首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Stress drop estimates of moderate-magnitude earthquakes in the Umbria–Marche region, in the northern Apennines, exhibit a large scatter. For the two M w 5.7 and 6.0 main shocks of 26 September 1997 near Colfiorito, several papers resulted in stress drop estimates of 20 MPa, but values as low as 2–3 MPa were proposed as well. Also for the largest aftershocks (M w > 4), estimates spread from < 1 MPa up to values ten times larger. We have critically revisited methods and data used in the literature. We have specifically faced the trade-off between source and propagation effects, as we believe that it is responsible for a part of the large scatter. To keep this trade-off under control, we have applied a methodology that combines the best fit of both source spectra after Empirical Green’s Function (EGF) deconvolution and observed ground motion spectra, finding that the results of the two different data sets converge independently at the same solution. We have used ground motions observed in the Colfiorito basin, where an accelerograph and a co-located seismological broad-band station recorded three clusters of earthquakes in a broad magnitude interval (1.7 ≤ M w ≤ 6.0). We have found that the mainshock–aftershock sequences result in stress drops of 2–5 MPa at M w ≥ 5.6, with an average tendency to decrease at smaller magnitudes where stress drop variability increases. These findings confirm the source scaling recently assessed through Empirical Green’s Function deconvolution for another well-monitored seismic sequence of normal-faulting earthquakes, which struck the city of L’Aquila in the central Apennines in April 2009. The similar scaling law of the two areas suggests common mechanisms of stress release for the shallow normal faults in the Apennines. The propensity of smaller earthquakes to increase in variability, with a tendency toward smaller stress drops, may reflect an effect of fault strength heterogeneities for smaller size ruptures.  相似文献   

2.
Spectral parameters have been estimated for 214 Petatlan aftershocks recorded at stations between Petatlan and Mexico City and between Petatlan and Acapulco. The spectral parameters were used to obtain empirical relations for the estimation of seismic moment from coda length and fromM L . Stress drops, using Brune's model, were calculated for these aftershocks. Six events with large stress drop are located within a previously suggested asperity, and seven more suggest a boundary zone at the intersection of the Petatlan and Zihuatanejo aftershock rupture volumes. Stress drops increase with increasing seismic moment up to 1020 dyne-cm but appear to be constant at greater moment values. The peak horizontal velocity times distance of aftershocks recorded near the coast and between the coast and Mexico City (30 to 270 km away), scales linearly with seismic moment, and predicts well the peak horizontal values of large (M s 7.0) coastal thrust events recorded on rock sites at Mexico City. Peak horizontal velocity is a straightforward measurement, thus this relation allows us to evaluate expected ground motion between the Pacific coast and Mexico City from the seismic moment of subduction related earthquakes along the coast.  相似文献   

3.
The Canterbury earthquake sequence beginning with the 2010 M W 7.2 Darfield earthquake is one of the most notable and well-recorded crustal earthquake sequences in a low-strain-rate region worldwide and as such provides a unique opportunity to better understand earthquake source physics and ground motion generation in such a tectonic setting. Ground motions during this sequence ranged up to extreme values of 2.2 g, recorded during the February 2011 M W 6.2 event beneath the city of Christchurch. A better understanding of the seismic source signature of this sequence, in particular the stress release and its scaling with earthquake size, is crucial for future ground motion prediction and hazard assessment in Canterbury, but also of high interest for other low-to-moderate seismicity regions where high-quality records of large earthquakes are lacking. Here we present a source parameter study of more than 200 events of the Canterbury sequence, covering the magnitude range M W 3–7.2. Source spectra were derived using a generalized spectral inversion technique and found to be well characterized by the ω ?2 source model. We find that stress drops range between 1 and 20 MPa with a median value of 5 MPa, which is a factor of 5 larger than the median stress drop previously estimated with the same method for crustal earthquakes in much more seismically active Japan. Stress drop scaling with earthquake size is nearly self-similar, and we identify lateral variations throughout Canterbury, in particular high stress drops at the fault edges of the two major events, the M W 7.2 Darfield and M W 6.2 Christchurch earthquakes.  相似文献   

