首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
潘华  张萌 《地震学报》2022,44(5):743-751
为保证国土范围内建筑倒塌风险的一致性,提出了基于目标风险的地震区划图。该图通过求取地震危险性曲线与结构易损性曲线的卷积的风险积分方法计算目标风险。本文介绍了采用风险积分法确定基于目标风险的地震动参数的基本原理,回顾了这项技术在国内外研究与应用的最新进展。此外,还讨论了基于目标风险的地震区划图未来的发展及可能面临的问题。  相似文献   

2.
抗震规范应用强度折减系数的现状及分析   总被引:5,自引:1,他引:4  
世界上大多数的抗震规范都采用了基于强度的设计方法,强度折减系数是基于强度的抗震设计中确定设计地震力的关键因素,提高强度折减系数的可靠性已经被认为是提高现有抗震规范可靠性的有效途径。本文主要介绍了抗震研究处于世界先进水平的美国(UBC97)、欧洲(EC8)、日本、墨西哥、加拿大、中国等国家抗震规范中强度折减系数取值的有关规定,然后给出了各国学者关于规范规定的强度折减系数的一些重要讨论和分析,最后指出了世界各国应用强度折减系数过程中存在的不足,指出了需进一步研究的问题。  相似文献   

3.
Uneven distribution of seismic demand in asymmetric-plan structures is a critical concern in earthquake-resistant design. Contemporary seismic design strategies that are based on linear elastic response, single load reduction factor, and uniform ductility demand throughout an asymmetric system generally lead to unsatisfactory performance in terms of realized ductilities and nonuniform damage distribution due to strong torsional coupling associated with asymmetric-plan systems. In many cases, actual nonlinear behavior of the structure displays significant deviation from what is estimated by a linear elastic, force-based seismic design approach. This study investigates the prediction of seismic demand distribution among structural members of a single-story, torsionally stiff asymmetric-plan system. The focus is on the effect of inherent unbalanced overstrength, resulting from current force-based design practices, on the seismic response of code-designed single-story asymmetric structures. The results obtained are utilized to compile unsymmetrical response spectra and uniform ductility spectra, which are proposed as assessment and preliminary design tools for estimating the seismic performance of multistory asymmetric structures. A simple design strategy is further suggested for improving the inelastic torsional performance of asymmetric systems. Providing additional strength to stiff edge members over their nominal design strength demands leads to a more balanced ductility distribution. Finally, seismic responses of several asymmetric case study structures designed with the aid of the proposed strategy are assessed for validating their improved performance.  相似文献   

4.
Romania has one of the highest seismic hazard levels in Europe. The seismic hazard is due to a combination of local crustal seismic sources, situated mainly in the western part of the country and the Vrancea intermediate-depth seismic source, which can be found at the bend of the Carpathian Mountains. Recent seismic hazard studies have shown that there are consistent differences between the slopes of the seismic hazard curves for sites situated in the fore-arc and back-arc of the Carpathian Mountains. Consequently, in this study we extend this finding to the evaluation of the probability of collapse of buildings and finally to the development of uniform risk-targeted maps. The main advantage of uniform risk approach is that the target probability of collapse will be uniform throughout the country. Finally, the results obtained are discussed in the light of a recent study with the same focus performed at European level using the hazard data from SHARE project. The analyses performed in this study have pointed out to a dominant influence of the quantile of peak ground acceleration used for anchoring the fragility function. This parameter basically alters the shape of the risk-targeted maps shifting the areas which have higher collapse probabilities from eastern Romania to western Romania, as its exceedance probability increases. Consequently, a uniform procedure for deriving risk-targeted maps appears as more than necessary.  相似文献   

