首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We present a low‐cost, reliable method for long‐term in situ autonomous monitoring of subsurface resistivity and temperature in a shallow, moderately heterogeneous subsurface. Probes, to be left in situ, were constructed at relatively low cost with an electrode spacing of 5 cm. Once installed, these were wired to the CR‐1000 Campbell Scientific Inc. datalogger at the surface to electrically image infiltration fronts in the shallow subsurface. This system was constructed and installed in June 2005 to collect apparent resistivity and temperature data from 96 subsurface electrodes set to a pole‐pole resistivity array pattern and 14 thermistors at regular intervals of 30 cm through May of 2008. From these data, a temperature and resistivity relationship was determined within the vadose zone (to a depth of ~1 m) and within the saturated zone (at depths between 1 and 2 m). The high vertical resolution of the data with resistivity measurements on a scale of 5‐cm spacing coupled with surface precipitation measurements taken at 3‐min intervals for a period of roughly 3 years allowed unique observations of infiltration related to seasonal changes. Both the vertical resistivity instrument probes and the data logger system functioned well for the duration of the test period and demonstrated the capability of this low‐cost monitoring system.  相似文献   

2.
The use of electrical resistivity tomography (ERT; non‐intrusive geophysical technique) was assessed to identify the hydrogeological conditions at a surface water/groundwater test site in the southern Black Forest, Germany. A total of 111 ERT transects were measured, which adopted electrode spacings from 0·5 to 5 m as well as using either Wenner or dipole‐dipole electrode arrays. The resulting two‐dimensional (2D) electrical resistivity distributions are related to the structure and water content of the subsurface. The images were interpreted with respect to previous classical hillslope hydrological investigations within the same research basin using both tracer methods and groundwater level observations. A raster‐grid survey provided a quasi 3D resistivity pattern of the floodplain. Strong structural heterogeneity of the subsurface could be demonstrated, and (non)connectivities between surface and subsurface bodies were mapped. Through the spatial identification of likely flow pathways and source areas of runoff, the deep groundwater within the steeper valley slope seems to be much more connected to runoff generation processes within the valley floodplain than commonly credited in such environmental circumstances. Further, there appears to be no direct link between subsurface water‐bodies adjacent to the stream channel. Deep groundwater sources are also able to contribute towards streamflow from exfiltration at the edge of the floodplain as well as through the saturated areas overlying the floodplain itself. Such exfiltrated water then moves towards the stream as channelized surface flow. These findings support previous tracer investigations which showed that groundwater largely dominates the storm hydrograph of the stream, but the source areas of this component were unclear without geophysical measurements. The work highlighted the importance of using information from previous, complementary hydrochemical and hydrometric research campaigns to better interpret the ERT measurements. On the other hand, the ERT can provide a better spatial understanding of existing hydrochemical and hydrometric data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Surface coal mining has altered land cover, near‐surface geologic structure, and hydrologic processes of large areas in central Appalachia, USA. These alterations are associated with changes in water quality such as elevated total‐dissolved solids, which is usually measured via its surrogate, specific conductance (SC). The SC of valley fill effluent streams is a function of fill construction methods, materials, and age; yet hydrologic studies that relate these variables to water quality are sparse due to the difficulty of conducting traditional hydrologic studies in mined landscapes. We used electrical resistivity imaging (ERI) to visualize the subsurface geologic structure and hydrologic flow paths within a valley fill. ERI is a noninvasive geophysical technique that maps spatiotemporal changes in resistivity of the subsurface. We paired ERI with artificial rainfall experiments to track infiltrated water as it moved through the valley fill. Results indicate that ERI can be used to identify subsurface geologic structure and track advancing wetting fronts or preferential flow paths. Our results suggest that the upper portion of the fill contains significant fines, whereas the deeper profile is primarily large rocks and void spaces. Water tended to pond on the surface of compacted areas until it reached preferential flow paths, where it appeared to infiltrate quickly down to >15 m depth in 75 min. ERI applications can improve understanding of how fill construction techniques influence subsurface water movement, and in turn may aid in the development of valley fill construction methods to reduce water quality effects.  相似文献   

