首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Large eddy simulation and study of the urban boundary layer   总被引:7,自引:1,他引:6  
  相似文献   

2.
邓国  周玉淑  李建通 《大气科学》2005,29(3):417-428
通过比较不同边界层方案下中尺度数值模式模拟的台风地表特征量以及形势场和风场, 表明台风边界层通过摩擦混合和辐射等作用与地表产生水汽、热量和动量的交换, 并通过湍流效应和积云的夹卷作用将边界层的影响扩展至整个自由大气.对台风Dan的模拟个例表明, 由于边界层过程的差异导致台风尺度大小不同, 风场、形势场的水平和垂直分布结构都有所差异.不同边界层方案模拟的台风结构的差异必然导致强度的差异, 与此相对应, 在不同边界层方案下, Eta方案模拟的台风强度偏大; 而Burk-Thompson和Blackadar方案略次之,在没有边界层方案的情况下模拟的强度非常弱,体现了边界层过程对台风发生发展的巨大影响.  相似文献   

3.
A single-column model (SCM) is developed in the regional climate model RegCM4. The evolution of a dry convection boundary layer (DCBL) is used to evaluate this SCM. Moreover, four planetary boundary layer (PBL) schemes, namely the Holtslag-Boville scheme (HB), Yonsei University scheme (YSU), and two University of Washington schemes (UW01, Grenier-Bretherton-McCaa scheme and UW09, Bretherton-Park scheme), are compared by using the SCM approach. A large-eddy simulation (LES) of the DCBL is performed as a benchmark to examine how well a PBL parameterization scheme reproduces the LES results, and several diagnostic outputs are compared to evaluate the schemes. The results show that the SCM is proper constructed. In general, with the DCBL case, the YSU scheme performs best for reproducing the LES results, which include well-mixed features and vertical sensible heat fluxes; the simulated wind speed, turbulent kinetic energy, entrainment flux, and height of the entrainment zone are all underestimated in the UW09; the UW01 has all those biases of the UW09 but larger, and the simulated potential temperature is not well mixed; the HB is the least skillful scheme, by which the PBL height, entrainment flux, height of the entrainment zone, and the vertical gradients within the mixed layer are all overestimated, and a inversion layer near the top of the surface layer is wrongly simulated.Although more cases and further testing are required, these simulations show encouraging results towards the use of this SCM framework for evaluating the simulated physical processes by the RegCM4.  相似文献   

4.
This paper compares a number of one-dimensional closure models for the planetary boundary layer (PBL) that are currently in use in large-scale atmospheric models. Using the results of a large-eddy simulation (LES) model as the standard of comparison, the PBL models are evaluated over a range of stratifications from free convective to neutral and a range of surface shear stresses. Capping inversion strengths for the convective cases range from weakly to strongly capped. Six prototypical PBL models are evaluated in this study, which focuses on the accuracy of the boundary-layer fluxes of momentum, heat, and two passive scalars. One scalar mimics humidity and the other is a top-down scalar entrained into the boundary layer from above. A set of measures based on the layer-averaged differences of these fluxes from the LES solutions is developed. In addition to the methodological framework and suite of LES solutions, the main result of the evaluation is the recognition that all of the examined PBL parameterizations have difficulty reproducing the entrainment at the top of the PBL, as given by the LES, in most parameter regimes. Some of the PBL models are relatively accurate in their entrainment flux in a subset of parameter regimes. The sensitivity of the PBL models to vertical resolution is explored, and substantive differences are observed in the performance of the PBL models, relative to LES, at low resolution typical of large scale atmospheric models.  相似文献   

5.
北京地区夏季边界层结构日变化的高分辨模拟对比   总被引:14,自引:4,他引:14       下载免费PDF全文
使用WRF中尺度数值模式, 分别选用两种不同的边界层参数化方案 (MYJ, YSU) 和3种陆面参数化方案 (SLAB, Noah, RUC), 对2004年7月1日08:00—7月4日20:00 (北京时) 北京地区夏季边界层结构进行1 km的高分辨模拟。对比分析了近地面层风场、温度场以及边界层的日变化特征, 结果发现:WRF模式基本模拟出了北京夏季边界层的日变化特征; 在边界层方案中, MYJ方案描述的边界层结构较YSU方案合理; Noah陆面模式较好地反映了城市的热岛效应; 无降水时, 风速及边界层高度对于陆面过程不敏感, 而降水发生后, 陆面过程对于边界层结构的影响增大; 各方案模拟的城区风速明显偏大, 这是因为没有充分考虑城市建筑物的阻力作用。  相似文献   