4.
Based on the digital waveform data recorded by Xinjiang Digital Seismic Network for the Xinyuan-Hejing M_L6.8 earthquake sequences of June 30,2012,this paper analyzes the stress drops of earthquake sequences and the correlation coefficients of focal mechanisms significant for strong aftershocks.Firstly,the source parameters of the Xinyuan-Hejing M_L6.8 earthquake sequences are obtained by applying the spectrum analysis and the Brunes source model.Then,the correlation coefficients of spectral amplitudes are calculated using the low-frequency spectral amplitude recorded by the same station for the different events.Finally,based on the results of the correlation coefficients of spectral amplitudes,the events with similar focal mechanisms are grouped using the clustering method.The results show that:(1)The stress drop values show a steady trend in the aftershock sequence calm period and the stress drop values show a rise-fall in strong aftershocks.(2)The moving average correlation coefficient of amplitude spectrum begins to spread after the main shock.It shows that the correlation decreases between the main shock and the aftershocks in mechanisms.(3)The results of focal mechanism groups show that the earthquake sequences are mainly strike slips.The stress distribution of the main pressure axis is nearly NS,which is the same as the structural stress field.(4)The magnitude and mechanism show that there is an agreement before the strong aftershock,which shows that the regional stress field is enhanced.  相似文献   

5.
By using a broadband Lg attenuation model developed for the Tibetan Plateau, we isolate source terms by removing attenuation and site effects from the observed Lg-wave displacement spectra of the M7.0 earthquake that occurred on August 8, 2017, in Jiuzhaigou, China, and its aftershock sequence. Thus, the source parameters, including the scalar seismic moment, corner frequency and stress drop, of these events can be further estimated. The estimated stress drops vary from 47.1 kPa to 7149.6 kPa, with a median value of 59.4 kPa and most values falling between 50 kPa and 75 kPa. The estimated stress drops show significant spatial variations. Lower stress drops were mainly found close to the mainshock and on the seismogenic fault plane with large coseismic slip. In contrast, the highest stress drop was 7.1 MPa for the mainshock, and relatively large stress drops were also found for aftershocks away from the major seismogenic fault and at depths deeper than the zone with large coseismic slip. By using a statistical method, we found self-similarity among some of the aftershocks with a nearly constant stress drop. In contrast, the stress drop increased with the seismic moment for other aftershocks. The amount of stress released during earthquakes is a fundamental characteristic of the earthquake rupture process. As such, the stress drop represents a key parameter for improving our understanding of earthquake source physics.  相似文献   

6.
Based on the empirical formulation formed from coda observations, the digital waveforms from 33 local events with magnitude M L ranging between 2.1 and 3.5, recorded at Changli station of Beijing Telemetered Seismographic Network from 1989 to 1991, are used to compute coda Q for the Changli region and the source factors of all earthquakes by single-station coda method. Furthermore, assuming a certain source model, we have obtained the station site frequency response and source spectra, as well as source parameters such as corner frequencies, seismic moments and stress drops and so on. Their variations with time are monitored before and after larger earthquakes. Because the coda method can more effectively reduce the influence of source radiation pattern and a particular propagation path than direct wave method, more data can be used and more accurate results can be obtained, which provided a possible approach to study the source properties and reveal the variation of source parameters before larger earthquakes. Contribution No. 97A0107, Institute of Geophysics, SSB, China.  相似文献   

7.
We studied broadband digital records of the M W = 7.6 Olyutorskii earthquake of April 20, 2006 and its aftershocks at local and regional distances. We have made a detailed analysis of data on peak ground motion velocities and accelerations due to aftershocks based on records of two digital seismic stations, Tilichiki (TLC) and Kamenskoe (KAM). The first step in this analysis was to find the station correction for soil effects at TLC station using coda spectra. The correction was applied to the data to convert them to the reference bedrock beneath the Kamenskoe station. The second step involved multiple linear regression to derive average relationshis of peak amplitude to local magnitude ML and distance R for the Koryak Upland conditions. The data scatter about the average relationshis is comparatively low (0.22–0.25 log units). The acceleration amplitudes for M L = 5, R = 25 km are lower by factors of 2–3 compared with those for eastern Kamchatka, the western US, or Japan. A likely cause of this anomaly could be lower stress drops for the aftershocks.  相似文献   