4.
An azimuthal resistivity survey was conducted at the transition zone between the desert area and the cultivated land near Lake Qaroun, Egypt. This area has been affected by an east-west trending fault system as indicated from the surface geology. Apparent resistivity values were plotted along azimuth on a polar diagram. Resistivity anomalies, for most of the AB/2 values with long axes strike in a direction parallel to the contact between the desert and cultivated lands, indicate the presence of electrical macro-anisotropy, mainly due to the faulting effect, at this area. Vertical electrical soundings (VES) and transient electromagnetic (TEM) measurements were conducted at eight stations along a line that crosses the boundary between the desert and cultivated land. Joint inversion of VES-TEM data was successfully used for identification of the subsurface lithostratigraphic succession and demonstrated the effect of the fault zone on the investigated subsurface medium. Apparent anisotropy coefficients at all current electrode spacings were calculated, plotted against AB/2 values and compared with the geoelectrical cross section. The effect of the fault zone was detected at AB/2 spacings equal to 100 m and extended downward and is largely related to the depth of the fault, as indicated in the constructed cross section.  相似文献   

5.
Integrated electrical resistance tomography (ERT) and short-offset transient electromagnetic (TEM) measurements were carried out to investigate a geothermal area in the Main Central Thrust (MCT) zone of Garhwal Himalayan region, India. The study area is located around Helang on either side of Alaknanda River and it is dotted with hot water springs with water temperature of 45°–55 °C emerging at the surface.To assess the geothermal potential and its lateral and vertical extension in and around the hot water springs in the study area, 7 ERT profiles and 21 TEM stations on 7 profiles were established around the hot water spring and at far distant locations. The 2D inversion of ERT data indicates a low resistivity (< 50 Ωm) zone in the vicinity of hot springs, which appears to be associated with an underground water channel through the fractured rock. The bedrock resistivity is very high (> 1000 Ωm) whereas the resistivity of the weathered near surface soil at a far distant location from the hot spring is low (< 100 Ωm) again. A common feature of all TEM data is the sign reversal observed at roughly 10 μs. The consistent sign reversal in all TEM data indicates the existence of the multi-dimensionality of the geoelectrical structure. Therefore, the TEM data were treated by using the SLDM (Spectral Lanczos Decomposition Method) 2D/3D forward modeling code based on the finite difference algorithm. The resistivity structure obtained from ERT data was used as an input for the modeling of TEM data. Based on the joint analysis of the ERT and TEM data it can be inferred that geothermal anomalies associated with the hot spring in the MCT zone are a local feature appearing as a low resistivity zone (< 50 Ωm) at shallow depth (< 100 m) in the vicinity of the hot spring region.  相似文献   

6.
This study integrated spatially distributed field observations and soil thermal models to constrain the impact of frozen ground on snowmelt partitioning and streamflow generation in an alpine catchment within the Niwot Ridge Long-Term Ecological Research site, Colorado, USA. The study area was comprised of two contrasting hillslopes with notable differences in topography, snow depth and plant community composition. Time-lapse electrical resistivity surveys and soil thermal models enabled extension of discrete soil moisture and temperature measurements to incorporate landscape variability at scales and depths not possible with point measurements alone. Specifically, heterogenous snowpack thickness (~0–4 m) and soil volumetric water content between hillslopes (~0.1–0.45) strongly influenced the depths of seasonal frost, and the antecedent soil moisture available to form pore ice prior to freezing. Variable frost depths and antecedent soil moisture conditions were expected to create a patchwork of differing snowmelt infiltration rates and flowpaths. However, spikes in soil temperature and volumetric water content, as well as decreases in subsurface electrical resistivity revealed snowmelt infiltration across both hillslopes that coincided with initial decreases in snow water equivalent and early increases in streamflow. Soil temperature, soil moisture and electrical resistivity data from both wet and dry hillslopes showed that initial increases in streamflow occurred prior to deep soil water flux. Temporal lags between snowmelt infiltration and deeper percolation suggested that the lateral movement of water through the unsaturated zone was an important driver of early streamflow generation. These findings provide the type of process-based information needed to bridge gaps in scale and populate physically based cryohydrologic models to investigate subsurface hydrology and biogeochemical transport in soils that freeze seasonally.  相似文献   