6.
塔克拉玛干沙漠腹地大气边界层参数化方案的模拟评估   总被引:1,自引:0,他引:1  
沙尘起沙、沉降、传输均受到沙漠地区大气边界层条件的制约。沙漠地区观测资料匮乏,限制大气边界层模拟效果的检验和评估。利用WRFV3.7.1中尺度数值模式中5种边界层参数化方案(ACM2、BL、MYJ、MYNN2.5、YSU),模拟2014年4月塔克拉玛干沙漠大气边界层特征,并与塔中80 m塔及风廓线雷达晴朗天气下的观测资料对比分析。结果表明:5种方案均能模拟出近地面气温及地表温度,边界层高度,感热、潜热、地表热通量的变化趋势,但未能模拟出边界层风速的日变化趋势,温风湿廓线能较好的反映晴日沙漠地区边界层结构的变化特征,但未模拟出风速随高度变化趋势。沙漠地区下垫面干燥,热容量低,晴天极易形成对流不稳定边界层,非局地湍流参数化方案,ACM2方案是沙漠地区大气边界层模拟较为合理的选择。  相似文献   

7.
The entrainment flux ratio A e and the inversion layer (IL) thickness are two key parameters in a mixed layer model. A e is defined as the ratio of the entrainment heat flux at the mixed layer top to the surface heat flux. The IL is the layer between the mixed layer and the free atmosphere. In this study, a parameterization of A e is derived from the TKE budget in the firstorder model for a well-developed CBL under the condition of linearly sheared geostrophic velocity with a zero value at the surface. It is also appropriate for a CBL under the condition of geostrophic velocity remaining constant with height. LESs are conducted under the above two conditions to determine the coefficients in the parameterization scheme. Results suggest that about 43% of the shear-produced TKE in the IL is available for entrainment, while the shear-produced TKE in the mixed layer and surface layer have little effect on entrainment. Based on this scheme, a new scale of convective turbulence velocity is proposed and applied to parameterize the IL thickness. The LES outputs for the CBLs under the condition of linearly sheared geostrophic velocity with a non-zero surface value are used to verify the performance of the parameterization scheme. It is found that the parameterized A e and IL thickness agree well with the LES outputs.  相似文献   

8.
许多研究调查了模式预报对边界层方案的敏感性,但是这些研究基本上针对的是热力驱动的混合边界层。对于动力驱动的边界层,不同边界层方案的不同性能以及所带来的不同边界层气象要素的预报还不清楚。运用WRF3.4.1中三种边界参数化方案(YSU、MYJ、ACM2)对新疆2.28大风过程进行数值模拟分析,结果显示:三种边界参数化方案基本能模拟出发生大风的区域及大风过程中10m风速、2m温度和比湿的变化趋势;三种方案模拟的边界层内大气的温度、湿度出现差异与它们对边界层顶的夹卷过程、边界层内垂直混合的处理有关;YSU方案的模拟结果使得更多的高空动量下传,同时更多的有效位能转化为动能,MYJ方案模拟的20m/s的风场区域更大,受地形影响更明显,边界层内湍流更强。  相似文献   

9.
Large-eddy simulations (LES) are performed to investigate the entrainment andthe structure of the inversion layer of the convective boundary layer (CBL) withvarying wind shears. Three CBLs are generated with the constant surface kinematicheat flux of 0.05 K m s-1 and varying geostrophic wind speeds from 5 to 15m s-1. Heat flux profiles show that the maximum entrainment heat flux as afraction of the surface heat flux increases from 0.13 to 0.30 in magnitude withincreasing wind shear. The thickness of the entrainment layer, relative to the depthof the well-mixed layer, increases substantially from 0.36 to 0.73 with increasingwind shear. The identification of vortices and extensive flow visualizations nearthe entrainment layer show that concentrated vortices perpendicular to the meanboundary-layer wind direction are identified in the capping inversion layer for thecase of strong wind shear. These vortices are found to develop along the mean winddirections over strong updrafts, which are generated by convective rolls and to appearas large-scale wavy motions similar to billows generated by the Kelvin–Helmholtzinstability. Quadrant analysis of the heat flux shows that in the case of strong windshear, large fluctuations of temperature and vertical velocity generated by largeamplitude wavy motions result in greater heat flux at each quadrant than that inthe weak wind shear case.  相似文献   

