首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The 1999 jökulhlaup at Sólheimajökull was the first major flood to be routed through the proglacial system in over 600 years. This study reconstructed the flood using hydrodynamic, sediment transport and morphodynamic numerical modelling informed by field surveys, aerial photograph and digital elevation model analysis. Total modelled sediment transport was 469 800 m3 (+/‐ 20%). Maximum erosion of 8.2 m occurred along the ice margin. Modelled net landscape change was –86 400 m3 (+/‐ 40%) resulting from –275 400 m3 (+/‐ 20%) proglacial erosion and 194 400 m3 (+/‐ 20%) proglacial deposition. Peak erosion rate and peak deposition rate were 650 m3 s‐1 (+/‐ 20%) and 595 m3 s‐1 (+/‐ 20%), respectively, and coincided with peak discharge of water at 1.5 h after flood initiation. The pattern of bed elevation change during the rising limb suggested widespread activation of the bed, whereas more organisation, perhaps primitive bedform development, occurred during the falling limb. Contrary to simplistic conceptual models, deposition occurred on the rising stage and erosion occurred on the falling limb. Comparison of the morphodynamic results with a hydrodynamic simulation illustrated effects of sediment transport and bed elevation change on flow conveyance. The morphodynamic model advanced flood arrival and peak discharge timings by 100% and 19%, respectively. However, peak flow depth and peak flow velocity were not significantly affected. We suggest that morphodynamic processes not only increase flow mass and momentum but that they also introduce a feedback process whereby flood conveyance becomes more efficient via erosion of minor bed protrusions and deposition that infills or subdues minor bed hollows. A major implication of this study is that reconstructions of outburst floods that ignore sediment transport, such as those used in interpretation of long‐term hydrological record and flood risk assessments, may need considerable refinement. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
石希  夏军强  周美蓉  邓珊珊 《湖泊科学》2023,35(6):2036-2047
受三峡工程运用的影响,长江中游水沙情势剧变,江心洲生境结构发生变化,洲上植被密度、活力和分布情况也随之改变。因此亟需开展针对江心洲植被的长期观测以厘清其对三峡调控的响应机制,从而制定有效的洲滩植被保护和修复策略。卫星遥感技术是开展长时间、长河段地貌观测的常用手段。目前应用卫星遥感技术监测江心洲植被动态的研究,主要聚焦于三峡工程运用对江心洲植被面积和覆盖度的影响,而较少深入探讨植物长势和分布模式的变化趋势。因此,本文以长江中游4个典型江心洲为研究对象,提出了一系列可用于反演江心洲淹没范围和滩面上植被动态的方法,并量化分析三峡工程运用对植被动态的影响。结果表明:(1)三峡工程运用后,江心洲整体淹没频率降低,部分原有边滩逐步满足耐水植物的生长条件,促使江心洲植被面积呈现增长的趋势;原分布在高滩上的不耐水植物逐步蔓延至低滩,导致江心洲植被茂密程度整体上升;(2)三峡工程运行前,2002年含沙量较大的漫滩洪水有促进植物第二年生长的趋势;而三峡工程运行后,2016年具有同样规模但含沙量减少近80%的漫滩洪水则有抑制植物生长的作用;(3)部分形态稳定的江心洲,其高、低滩植被分布模式之间的异质性受三峡...  相似文献   

3.