7.
Stream temperature ranged from 3 to 4°C at an experimental site during snowmelt on Hokkaido Island, Japan, which provided direct evidence of major contributions of subsurface water to stream water. In contrast, stream temperatures during rainstorms in summer decreased gradually after stream flow peaked, attaining a nearly constant temperature ranging from 9 to 11°C. During storm flow recession, stream temperatures during summer or snowmelt were similar to the soil temperature at 1·8 m below the land surface, suggesting that subsurface water contributions to stream flow are derived from this depth. The hygrographs during two rainstorms, August 1987 and September 1989, were separated using temperature. The stream temperature was assumed to depend on the mixing of surface flow, having a temperature ranging from that of rainfall to that of shallow (50 cm deep) soil water, and subsurface flow, having the temperature of the soil at 1·8 m below the land surface. Subsurface flow was estimated to contribute 85–90% of the total stream flow during each rainstorm. A two‐component hydrograph separation was also evaluated using specific conductance. Runoff contributions from the two sources for the temperature and specific conductance analysis were similar. Analysis of the temperature and conductance–discharge hysteresis loop, and of individual flow components for storm hygrographs, provide a general picture of the runoff process in the experimental basin. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
The 1st crater of Naka-dake, Aso volcano, is one of the most active craters in Japan, and known to have a characteristic cycle of activity that consists of the formation of a crater lake, drying-up of the lake water, and finally a Strombolian-type eruption. Recent observations indicate an increase in eruptive activity including a decrease in the level of the lake water, mud eruptions, and red hot glows on the crater wall. Temporal variations in the geomagnetic field observed around the craters of Naka-dake also indicate that thermal demagnetization of the subsurface rocks has been occurring in shallow subsurface areas around the 1st crater. Volcanic explosions act to release the energy transferred from magma or volcanic fluids. Measurement of the subsurface electrical resistivity is a promising method in investigating the shallow structure of the volcanic edifices, where energy from various sources accumulates, and in investigating the behaviors of magma and volcanic fluids. We carried out audio-frequency magnetotelluric surveys around the craters of Naka-dake in 2004 and 2005 to determine the detailed electrical structure down to a depth of around 1 km. The main objective of this study is to identify the specific subsurface structure that acts to store energy as a preparation zone for volcanic eruption. Two-dimensional inversions were applied to four profiles across the craters, revealing a strongly conductive zone at several hundred meters depth beneath the 1st crater and surrounding area. In contrast, we found no such remarkable conductor at shallow depths beneath the 4th crater, which has been inactive for 70 years, finding instead a relatively resistive body. The distribution of the rotational invariant of the magnetotelluric impedance tensor is consistent with the inversion results. This unusual shallow structure probably reflects the existence of a supply path of high-temperature volcanic gases to the crater bottom. We propose that the upper part of the conductor identified beneath the 1st crater is mainly composed of hydrothermally altered zone that acts both as a cap to upwelling fluids supplied from deep-level magma and as a floor to infiltrating fluid from the crater lake. The relatively resistive body found beneath the 4th crater represents consolidated magma. These results suggest that the shallow conductor beneath the active crater is closely related to a component of the mechanism that controls volcanic activity within Naka-dake.  相似文献   

9.
This paper is presenting the results from near-surface geophysical surveys near the waste site of Hoc Mon in southern Vietnam where leachate contamination has been recognized at the surface. Using EM and GPR surveys, we were able to determine the lateral extent of a contaminated area of high electrical conductivity and have identified channels that concentrate the contaminant flow. The simple relationship between the electrical resistivity and the leachate concentration is suggested and estimated the in situ leachate concentration from the inversion of the EM data; values are as high as 40%. Thanks to a permeability barrier leachate flow is confined to the shallow subsurface, making it easier to apply possible site remediation projects.  相似文献   

10.
Measurements of electrical resistivity have long been used to find freshwater resources below the earth's surface. Recently, offshore resistivity and electromagnetic techniques have been used to map occurrences of submarine groundwater originating from the offshore extension of terrestrial aquifers. In many cases, observations of a high resistivity (low conductivity) anomaly in the seafloor are sufficient to suggest the presence of fresh (and less conductive) pore waters. Data from offshore Wrightsville Beach, NC show highly variable resistivity structure, with moderately high resistivity at depths of ~20 m subsurface that is at least in part caused by lithologic complexity in an underlying limestone unit, the Castle Hayne. These offshore results suggest caution in the interpretation of resistivity anomalies simply in terms of groundwater volumes. In contrast, low onshore resistivities show evidence for intrusion of saltwater into the subsurface beneath the beach, adjacent to areas of pumping for water supply.  相似文献   