10.
边界层参数化方案在“灰色区域”尺度下的适用性评估   总被引:2,自引:0,他引:2  
随着数值预报模式分辨率的提高,当模式网格距与含能湍涡的长度尺度相当时,模式动力过程可解析一部分湍流运动,而剩余的湍流运动仍需参数化,此时便产生了湍流参数化的“灰色区域”问题。对传统的PBL(Planetary Boundary Layer)方案在“灰色区域”下的适用性评估,是改进PBL方案以使其能够适应分辨率变化的前提和基础。本研究基于干对流边界层的大涡模拟试验,比较了WRF(Weather Research and Forecast Model)模式中四种常用的边界层参数化方案[YSU(Yonsei University)、MYJ(Mellor-Yamada-Janjic)、MYNN2.5(Mellor-Yamada-Nakanishi-Niino Level 2.5)、MYNN3)]在“灰色区域”尺度下的表现。研究表明,混合层内总热通量对所使用的参数化方案和水平分辨率均不敏感。不同参数化方案中次网格与网格通量的比例表现出对水平网格距不同的依赖性。局地PBL方案(MYJ、MYNN2.5)在混合层内的平均位温随网格距减小而增大,次网格通量随网格距减小而减小,较参考湍流场对次网格通量有所低估。YSU方案的非局地项几乎不随水平格距改变而变化,对次网格通量的表征并未表现出较强的分辨率依赖性,且过强的非局地次网格输送使混合层内温度层结呈弱稳定,抑制了可分辨湍流输送,不易于激发次级环流。MYNN3方案的非局地次网格通量(负梯度输送项)随网格距减小而减小,使其对次网格通量的表征具有较好的分辨率依赖性。PBL方案在“灰色区域”尺度下的适用性与具体分辨率有关。以分辨率500 m为例,四种PBL方案中不存在一种最佳方案,能对边界层的热力结构和湍流统计特征均有准确的描述。  相似文献   

11.
The logarithmic + polynomial approximation is suggested for vertical profiles of velocity components in a planetary boundary layer (PBL) at neutral and stable stratification. The resistance law functions A and B are determined on the basis of this approximation, using integral relations derived from the momentum equations, the Monin-Obukhov asymptotic formula for the wind profile in a stably stratified near-surface layer and the known expressions for the PBL depth. This result gives a realistic and convenient method for calculating the surface friction velocity and direction and the total dissipation rate of mean flow kinetic energy in terms of geostrophic velocity, buoyancy flux at the surface, the roughness parameter and the Coriolis parameter. In the course of these derivations a review is given of current views on the main problems of the neutral and stable PBL.  相似文献   

12.
Basic entrainment equations applicable to the sheared convective boundary layer (CBL) are derived by assuming an inversion layer with a finite depth, i.e., the first-order jump model. Large-eddy simulation data are used to determine the constants involved in the parameterizations of the entrainment equations. Based on the integrated turbulent kinetic energy budget from surface to the top of the CBL, the resulting entrainment heat flux normalized by surface heat flux is a function of the inversion layer depth, the velocity jumps across the inversion layer, the friction velocity, and the convection velocity. The developed first-order jump model is tested against large-eddy simulation data of two independent cases with different inversion strengths. In both cases, the model reproduces quite reasonably the evolution of the CBL height, virtual potential temperature, and velocity components in the mixed layer and in the inversion layer.The part of this work was done when the first author visited at NCAR.  相似文献   