5.
钢筋混凝土框架结构直接基于位移的抗震设计   总被引:1,自引:0,他引:1  
直接基于位移的抗震设计方法是对基于力的抗震设计方法的重大改进。按此方法进行设计时,需要解决的关键问题是确定结构的目标位移和相应的侧移模式。提出用框架梁节点截面屈服时的位移作为目标位移,并推导了层间屈服位移的计算公式;然后用结构近似的第一振型曲线作勾其侧移模式,对层间屈服位移进行修正。算例表明,本方法计算结果合理。  相似文献   

6.
本文主要研究如何通过合理设计来提高高层钢结构的整体抗震能力。首先,给出了高层钢结构的非线性计算模型;其次,建立了高层钢结构在强地震动作用下的倒塌失效模式的极限状态判别准则;然后,通过模态pushover分析,研究了高层钢结构在水平地震作用下的损伤规律;最后,重点研究了高层钢结构的整体抗震能力的提高方法,提出了均匀损伤的设计方法,该方法通过消除结构的薄弱层,来达到提高高层钢结构的整体抗震能力的目的。通过对两栋20层的高层钢框架结构进行极限时程分析和极限pushover分析,验证了文中提出的均匀损伤的设计方法的可行性。本文的工作可为高层钢结构的抗地震倒塌设计提供参考依据。  相似文献   

7.
IntroductionAt present, the proper design and construction of buildings for earthquake-resistance is the most effective measure to mitigate the earthquake damage. In a broad sense, the earthquake resistance design should include the following seven contents:1) Determining the seismic design criteria Determining the seismic design goals3) Determining the seismic design parameters (intensity or ground motion) and their numerical values4) Determining the category of importance for buildings and …  相似文献   

8.
Performance-Based Seismic Design is now widely recognized as the pre-eminent seismic design and assessment methodology for building structures. In recognition of this, seismic codes may require that buildings achieve multiple performance objectives such as withstanding moderate, yet frequently occurring earthquakes with minimal structural and non-structural damage, while withstanding severe, but rare earthquakes without collapse and loss of life. These objectives are presumed to be satisfied by some codes if the force-based design procedures are followed. This paper investigates the efficacy of the Eurocode 8 force-based design provisions with respect to RC frame building design and expected seismic performance. Four, eight, and 16-storey moment frame buildings were designed and analyzed using the code modal response spectrum analysis provisions. Non-linear time-history analyses were subsequently performed to determine the simulated seismic response of the structures and to validate the Eurocode 8 force-based designs. The results indicate the design of flexural members in medium-to-long period structures is not significantly influenced by the choice of effective member stiffness; however, calculated interstorey drift demands are significantly affected. This finding was primarily attributed to the code’s enforcement of a minimum spectral ordinate on the design spectrum. Furthermore, design storey forces and interstorey drift demand estimates (and therefore damage), obtained by application of the code force-based design procedure varied substantially from those found through non-linear time-history analysis. Overall, the results suggest that though the Eurocode 8 may yield life-safe designs, the seismic performance of frame buildings of the same type and ductility class can be highly non-uniform.  相似文献   

9.
地震作用下,若斜拉桥主塔发生损伤,将使整体损伤风险明显提高。因此对斜拉桥主塔进行地震易损性分析来评定主塔的抗震能力,进而评估斜拉桥主塔在设计基准期内的地震损伤风险,具有重要的工程和经济意义。本文通过SAP2000有限元分析软件对某斜拉桥主塔进行了纵横向的地震易损性及危险性分析,结合地震易损性和危险性分析推导出概率地震风险函数,进而开展了斜拉桥的概率地震风险分析。分析结果证明,在100年设计基准期内,纵桥向或横桥向地震作用下,本文斜拉桥"H"型主塔均满足E3水准抗震设防要求。  相似文献   