11.
Integrated geophysical and chemical study of saline water intrusion   总被引:3,自引:0,他引:3  
Choudhury K  Saha DK 《Ground water》2004,42(5):671-677
Surface geophysical surveys provide an effective way to image the subsurface and the ground water zone without a large number of observation wells. DC resistivity sounding generally identifies the subsurface formations-the aquifer zone as well as the formations saturated with saline/brackish water. However, the method has serious ambiguities in distinguishing the geological formations of similar resistivities such as saline sand and saline clay, or water quality such as fresh or saline, in a low resistivity formation. In order to minimize the ambiguity and ascertain the efficacy of data integration techniques in ground water and saline contamination studies, a combined geophysical survey and periodic chemical analysis of ground water were carried out employing DC resistivity profiling, resistivity sounding, and shallow seismic refraction methods. By constraining resistivity interpretation with inputs from seismic refraction and chemical analysis, the data integration study proved to be a powerful method for identification of the subsurface formations, ground water zones, the subsurface saline/brackish water zones, and the probable mode and cause of saline water intrusion in an inland aquifer. A case study presented here illustrates these principles. Resistivity sounding alone had earlier failed to identify the different formations in the saline environment. Data integration and resistivity interpretation constrained by water quality analysis led to a new concept of minimum resistivity for ground water-bearing zones, which is the optimum value of resistivity of a subsurface formation in an area below which ground water contained in it is saline/brackish and unsuitable for drinking.  相似文献   

12.
The interpretation of airborne VLF data represents an important aspect of geophysical mapping of the upper few hundred meters of the Earth's crust, especially in areas with crystalline rocks. We have examined the ability of the single frequency VLF method to provide quantitative subsurface resistivity information using two generic models and standard airborne parameters with a flight altitude of 70 m and a frequency of 16 kHz. The models are long thin conductor (10 m thick, 10 Ω m resistivity and 1 km long) and a wider buried conductive dike (100 Ω m resistivity and 500 m wide). Using standard regularized inversion it turned out that for both models the conductivity of the conductors are underestimated and the vertical resolution is rather poor. The lateral positions of the minimum of the resistivity distributions coincide well with the true positions of the shallow conductors. For deeper conductors the position of the minimum resistivity moves from the edges of the conductor into the conductor. The depth to the minimum of the resistivity anomalies correlates well with the true depth to the top of the conductors although the latter is always smaller than the former.Interpretation of field airborne data collected at 70 m flight height resolved both small scale and large scale near surface conductors (conductance ∼1 S). Deeper conductors show up in the VLF data as very long wavelength anomalies that are particularly powerful in delineating the lateral boundaries of the conductors. Many of the VLF anomalies in the Stockholm area are dominated by these deep conductor responses with some near surface conductors superimposed. The deep conductors often follow topographic lows coinciding with metasediments. We interpret the frequent absence of near surface responses at 70 m flight height as a result of weak coupling between the primary VLF wave and the small scale (in all three dimensions) near-surface conductors.Radio magnetotelluric (RMT) ground measurements were carried out along a short profile coinciding with part of an airborne profile. Using data at 9 frequencies (14–250 kHz) small scale conductors in the upper few tens of meters, not identified from the airborne data, could be well resolved. Large scale deeper conductors could be identified by both methods at nearly the same positions.  相似文献   

13.
The increased application of airborne electromagnetic surveys to hydrogeological studies is driving a demand for data that can consistently be inverted for accurate subsurface resistivity structure from the near surface to depths of several hundred metres. We present an evaluation of three commercial airborne electromagnetic systems over two test blocks in western Nebraska, USA. The selected test blocks are representative of shallow and deep alluvial aquifer systems with low groundwater salinity and an electrically conductive base of aquifer. The aquifer units show significant lithologic heterogeneity and include both modern and ancient river systems. We compared the various data sets to one another and inverted resistivity models to borehole lithology and to ground geophysical models. We find distinct differences among the airborne electromagnetic systems as regards the spatial resolution of models, the depth of investigation, and the ability to recover near‐surface resistivity variations. We further identify systematic biases in some data sets, which we attribute to incomplete or inexact calibration or compensation procedures.  相似文献   

14.
Aquifers found in glacial buried valleys are a major source of good-quality ground water in northeastern Kansas. The extent and character of many of these deposits are not precisely known, so a detailed study of the buried valleys was undertaken. Test drilling, Landsat imagery, shallow-earth temperature measurements, seismic refraction, surface electrical resistivity, and gravity data were used to evaluate two sites in Nemaha and Jefferson Counties. Tonal patterns on springtime Landsat imagery and winter/summer anomalies in shallow-earth temperatures were quick and inexpensive methods for locating some glacial buried aquifers and suggested areas for more intensive field studies. Reversed seismic refraction and resistivity surveys were generally reliable indicators of the presence or absence of glacial buried valleys, with most depth determinations being within 25% of test-drilling results. The effectiveness of expensive test-hole drilling was greatly increased by integrating remote sensing, shallow-earth temperature, seismic, and resistivity techniques in the two buried valley test areas. A gravity profile allowed precise definition of the extent of one of the channels after the other techniques had been used for general information.  相似文献   