Ditch cleaning in drained peatland forests increases sediment loads and degrades water quality in headwater streams and lakes. A better understanding of the processes controlling ditch erosion and sediment transport in such systems is a prerequisite for proper peatland management. In order to relate hydrological observations to key erosion processes in headwater peatlands drained for forestry, a two‐year study was conducted in a nested sub‐catchment system (treated with ditch cleaning) and at two reference sites. The treated catchment was instrumented for continuous discharge and turbidity monitoring, erosion pin measurements of changes in ditch bed and banks and time‐integrated sampling of suspended sediment (SS) composition. The results showed that ditch cleaning clearly increased transient suspended sediment concentrations (SSCs) and suspended sediment yields (SSYs), and resulted in temporary storage of loosely deposited organic sediment in the ditch network. After exhaustion of this sediment storage, subaerial processes and erosion from ditch banks became dominant in producing sediment for transport. Recorded SSCs were higher on the rising limbs of event hydrographs throughout the study period, indicating that SS transport was limited by availability of erosion‐prone sediment. A strong positive correlation (R2 = 0.84, p < 0.001) between rainfall intensity (above a threshold of 1 mm h?1) and average SSC obtained on the rising limb of hydrographs for the sub‐catchment showed that soil detachment from ditch banks by raindrop impact can directly increase SSC in runoff. At the main catchment outlet, variation in SSC was best explained (R2 = 0.67, p < 0.05) by the linear combination of initial discharge (?), peak discharge (+) and the lag time from initial to peak discharge (?). Based on these factors, ditch cleaning slightly increased peak discharges and decreased transit times in the study catchment. The implications of the results for water pollution management in peatland forests are discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Along the lower reaches of the Waipaoa River, New Zealand, cross‐section survey data indicate there was a 23 per cent decrease in bankfull width and a 22 per cent reduction in channel cross‐section area between 1948 and 2000, as the channel responded to increased inputs of fine (suspended) sediment following deforestation of the headwaters in late C19 and early C20. We determined the bankfull discharge within a ~39 km long reach by routing known discharges through the one‐dimensional MIKE 11 flow model. The model runs suggest that the bankfull discharge varies between ~800 and ~2300 m3 s?1 and that the average recurrence interval is 4 ± 2 years on the annual maximum series; by contrast, the effective flow (360 m3 s?1) is equaled or exceeded three times a year. The variability in bankfull discharge arises because the banks tend to be lower in places where flood flows are constricted than in reaches where overbank flow is dispersed over a wide area, and because scour has counteracted aggradation in some locations. There is no downstream variation in Shields stress, or in relative shear stress, within the study reach. Bankfull shear stress is, on average, five times greater than the shear stress required to initiate motion. At the effective discharge it is more than twice the threshold value. The effective discharge probably has more relevance than the bankfull discharge to the overall picture of sediment movement in the lower reaches of the Waipaoa River but, because width is constrained by the stability and resistance of the bank material to erosion during high flows that also scour the bed, the overall channel geometry is likely determined by discharges at or near bankfull. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
6.
Field measurements and morphodynamic simulations were carried out along a 5‐km reach of the sandy, braided, lower Tana River in order to detect temporal and spatial variations in river bed modifications and to determine the relative importance of different magnitude discharges on river bed and braid channel evolution during a time span of one year, i.e. 2008–2009. Fulfilling these aims required testing the morphodynamic model's capability to simulate changes in the braided reach. We performed the simulations using a 2‐D morphodynamic model and different transport equations. The survey showed that more deposition than erosion occurred during 2008–2009. Continuous bed‐load transport and bed elevation changes of ±1 m, and a 70–188‐m downstream migration of the thalweg occurred. Simulation results indicated that, during low water periods, modifications occurred in both the main channel and in other braid channels. Thus, unlike some gravel‐bed rivers, the sandy lower Tana River does not behave like a single‐thread channel at low discharge. However, at higher discharge, i.e. exceeding 497 m3/s, the river channel resembled a single‐thread channel when channel banks confined the flow. Although the spring discharge peaks caused more rapid modifications than slower flows, the cumulative volumetric changes of the low water period were greater. The importance of low water period flows for channel modifications is emphasized. Although the 2‐D model requires further improvements, the results were nevertheless promising for the future use of this approach in braided rivers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The Amazon Macrotidal Mangrove Coast (AMMC) is a large (~7500 km2) contiguous mangrove fringe eastwards from the Amazon River mouth. It encompasses dozens of interconnected bays intercalated with mangrove peninsulas. Mud accumulates on the mangrove flats, whereas the bed of the bays and channels is generally sandy. In this study we investigated the circulation, sediment transport and deposition in a central site at one of these mangrove peninsulas. The study was undertaken during the dry period, when there is no influence of the Amazon River plume and minimum local freshwater inflow. Current and suspended-sediment concentration were monitored in a feeder channel on the mangrove flat along a ~1000 m section oriented along the peninsula axis. Sediment deposition was also measured on the flat. Our results show there was a strong exchange between the neighboring bays. Channel currents were flood dominant, reaching up to >1 m s−1, with residual water and sediment transport westwards. Suspended sediment concentration (SSC) in the channel was directly related to velocity magnitude, ranging between 50 and 350 mg L−1. The flat was flooded in a way that indicated the tidal wave evolves westwards, nearly parallel to the AMMC shoreline. Currents on the flats were much slower than those in the channel and showed slight ebb dominance. However, SSC was higher during the flood than ebb, clearly indicating settling during the current deceleration and limited erosion during the following ebb–flow acceleration. The net sediment transport across the section was 60 tons westwards for the period of the experiment (~4 days). The mean deposition rate was 0.006 kg m−2 s−1 (or 1.4 kg m−2 per tide), which was higher than rates from other reported assessments in mangroves. The set of results indicate very large internal sediment reworking in the AMMC. © 2019 John Wiley & Sons, Ltd.  相似文献   

8.