8.
本文以芦山地震余震为例,分析了基于强震动观测记录的经验格林函数(EGF)谱比法估计地震的拐角频率和应力降的可行性。首先给出能够可靠估计地震拐角频率和应力降的经验格林函数谱比曲线的质量标准;然后利用其估算出17次ML3.8—5.4芦山强余震的拐角频率;最后,参考其它研究给出的地震矩震级,计算出地震应力降。结果显示,芦山强余震的拐角频率主要介于1.0—2.0 Hz之间,应力降平均值为9.98 MPa,且地震应力降表现出明显的震级相关性。   相似文献   

9.
IntroductionTheseismoIogymethodofearthquakepredictionissometimessimplycalled"predictingearthquakebyearthquake",thatis,animpendinglargeearthquakeispredictedonbasisofsomefeaturesofsmaIlearthquakesoccurredbeforeit.Forthispurpose,thecharactersoftemporaryspatiaIandmagnitudedistributionofsmalIearthquakesareintensiveIyinvestigated,whichareusuallycalIedasseismicitymethod.ThesuccessfuIpredictionofHaichengearthquakeinl975wasitSremarkabIeappIication.Besides,thepossibIechangesincharactersofseismicsou…  相似文献   

10.
—?Four days after the December 13, 1990 Hualien, Taiwan earthquake (M L = 6.9), a temporary array of fifteen triaxial digital accelerographs was deployed in the epicenter area to monitor aftershocks. Approximately 600 earthquakes triggered this array during the three-month deployment period. The Yan-Liau station (S63) alone recorded 162 events. Most of the accelerograms at S63 exhibit resonance. We have estimated site responses at the Yan-Liau station using both the single-station spectral ratio (or H/V ratio) method and the traditional spectral ratio method that compares ratios at a soil site with those at a reference hard rock site. Based on site response analyses of S waves and coda waves of ground motion recordings, both types of waves show that the H/V ratio provide a good estimate at the resonant frequency although the site amplification factor is overestimated. In addition, the study of microtremor is also a good alternate for estimating the site predominant frequency. While the ground acceleration (or PGA) gradually increases, the resonant frequency shifts to lower frequencies.  相似文献   

11.
We exploit S-wave spectral amplitudes from 112 aftershocks (3.0 ≤ ML ≤ 5.3) of the L’Aquila 2009 seismic sequence recorded at 23 temporary stations in the epicentral area to estimate the source parameters of these events, the seismic attenuation characteristics and the site amplification effects at the recording sites. The spectral attenuation curves exhibit a very fast decay in the first few kilometers that could be attributed to the large attenuation of waves traveling trough the highly heterogeneous and fractured crust in the fault zone of the L’Aquila mainshock. The S-waves total attenuation in the first 30 km can be parameterized by a quality factor QS(f) = 23f 0.58 obtained by fixing the geometrical spreading to 1/R. The source spectra can be satisfactorily modeled using the omega-square model that provides stress drops between 0.3 and 60 MPa with a mean value of 3.3±2.8 MPa. The site responses show a large variability over the study area and significant amplification peaks are visible in the frequency range from 1 to more than 10 Hz. Finally, the vertical component of the motion is amplified at a number of sites where, as a consequence, the horizontal-to-vertical spectral ratios (HVSR) method fails in detecting the amplitude levels and in few cases the resonance frequencies.  相似文献   

12.
左可桢  赵翠萍 《中国地震》2021,37(2):472-482
使用谱比法计算得到四川长宁地区2018年12月至2019年7月期间442个地震的震源参数,并进一步分析了震源参数之间的相互关系及应力降的时空分布特征。研究区的地震活动主要集中在长宁背斜核部和南部建武向斜页岩气开采区。研究结果显示,该地区ML1.3~4.7地震的应力降位于0.02~7.26MPa范围内,超过90%的地震应力降小于2MPa,应力降总体呈现随震级增大而增大的趋势,但与震源深度的关系并不明显。长宁MS6.0地震发生之前,震源区地震的应力降总体处于较低水平,主震发生之后,短期内余震的应力降较高,随后快速衰减。这些高应力降地震空间上主要集中在长宁余震区的西北段,也是余震强度较大、发生了几次MS>5.0强余震的位置。建武向斜页岩气开采区地震的应力降总体略低于长宁背斜地区,但差异并不显著。  相似文献   