15.
Hot springs and steam vents on the slopes of Nevado del Ruiz volcano provide evidence regarding the nature of hydrothermal activity within the summit and flanks of the volcano. At elevations below 3000 m, alkali-chloride water is discharged from two groups of boiling springs and several isolated warm springs on the western slope of Nevado del Ruiz. Chemical and isotopic geothermometers suggest that the boiling springs are fed by an aquifer having a subsurface equilibration temperature of at least 175°C, and the sampled warm spring is fed by an aquifer having a subsurface equilibration temperature near 150°C. Similarities in conservative solute ratios (e.g., B/Cl) indicate that the alkali-chloride waters may be related to a single reservoir at depth. Isotopic ratios of hydrogen and oxygen indicate that recharge for the alkali-chloride aquifers comes mostly from higher elevations on the volcano. Steam vents and steam-heated bicarbonate-sulfate springs at higher elevations, along a linear structural trend with the alkali-chloride springs, may be derived partly from the alkali-chloride water at depth by boiling. Steam from the vents (84°C) yields a gas geothermometer temperature of 209°C. Acid-sulfate-chloride and acid-sulfate waters are discharged widely from warm springs above 3000 m on the northern and eastern slopes of Nevado del Ruiz. Similarities in B/Cl and SO4/Cl ratios suggest that the acid waters are mixtures of water from an acid-sulfate-chloride reservoir with various proportions of shallow, dilute groundwater. The major source of sulfate, halogens, and acidity for the acid waters may be high-temperature magmatic gases. Available data on hot spring temperatures and compositions indicate that they have remained fairly stable since 1968. However, the eruption of November 13, 1985 apparently caused an increase in sulfate concentration in some of the acid springs that peaked about a year after the eruption. Long-term monitoring of hot spring compositions over many years will be required to better define the effects of volcanic activity on the Nevado del Ruiz hydrothermal system.  相似文献   

16.
Traditional characterization of hyporheic processes relies upon modelling observed in‐stream and subsurface breakthrough curves to estimate hyporheic zone size and infer exchange rates. Solute data integrate upstream behaviour and lack spatial coverage, limiting our ability to accurately quantify spatially heterogeneous exchange dynamics. Here, we demonstrate the application of near‐surface electrical resistivity imaging (ERI) methods, coupled with experiments using an electrically conductive stream tracer (dissolved NaCl), to provide in situ imaging of spatial and temporal dynamics of hyporheic exchange. Tracer‐labelled water in the stream enters the hyporheic zone, reducing electrical resistivity in the subsurface (to which subsurface ERI is sensitive). Comparison of background measurements with those recording tracer presence provides distributed characterization of hyporheic area (in this application, ∼0·5 m2). Results demonstrate the first application of ERI for two‐dimensional imaging of stream‐aquifer exchange and hyporheic extent. Future application of this technique will greatly enhance our ability to quantify processes controlling solute transport and fate in hyporheic zones, and provide data necessary to inform more complete numerical models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Organic solvent (i.e., dense nonaqueous phase liquid, DNAPL) migration in the subsurface is known to be extremely sensitive to geologic heterogeneity. There is often a focus on heterogeneity that results from changing depositional conditions over short spatial scales. Similar or even more extreme spatial heterogeneity can result postdeposition due to erosional processes. This study applies a synergistic approach based on a combination of high‐resolution lithologic logs of continuous cores, borehole geophysical logs, surface electrical resistivity, and seismic refraction tomography models to assess spatial heterogeneity in a shallow bedrock sequence subject to multiple unconformities and contaminated with a mixture of organic chemicals. The persistence of DNAPL in the source zone and an associated dissolved‐phase plume led to variable impacts on formation resistivity across the study site. Seismic refraction in combination with electrical resistivity tomography improved interpretation of highly irregular erosional boundaries by delineating sharp lateral transitions in lithologic composition near the source zone and across the dissolved‐phase plume. Electrical resistivity was effective at differentiating between clean and mud‐rich sandstones and their unconformable contact with an underlying dolostone. Geophysical measurements revealed eroded dolostone mounds encased by a network of younger mud‐rich sandstones channelized by clean semi‐lithified sand, all of which was buried beneath variable glacial drift. Our synergistic multidimensional approach resulted in the development of a detailed three‐dimensional shallow bedrock geospatial model, which has led to an improved understanding of DNAPL migration and contaminant plume heterogeneity.  相似文献   

