were predicted theoretically. Here spectroscopic research for these shifts is reported: 10A/mm–1 spectra of six stars were examined and published material of other authors was also used.The shifts are of tenth Angström order of magnitude and they are used to measure the gas density in a well defined region of the stellar atmosphere. It is shown that usually there is no real coalescence of Balmer lines. The lack of Balmer lines with high main quantum number is explained adequately in most cases without Stark and Doppler effect. Evidence is given against using the Inglis-Teller formula because its physical foundation is inadequate. It gives false values in general.Stars with peculiar spectra—helium and carbon Wolf-Rayet stars—are briefly mentioned as well because the last visible Balmer-like line of Hei orCiv gives a density value in their atmospheres which is a useful first guess in understanding their spectra better.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号