13.
S-wave spectral analysis is applied to 174 strong motion accelerationrecords to obtain the source parameters of 27 aftershocks(3.1 ML 4.3) of the May 13, 1995, Mw 6.6,Kozani-Grevena (NW Greece) earthquake. The data are derived from atemporary network, of three-component digital accelerographs, deployedwithin the strongly affected area some days after the mainshock occurrence.Site effects were evident in the strong motion records at 3 out of the 4stations used, and a correction was applied to account for theoverestimation of seismic moment due to amplification of thelow-frequency part of the spectrum. The data from this analysis arecomplimented with previously obtained source parameters for earthquakesin Greece, in order to study the applicability of the empirical scalingrelations used so far, towards smaller magnitudes. In general, a goodcorrelation was observed in most cases, validating the use of empiricalrelations that are applicable to the Aegean area. Empirical relations aredetermined between seismic moment and seismic slip, as well as, betweenseismic moment and stress drop, applicable to small magnitude earthquakes(ML < 4.3). Stress drop values were found to be relatively small,ranging from 2 to 41 bars, indicative of inter-plate environments. Thevalues of fc and of fmax were found in good agreement withrelations based on observations from larger worldwide earthquakes.  相似文献   

14.
Based on the scattering coda model by which local and regional earthquakes are interpreted (K. Aki, 1969), and using observational coda data of 68 aftershocks of the 1985 Luquan, Yunnan earthquake registered by the VGK seismographs installed at 12 stations in the Yunnan regional short-period network, theQ-values of coda waves are calculated respectively for 6 time intervals. It is observed that within the frequency range of 0.40–1.65 Hz of the observed data, theQ-values are closely related with the frequencies and the calculated codaQ ranges between 80–240 with the coefficient of frequency dependence η=0.45. The calculated source factorsB(f> p) of the coda waves which indicate the scattering strength are mostly within the order 10?23–10?24. Areas with lowQ-values present high scattering. It should be noted that by comparing data obtained before and after the Luquan earthquake, clear changes can be detected in theQ-values measured at stations close to the epicentral region, and that theQ-values of the aftershock coda are less than about one half of the pre-shock values. It may be mentioned that the time-dependent regional variations of theQ-values might possibly bring about practical significance in earthquake prediction. Moreover, aftershock focal parameters are determined. Through discussions on the quantitative relations between the focal parameters, we get: 1gE=1.59M L+ 11.335;E=(2.10 × 10?5)M 0; length of focal rupturea=0.40?0.80 km for 3.0≤M L<5.0 events; stress drop Δσ=(6.0–130) ×105 Pa. Through interpretation of the data, we have also learned the important characteristics that there is no linear relation between the stress drops and the earthquake magnitudes.  相似文献   

15.
The size of major tsunamigenic earthquakes which occurred in the Japan Sea is quantified on the basis of seismic and tsunamigenic source parameters. The tsunami magnitude Mt is determined from the instrumental tsunami-wave amplitudes. The Mt values thus obtained are on average 0.2 units larger than the values of moment magnitude Mw, though the Mt scale has originally been adjusted to agree with Mw. Moreover, the volume of displaced water at the source is on average 2.3 times as large as that for the Pacific events with a comparable Mw. Nevertheless, the observed height of the sea-level disturbance at the source is found consistent with the amount of crustal deformation computed for the seismic fault models. These results indicate that the tsunami source potential itself is large for Mw in comparison with the Pacific events. The large source potential is explained in terms of the effective difference both in the rigidity of the source medium and in the geometry of the fault motion. For the Japan Sea events, the Mt scale still provides the physical measure of the tsunami potential, and Mt minus 0.2 corresponds to Mw. This predicts that the maximum amplitude of tsunami waves from Japan Sea earthquakes is at least two times as large as that from Pacific earthquakes with a comparable Mw.  相似文献   