18.
A geophysical investigation of a hot spring system located in Rabulu, Fiji, was carried out from October 2014 to March 2015. The investigation covered a survey area of 6075 m2. Self-potential (SP), ground temperature and soil carbon dioxide (CO2) concentrations were measured and investigated for their distribution characteristics and inter-linkages. Results indicated obvious anomalous zone at the hot spring discharge site. The SP profile analysis highlighted thermal water upwelling zones and elevation-driven subsurface groundwater pathways. Measurement of subsurface temperatures up to 1 m depths revealed increasing temperatures, indicating potentially high thermal gradients in the area. Surface soil CO2 distributions also agreed with SP and ground temperature results. The overall result of the study demonstrated that synchronised measurements of SP, ground temperature and soil CO2 can be instrumental in identifying anomalous zones near the hot spring sites. Other parameters such as spring water temperature, discharge rate and energy flux estimates from the spring were calculated and analysed. The high-dense multi-parameter data coverage allowed interpretation of geothermal features at a scale never conducted in Fiji before. The near-surface investigations reported in this study corroborate previously suggested steady geothermal activity in the region, deserving further detailed investigation.  相似文献   

19.
Two different airborne electromagnetic methods were applied in the same area: the frequency-domain helicopter-borne electromagnetic (HEM) system operated by the Federal Institute for Geosciences and Natural Resources, Germany, and the time-domain SkyTEM system of the HydroGeophysics Group at the University of Aarhus, Denmark. For verification of and comparison with the airborne methods, ground-based transient electromagnetics and 2-D resistivity surveying were carried out. The target of investigation was the Cuxhaven valley in Northern Germany, which is a significant local groundwater reservoir. The course of this buried valley was revealed by drillings and the shape was determined by reflection seismics at several cross sections.We applied electrical and electromagnetic methods to investigate the structure of the valley filling consisting of gravel, sand, silt and clay. The HEM survey clearly outlines a shallow conductor at about 20m depth and a deeper conductor below 40m depth inside the valley. This is confirmed by 2-D resistivity surveying and a drilling. The thickness of the deeper conductor, however, is not revealed due to the limited investigation depth of the HEM system. The SkyTEM survey does not resolve the shallow conductor, but it outlines the thickness of the deeper clay layer inside the valley and reveals a conductive layer at about 180m depth outside the valley. The SkyTEM results are very consistent with ground-based transient electromagnetic soundings.Airborne electromagnetic surveying in general has the advantage of fast resistivity mapping with high lateral resolution. The HEM system is cost-efficient and fast, but the more expensive and slower SkyTEM system provides a higher depth of investigation. Ground-based geophysical surveys are often more accurate, but they are definitively slower than airborne surveys. It depends on targets of interest, time, budget, and manpower available by which a method or combination of methods will be chosen. A combination of different methods is useful to obtain a detailed understanding of the subsurface resistivity distribution.  相似文献   

20.
浅层地震资料解释陷阱(英文)   总被引:1,自引:0,他引:1  
高分辨率浅层地震方法是在近地表调查中使用最为广泛的方法。然而,在许多情况下,地震资料的解释经常会出现错误。在本文中,我们介绍了三个例子,分析了造成P波,SH波,多道的面波(MASW)地震资料解释的错误原因,大都是由于在表面或地下条件约束不确当引起的。第一个例子是P波反射剖面上的一个波的特征被解释为浅层断裂带,但后来证实它是由高水平的背景噪音引起的,因为采集测线通过了一个公路交叉口。第二个例子是SH波反射地震剖面上一个波特征被解释为是逆倾向滑断层,但有针对性的钻探表明,它是一个侵入到基岩面的一个深层局部侵蚀。最后,第三个例子,MASW调查剖面上,一个陡倾特征一开始被解释为基岩谷。然而,后来的钻探表明这是一个非常软的湖泊沉积物,后者严重损坏了应用面波频段。虽然最初的解释是不正确的,但这刺激地球物理学家和地质学家之间的讨论,并强调地球物理数据采集的时候,采集之前以及采集之后需要科学家之间有意义的合作与讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号