10.
<正>This paper focuses on the investigation of a hybrid seismic isolation system with passive variable friction dampers for protection of structures against near fault earthquakes.The seismic isolation can be implemented by replacing the conventional columns fixed to the foundations by seismic isolating ones.These columns allow horizontal displacement between the superstructure and the foundations and decouple the building from the damaging earthquake motion.As a result, the forces in the structural elements decrease and damage that may be caused to the building by the earthquake significantly decreases.However,this positive effect is achieved on account of displacements occurring in the isolating columns.These displacements become very large when the structure is subjected to a strong earthquake.In this case,impact may occur between the parts of the isolating column yielding their damage or collapse.In order to limit the displacements in the isolating columns,it is proposed to add variable friction dampers.A method for selecting the dampers' properties is proposed.It is carried out using an artificial ground motion record and optimal active control algorithm.Numerical simulation of a seven-story structure shows that the proposed method allows efficient reduction in structural response and limits the displacements at the seismic isolating columns.  相似文献   

11.
The characterisation of the seismic hazard input is a critical element of any seismic design code, not only in terms of the absolute levels of ground motion considered but also of the shape of the design spectrum. In the case of Europe, future revisions of the seismic design provisions, both at a national and a pan‐European level, may implement considerable modifications to the existing provisions in light of recent seismic hazard models, such as the 2013 European Seismic Hazard Model. Constraint of the shape of the long‐period design spectrum from seismic hazard estimates on such a scale has not been possible, however, owing to the limited spectral period range of existing ground motion models. Building upon recent developments in ground motion modelling, the 2013 European Seismic Hazard Model is adapted here with a new ground motion logic tree to provide a broadband Probabilistic Seismic Hazard Analysis for rock sites across a spectral period range from 0.05 seconds to 10.0 seconds. The resulting uniform hazard spectra (UHS) are compared against existing results for European and broadband Probabilistic Seismic Hazard Analysis and against a proposed formulation of a generalised design spectrum in which controlling parameters can be optimised to best fit the uniform hazard spectra in order to demonstrate their variability on a European scale. Significant variations in the controlling parameters of the design spectrum are seen both across and within stable and active regions. These trends can help guide recalibrations of the code spectra in future revisions to seismic design codes, particularly for the longer‐period displacement spectrum.  相似文献   

12.
Decision models for the verification of seismic collapse safety of buildings are introduced. The derivations are based on the concept of the acceptable (target) annual probability of collapse, whereas the decision making involves comparisons between seismic demand and capacity, which is familiar to engineering practitioners. Seismic demand, which corresponds to the design seismic action associated with a selected return period, can be expressed either in terms of an intensity measure (IM) or an engineering demand parameter (EDP). Seismic capacity, on the other hand, is defined by dividing the near‐collapse limit‐state IM or EDP by an appropriate risk‐targeted safety factor (γ im or γ edp ), which is the only safety factor used in the proposed decision model. Consequently, the seismic performance assessment of a building should be based on the best possible estimate. For a case study, it is shown that if the target collapse risk is set to 10?4 (0.5% over a period of 50 years), and if the seismic demand corresponds to a return period of 475 years (10% over a period of 50 years), then it can be demonstrated that γ im is approximately equal to 2.5 for very stiff buildings, whereas for buildings with long periods the value of γ im can increase up to a value of approximately 5. The model using γ edp is equal to that using γ im only if it can be assumed that displacements, with consideration of nonlinear behavior, are equal to displacements from linear elastic analysis.  相似文献   

13.
Introduction Offshore platform is the main facility for exploitation of ocean resources, e.g. oil and gas. Nearly 6 000 platforms have been built in the world, 100 among them in China, another 100 will be erected in China in the coming 5 years. The current aseismic design code commonly used in the world is RP2A-WSD based on the seismic hazard zone in the coastal waters of the United States, which is compiled by American Petroleum Institute (American Petroleum Institute, 2002). No specif…  相似文献   