16.
We develop a data set of aftershock recordings of the 1999, M = 7.4 Izmit and M = 7.2 Duzce (Turkey) earthquakes to study their source parameters. We combined seismograms from 44 stations maintained by several sources (organizations) to obtain a unified data set of events (2.1 ≤ Mw ≤ 5.5). We calculate source parameters of these small earthquakes by two methods that use different techniques to address the difficulty in obtaining source spectra for small earthquakes subject to interference from site response. One method (program NetMoment (NM), Hutchings, 2004) uses spectra of direct S waves in a simultaneous inversion of local high-frequency network data to estimate seismic moment, source corner frequency (fc), site attenuation (k) and whole-path Q. This approach takes advantage of the source commonality in all recordings for a particular earthquake by fitting a common Brune source spectrum to the data with a and individual k. The second approach (Mayeda et al., 2003) uses the coda method (CM) to obtain “nonmodel-based” source spectra and moment estimates from selected broadband recording sites. We found that both methods do well for events that allow the comparison with seismic moment estimates derived from waveform modeling. Also, source spectra obtained from the two methods are very closely matched for most of the events they have in common. We use an F test to examine the trade-off between k and fc picks identified by the direct S-wave method. About half of the events could be constrained to have less than a 50% average uncertainty in fc and k. We used these source spectra solutions to calculate energy and apparent stress and compare these to estimates from the selected “good quality” source spectra from CM. Both studies have values mutually consistent and show a similar increase in apparent stress with increasing moment. This result has added merit due to the independent approaches to calculate apparent stress. We conclude that both methods are at least partially validated by our study, and they both have usefulness for different circumstances of recording local small earthquakes. CM would work well in studies for which there is a broad magnitude range of events and NM works well for local events recorded by band-limited recorders.  相似文献   

17.
The source parameters of the major events of a swarm and of two seismic sequences, occurred in the Friuli area (Northeastern Italy) and in Western Slovenia, were estimated. The Claut swarm (C96) occurred since the end of January to June 1996, with a MD 4.3 major shock and it appears composed of three sub-sequences. The two sequences are the Kobarid sequence (K98) started on April 12, 1998 with a MD 5.6 mainshock and the M.te Sernio (S02) sequence caused by the February 14, 2002 earthquake (MD = 4.9). Acceleration and velocity data recorded by the local seismic network of the Istituto Nazionale di Oceanografia e di Geofisica Sperimenale (OGS) and corrected for attenuation, were employed to estimate seismic moments and radiated energies. Source dimensions were inferred from the computed corner frequencies and the stress release was estimated from the Brune stress drop, the apparent stress and the RMS stress drop. On the whole, seismic moments range from 1.7 × 1012 to 1.1 × 1017 N m, and radiated energies are in the range 106–1013 J. Brune stress drops are scattered and do not show any evidence of a self-similarity breakdown for sources down to 130 m radius. The radiated seismic energy scales as a function of seismic moment, with a slope of the scaling relation that decreases for increasing seismic moments.The mechanism of stress release was analyzed by computing the ɛ parameter of Zuniga [Zuniga, R., 1993. Frictional overshoot and partial stress drop. Which one? Bull. Seismol. Soc. Am. 83, 939–944]. The K98 and S02 sequences are characterized by a wide range of the ɛ parameter with stress drop mechanism varying from partial locking to overshoot cases. The ɛ values of the C96 swarm are more homogeneous and close to the Orowan's condition. The radiated seismic energy and the ratio of stress drop between mainshock and aftershocks appear different among the analyzed cases. We therefore investigated the relationship between the stress parameters of the main shock and the energy radiated by the aftershock sequences. For this purpose, we also estimated the source parameters of two other sequences occurred in the area, with mainshocks of MD 4.1 and 5.1, respectively. We found a positive correlation between the Brune stress drop of the mainshock and the ratio between the radiated energy of the mainshock and the summation of the energies radiated by the aftershocks.  相似文献   