13.
适用于GRAPES模式C-P边界层方案的设计和实现   总被引:4,自引:1,他引:3       下载免费PDF全文
基于K廓线闭合方案,通过考虑不稳定边界层和稳定边界层中热量交换系数在半层上求取及下边界条件的设置,将温湿倾向在整层上直接计算,设计了Charney-Phillips跳点(简称C-P跳点)的边界层方案,使之与GRAPES全球模式的C-P跳点相协调,解决了Lorenz跳点物理过程与C-P跳点动力框架耦合时插值造成的不协调问题,同时避免了耦合时反复插值造成的误差,提高了边界层物理过程参数化方案及其反馈的准确性和合理性。试验表明:C-P跳点边界层方案因为避免了温度和湿度在垂直方向上的插值,消除了温湿变量在垂直方向上的锯齿状抖动,使温湿廓线分布更合理,减小了模式预报误差,形势场的预报效果也得到一定改善。C-P边界层方案的应用提升了GRAPES全球模式的总体预报性能。  相似文献   

14.
The temperature and wind profiles in the planetary boundary layer (PBL) are investigated. Assuming stationary and homogeneous conditions, the turbulent state in the PBL is uniquely determined by the external Rossby number and the stratification parameters. In this study, a simple two-layer barotropic model is proposed. It consists of a surface (SL) and overlying Ekman-type layer. The system of dynamic and heat transfer equations is closed usingK theory. In the SL, the turbulent exchange coefficient is consistent with the results of similarity theory while in the Ekman layer, it is constant. Analytical solutions for the wind and temperature profiles in the PBL are obtained. The SL and thermal PBL heights are properly chosen functions of the stratification so that from the solutions for wind and temperature, the PBL resistance laws can be easily deduced. The internal PBL characteristics necessary for the calculation (friction velocity, angle between surface and geostrophic winds and internal stratification parameter) are presented in terms of the external parameters. Favorable agreement with experimental data and model results is demonstrated. The simplicity of the model allows it to be incorporated in large-scale weather prediction models as well as in the solution of various other meteorological problems.  相似文献   

15.
Two surface layer parameterization schemes along with five planetary boundary layer (PBL) schemes in the Weather Research and Forecasting model (WRF) are analyzed in order to evaluate the performance of the WRF model in simulating the surface variables and turbulent fluxes over an Indian sub-continent region. These surface layer schemes are based on the fifth-generation Pennsylvania State University—National Center for Atmospheric Research Mesoscale Model (MM5) parameterization; (a) Old MM5 scheme having Businger-Dyer similarity functions and (b) revised MM5 scheme utilizing the functions that are valid for full ranges of atmospheric stabilities. The study suggests that each PBL scheme can reproduce the diurnal variation of 2 m temperature, momentum flux and sensible heat flux irrespective of the surface layer scheme used for the simulations. However, a comparison of model-simulated values of surface variables and turbulent fluxes with observed values suggests that each PBL scheme is found to systematically over-estimate the nocturnal 2 m temperature and 10 m wind speed with both the revised and old schemes during stable conditions.  相似文献   

16.
为准确描述我国最大的固定/半固定沙漠-古尔班通古特沙漠区域的大气边界层结构,本文利用该沙漠腹地2017年的梯度铁塔和通量观测数据,基于中尺度气象模式WRF (Weather Research and Forecast v3.7.1),分析了5种边界层参数化方案在古尔班通古特沙漠的适用性。结果表明:1)采用WRF模拟沙漠腹地近地层内的边界层特征时,2m气温的模拟存在冷偏差,5种边界层参数化方案均能较好地模拟出四个季节2m气温的日变化特征,其中非局地方案ACM2(Asymmetric Convective Model version 2)对2m气温效果最好,局地方案BL方案的模拟偏差最大;2)5种边界层参数化方案均能够模拟出10m风速的日变化特征,其中局地方案BL(Bougeault-Lacarrere)对10m风速效果最佳;3)采用WRF模拟沙漠近地层内的地表通量特征时,感热通量存在高估现象,潜热通量存在低估现象,5种边界层参数化方案均能较好地模拟出四个季节模拟时间段内地表净辐射通量的日变化特征,其中局地方案MYJ(Mellor-Yamada-Janjie)的模拟精度最高。  相似文献   

17.
The internal thermal boundary layer developing over the Mediterranean during a cold-air outbreak associated with a Tramontane event has been studied by means of airborne lidar, in situ sensors, and a modelling approach that consisted of nesting the University of Washington (UW) planetary boundary-layer (PBL) model in an advective zero-order jump model. This approach bypasses some of the deficiencies associated with each model: the absence of the dynamics in the mixed layer for the zero-order jump model and the lack of an inversion at the PBL top for the UW PBL model. Particular attention is given to the parameterization of the entrainment flux at the PBL top. Values of the entrainment closure parameter derived with the model when matching PBL structure observations are much lower than those derived with standard zero-order jump models. They also are in good agreement with values measured in different meteorological situations by other studies. This improvement is a result of the introduction of turbulent kinetic energy production in the mixed layer.  相似文献   