14.
Bridge seismic isolation strategy is based on the reduction of shear forces transmitted from the superstructure to the piers by two means: shifting natural period and earthquake input energy reduction by dissipation concentrated in protection devices. In this paper, a stochastic analysis of a simple isolated bridge model for different bridge and device parameters is conducted to assess the efficiency of this seismic protection strategy. To achieve this aim, a simple nonlinear softening constitutive law is adopted to model a wide range of isolation devices, characterized by only three essential mechanical parameters. As a consequence of the random nature of seismic motion, a probabilistic analysis is carried out and the time modulated Kanai-Tajimi stochastic process is adopted to represent the seismic action. The response covariance in the state space is obtained by solving the Lyapunov equation for a stochastic linearized system. After a sensitivity analysis, the failure probability referred to extreme displacement and the mean value of dissipated energy are assessed by using the introduced stochastic indices of seismic bridge protection efficiency. A parametric analysis for protective devices with different mechanical parameters is developed for a proper selection of parameters of isolation devices under different situations.  相似文献   

15.
The bidirectional response of a portion of a reinforced concrete (RC) waffle-flat plate (WFP) structure subjected to far-field ground motions is studied through shake table tests. The test specimen is a scaled portion of a prototype structure designed under current building codes and located in a region of moderate seismicity of the Mediterranean area. The specimen was subjected to a sequence of tests of increasing acceleration amplitude that respectively represented very frequent, frequent, design, and very rare earthquakes at the site. The test structure performed well (basically in the elastic domain) under very frequent and frequent earthquakes, approached the boundary between the performance levels of life safety and near collapse under the design earthquake, and collapsed under the very rare earthquake. Damage concentrated at column bases and at the transverse beams of the exterior plate-to-column connection. Columns dissipated about 10% of the total energy that contributes to damage, and the rest was dissipated by the exterior plate-column connection. The total energy input on the structure until collapse under the bidirectional seismic action was very close to the value obtained in previous studies on a similar specimen tested under unidirectional ground motions. The capacity curve estimated from the experimental base shear vs top displacement relationship suggests it is best to use a behavior factor of at most q = 2 when designing WFP structures with the reduced-spectrum force-based approach.  相似文献   

16.
An approach that relates results from a regional seismic hazard assessment study with local-scale site-effect characterizations in an area of low-to-moderate seismic activity such as Andalusia (southern Spain), is presented. Results of a previous probabilistic seismic hazard analysis of Andalusia on rock conditions are disaggregated to infer hazard controlling earthquakes for different target motions. A collection of controlling magnitude-distance pairs and the corresponding site-specific response spectra at main capital cities of the region are obtained. These spectra are first-order approximations to expected seismic actions required in local earthquake risk assessments. In addition, results of independent, local-scale studies developed in Almeria City (SE Andalusia) are used to derive an updated seismic zonation of the city. These include predominant soil period estimates and shear-wave velocity profiles at different locations. If a local seismic risk assessment study or an earthquake-resistant structural design is to be developed, it may be recommended the use of different seismic actions on sites characterized by distinct response to seismic shaking (as derived from the seismic zonation). The seismic action related to worst-case scenarios may be modeled through a hazard-consistent response spectrum, obtained by hazard disaggregation at the spectral acceleration with period matching the prevailing resonant period of the target site or structure.  相似文献   

17.
Previous comparison studies on seismic isolation have demonstrated its beneficial and detrimental effects on the structural performance of high‐speed rail bridges during earthquakes. Striking a balance between these 2 competing effects requires proper tuning of the controlling design parameters in the design of the seismic isolation system. This results in a challenging problem for practical design in performance‐based engineering, particularly when the uncertainty in seismic loading needs to be explicitly accounted for. This problem can be tackled using a novel probabilistic performance‐based optimum seismic design (PPBOSD) framework, which has been previously proposed as an extension of the performance‐based earthquake engineering methodology. For this purpose, a parametric probabilistic demand hazard analysis is performed over a grid in the seismic isolator parameter space, using high‐throughput cloud‐computing resources, for a California high‐speed rail (CHSR) prototype bridge. The derived probabilistic structural demand hazard results conditional on a seismic hazard level and unconditional, i.e., accounting for all seismic hazard levels, are used to define 2 families of risk features, respectively. Various risk features are explored as functions of the key isolator parameters and are used to construct probabilistic objective and constraint functions in defining well‐posed optimization problems. These optimization problems are solved using a grid‐based, brute‐force approach as an application of the PPBOSD framework, seeking optimum seismic isolator parameters for the CHSR prototype bridge. This research shows the promising use of seismic isolation for CHSR bridges, as well as the potential of the versatile PPBOSD framework in solving probabilistic performance‐based real‐world design problems.  相似文献   