18.
We estimate seismological fracture energies from two subsets of events selected from the seismic sequences of L’Aquila (2009), and Northridge (1994): 57 and 16 selected events, respectively, including the main shocks. Following Abercrombie and Rice (Geophys J Int 162: 406–424, 2005), we postulate that fracture energy (G) represents the post-failure integral of the dynamic weakening curve, which is described by the evolution of shear traction as a function of slip. Following a direct-wave approach, we compute mainshock-/aftershock-source spectral ratios, and analyze them using the approach proposed by Malagnini et al. (Pure Appl. Geophys., this issue, 2014) to infer corner frequencies and seismic moment. Our estimates of source parameters (including fracture energies) are based on best-fit grid-searches performed over empirical source spectral ratios. We quantify the source scaling of spectra from small and large earthquakes by using the MDAC formulation of Walter and Taylor (A revised Magnitude and Distance Amplitude Correction (MDAC2) procedure for regional seismic discriminants, 2001). The source parameters presented in this paper must be considered as point-source estimates representing averages calculated over specific ruptured portions of the fault area. In order to constrain the scaling of fracture energy with coseismic slip, we investigate two different slip-weakening functions to model the shear traction as a function of slip: (i) a power law, as suggested by Abercrombie and Rice (Geophys J Int 162: 406–424, 2005), and (ii) an exponential decay. Our results show that the exponential decay of stress on the fault allows a good fit between measured and predicted fracture energies, both for the main events and for their aftershocks, regardless of the significant differences in the energy budgets between the large (main) and small earthquakes (aftershocks). Using the power-law slip-weakening function would lead us to a very different situation: in our two investigated sequences, if the aftershock scaling is extrapolated to events with large slips, a power law (a la Abercrombie and Rice) would predict unrealistically large stress drops for large, main earthquakes. We conclude that the exponential stress evolution law has the advantage of avoiding unrealistic stress drops and unbounded fracture energies at large slip values, while still describing the abrupt shear-stress degradation observed in high-velocity laboratory experiments (e.g., Di Toro et al., Fault lubrication during earthquakes, Nature 2011).  相似文献   

19.
We consider the results of reconstructing the stress-strain state of the Earth’s crust in South Baikal from the focal mechanism data for the Kultuk earthquake of August 27, 2008 (M w = 6.3) and its aftershocks. The source parameters of the main shock were determined by calculating the seismic moment tensor. The focal mechanism solutions of 32 aftershocks (M w ≥ 2.3) were obtained through the deployment of a local seismic network at South Baikal. It is found that the main shock and first aftershocks (August–September) gave rise to the activation of latitudinal fragments of the segmented near-edge fault, and the sources of the consequent aftershocks were dominated by the NW-striking planes related to the small intrabasin structures. The calculations of seismotectonic deformations based on the data on the focal mechanisms of the earthquakes show that the area of activation is dominated by the transtension regime (with deformation in the form of extension with shear). The epicentral and hypocentral fields of the aftershocks and the mechanisms of their sources reflect the complex tectonic structure of the source zone of the Kultuk earthquake, which exhibits a clear subvertical zonality of the local seismically active volume and a wedge-shaped area of crustal destruction.  相似文献   

20.
Source inversion of small-magnitude events such as aftershocks or mine collapses requires use of relatively high frequency seismic waveforms which are strongly affected by small-scale heterogeneities in the crust. In this study, we developed a new inversion method called gCAP3D for determining general moment tensor of a seismic source using Green's functions of 3D models. It inherits the advantageous features of the “Cut-and-Paste” (CAP) method to break a full seismogram into the Pnl and surface-wave segments and to allow time shift between observed and predicted waveforms. It uses grid search for 5 source parameters (relative strengths of the isotropic and compensated-linear-vector-dipole components and the strike, dip, and rake of the double-couple component) that minimize the waveform misfit. The scalar moment is estimated using the ratio of L2 norms of the data and synthetics. Focal depth can also be determined by repeating the inversion at different depths. We applied gCAP3D to the 2013 Ms 7.0 Lushan earthquake and its aftershocks using a 3D crustal-upper mantle velocity model derived from ambient noise tomography in the region. We first relocated the events using the double-difference method. We then used the finite-differences method and reciprocity principle to calculate Green's functions of the 3D model for 20 permanent broadband seismic stations within 200 km from the source region. We obtained moment tensors of the mainshock and 74 aftershocks ranging from Mw 5.2 to 3.4. The results show that the Lushan earthquake is a reverse faulting at a depth of 13–15 km on a plane dipping 40–47° to N46° W. Most of the aftershocks occurred off the main rupture plane and have similar focal mechanisms to the mainshock's, except in the proximity of the mainshock where the aftershocks' focal mechanisms display some variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号