18.
A Lagrangian particle dispersion model (LPDM) driven by velocity fields from large-eddy simulations (LESs) is used to determine the mean and variability of plume dispersion in a highly convective planetary boundary layer (PBL). The total velocity of a “particle” is divided into resolved and unresolved or random (subfilter scale, SFS) velocities with the resolved component obtained from the LES and the SFS velocity from a Lagrangian stochastic model. This LPDM-LES model is used to obtain an ensemble of dispersion realizations for calculating the mean, root-mean-square (r.m.s.) deviation, and fluctuating fields of dispersion quantities. An ensemble of 30 realizations is generated for each of three source heights: surface, near-surface, and elevated. We compare the LPDM calculations with convection tank experiments and field observations to assess the realism of the results. The overall conclusion is that the LPDM-LES model produces a realistic range of dispersion realizations and statistical variability (i.e., r.m.s. deviations) that match observations in this highly convective PBL, while also matching the ensemble-mean properties. This is true for the plume height or trajectory, vertical dispersion, and the surface values of the crosswind-integrated concentration (CWIC), and their dependence on downstream distance. One exception is the crosswind dispersion for an elevated source, which is underestimated by the model. Other analyses that highlight important LPDM results include: (1) the plume meander and CWIC fluctuation intensity at the surface, (2) the applicability of a similarity theory for plume height from a surface source to only the very strong updraft plumes—not the mean height, and (3) the appropriate variation with distance of the mean surface CWIC and the lower bound of the CWIC realizations for a surface source.  相似文献   

19.
We investigate dispersion in the evening-transition boundary layer using large-eddy simulation (LES). In the LES, a particle model traces pollutant paths using a combination of the resolved flow velocities and a random displacement model to represent subgrid-scale motions. The LES is forced with both a sudden switch-off of the surface heat flux and also a more gradual observed evolution. The LES shows ‘lofting’ of plumes from near-surface releases in the pre-transition convective boundary layer; it also shows the subsequent ‘trapping’ of releases in the post-transition near-surface stable boundary layer and residual layer above. Given the paucity of observations for pollution dispersion in evening transitions, the LES proves a useful reference. We then use the LES to test and improve a one-dimensional Lagrangian Stochastic Model (LSM) such as is often used in practical dispersion studies. The LSM used here includes both time-varying and skewed turbulence statistics. It is forced with the vertical velocity variance, skewness and dissipation from the LES for particle releases at various heights and times in the evening transition. The LSM plume spreads are significantly larger than those from the LES in the post-transition stable boundary-layer trapping regime. The forcing from the LES was thus insufficient to constrain the plume evolution, and inclusion of the significant stratification effects was required. In the so-called modified LSM, a correction to the vertical velocity variance was included to represent the effect of stable stratification and the consequent presence of wave-like motions. The modified LSM shows improved trapping of particles in the post-transition stable boundary layer.  相似文献   

20.
Meteorological modelling in the planetary boundary layer (PBL) over Greater Paris is performed using the Weather Research and Forecast (WRF) numerical model. The simulated meteorological fields are evaluated by comparison with mean diurnal observational data or mean vertical profiles of temperature, wind speed, humidity and boundary-layer height from 6 to 27 May 2005. Different PBL schemes, which parametrize the atmospheric turbulence in the PBL using different turbulence closure schemes, may be used in the WRF model. The sensitivity of the results to four PBL schemes (two non-local closure schemes and two local closure schemes) is estimated. Uncertainties in the PBL schemes are compared to the influence of the urban canopy model (UCM) and the updated Coordination of Information on the Environment (CORINE) land-use data. Using the UCM and the CORINE land-use data produces more realistic modelled meteorological fields. The wind speed, which is overestimated in the simulations without the UCM, is improved below 1,000 m height. Furthermore, the modelled PBL heights during nighttime are strongly modified, with an increase that may be as high as 200 %. At night, the impact of changing the PBL scheme is lower than the impact of using the UCM and the CORINE land-use data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号