18.
大跨空间结构由于其体量大且多作为人流密集的公共场所,因而在各种非常规荷载作用下破坏将造成更大的经济损失、人员伤亡和社会影响。系统的从以下3个方面总结了近年来大跨空间结构抗震理论所取得的主要进展:(1)大跨空间结构精细化的抗震性能评估理论,主要包括材料本构模型、地震动多点输入和结构强非线性模拟;(2)大跨空间结构抗震性能提升与修复技术,主要包括结构减震技术和隔震技术的研究与应用;(3)大跨空间结构抗震设计理论与方法,主要包括基于性态的设计方法和功能可恢复性的抗震设计方法。通过以上部分的系统总结和论述,形成大跨空间结构统一的抗震设计指导思想,并对此类结构的抗震研究的发展趋势和方向进行展望,从而为大跨空间结构设计、施工和监测提供借鉴。  相似文献   

19.
Earthquake-induced building collapse and progressive collapse due to accidental local failure of vertical components are the two most common failure modes of reinforced concrete (RC) frame structures. Conventional design methods usually focus on the design requirements of a specific hazard but neglect the interactions between different designs. For example, the progressive collapse design of an RC frame often yields increased reinforcement and flexural strength of the beams. As a result, the seismic design principle of “strong-column-weak-beam” may be violated, which may lead to unfavorable failure modes and weaken the seismic performance. To avoid these adverse effects of the progressive collapse design on the seismic resistance of RC frames, a novel structural detailing is proposed in this study. The proposed detailing technique intends to concurrently improve the seismic and progressive collapse performances of an RC frame by changing the layout of the newly added longitudinal reinforcement against progressive collapse without introducing any additional reinforcement. A six-story RC frame is used as the prototype building for this investigation. Both cyclic and progressive collapse tests are conducted to validate the performance of the proposed structural detailing. Based on the experimental results, detailed finite element (FE) models of the RC frame with different reinforcement layouts are established. The seismic and progressive collapse resistances of different models are compared based on the incremental dynamic analysis (IDA) and nonlinear dynamic alternate path (AP) methods, respectively. The results indicate that the proposed structural detailing can effectively resolve the conflict between the seismic and progressive collapse designs.  相似文献   

20.
An efficient computational framework is presented for seismic risk assessment within a modeling approach that utilizes stochastic ground motion models to describe the seismic hazard. The framework is based on the use of a kriging surrogate model (metamodel) to provide an approximate relationship between the structural response and the structural and ground motion parameters that are considered as uncertain. The stochastic character of the excitation is addressed by assuming that under the influence of the white noise (used within the ground motion model) the response follows a lognormal distribution. Once the surrogate model is established, a task that involves the formulation of an initial database to inform the metamodel development, it is then directly used for all response evaluations required to estimate seismic risk. The model prediction error stemming from the metamodel is directly incorporated within the seismic risk quantification and assessment, whereas an adaptive approach is developed to refine the database that informs the metamodel development. The ability to efficiently obtain derivative information through the kriging metamodel and its utility for various tasks within the probabilistic seismic risk assessment is also discussed. As an illustrative example, the assessment of seismic risk for a benchmark four‐story concrete office building is presented. The potential that ground motions include near‐fault characteristics is explicitly addressed within the context of this example. The implementation of the framework for the same structure equipped with fluid viscous dampers is also demonstrated. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号