Elucidation of the fluvial processes influenced by dams provides better understanding of river protection and basin management. However, less attention has been given to the erosion intensity distribution of riverbeds and its association with channel morphology and hydrological conditions. Based on hydrological and topographic data, the spatial and temporal distributions of erosion intensity (2002–2014) influenced by the Three Gorges Dam (TGD) were analyzed for the Jingjiang reach of the Yangtze River. The mechanisms underlying the distribution of erosion intensity in response to hydrological conditions were investigated. The results are as follows: (1) The erosion intensities of different discharges were not uniform, and moderate flow (10 000–27 000 m3/s) produced the largest erosion magnitude among all flow ranges. Owing to the hydrological changes caused by flood reduction and prolongation of moderate flow duration after the TGD began operating, up to 70% of the erosion amount was caused by moderate flows. (2) The lateral distribution of erosion intensity was extremely uneven, as the proportion of cumulative erosion of the low‐flow channel within the bankfull channel reached 88% in 2013. This caused the channel to become narrower and deeper. (3) The longitudinal distribution of erosion intensity was inhomogeneous. The erosion intensity in the wide reaches was greater than that in the narrow reaches, leading to smaller differences in channel morphology along the river. (4) Changes in hydrological conditions influenced by the TGD, significant reduction of sediment concentration along with flood abatement, and increased duration of moderate flow discharges were the main factors affecting erosion distribution in the post‐dam period. Our conclusions can be applied to the Yangtze River as a basis for riverbed change estimations, and river management strategies. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

9.
Channel bars and banks strongly affect the morphology of both braided and meandering rivers. Accordingly, bar formation and bank erosion processes have been greatly explored. There is, however, a lack of investigations addressing the interactions between bed and bank morphodynamics, especially over short timescales. One major implication of this gap is that the processes leading to the repeated accretion of mid‐channel bars and associated widenings remain unsolved. In a restored section of the Drau River, a gravel‐bed river in Austria, mid‐channel bars have developed in a widening channel. During mean flow conditions, the bars divert the flow towards the banks. One channel section exhibited both an actively retreating bank and an expanding mid‐channel bar, and was selected to investigate the morphodynamic processes involved in bar accretion and channel widening at the intra‐event timescale. We repeatedly surveyed riverbed and riverbank topography, monitored riverbank hydrology and mounted a time‐lapse camera for continuous observation of riverbank erosion processes during four flow events. The mid‐channel bar was shown to accrete when it was submerged during flood events, which at the subsequent flow diversion during lower discharges narrowed the branch along the bank and increased the water surface elevation upstream from the riffle, which constituted the inlet into the branch. These changes of bed topography accelerated the flow along the bank and triggered bank failures up to 20 days after the flood events. Four analysed flow events exhibited a total bar expansion from initially 126 m2 to 295 m2, while bank retreat was 6 m at the apex of the branch. The results revealed the forcing role of bar accretion in channel widening and highlighted the importance of intra‐event scale bed morphodynamics for bank erosion, which were summarized in a conceptual model of the observed bar–bank interactions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Headcut erosion is associated with major hydraulic changes induced by the gully head of concentrated flow. However, the variation in the hydraulic characteristics of the headcut erosion process is still not clear in the gully region of the Loess Plateau. A series of rainfall combined scouring experiments (flow discharges ranging from 3.6 to 7.2 m3 hr−1, with 0.8 mm min−1 rainfall intensity) were conducted on experimental plots to clarify the variation in the hydraulic parameters induced by gully head and erosion processes under different flow discharges. The results showed that concentrated flows in the catchment area and gully bed were turbulent (Reynolds number ranging from 1,876 to 6,693) and transformed between supercritical and subcritical (Froude number ranging from 0.96 to 3.73). The hydraulic parameters, such as the flow velocity, Reynolds number, shear stress, stream power, Darcy–Weisbach friction factor, and unit stream power in the catchment area were 0.45–0.59 m s−1, 2086–6693, 1.96–5.33 Pa, 0.89–2.86 W m−2, 0.08–0.16, and 0.023–0.031 m s−1, respectively. When the concentrated flows dropped from the gully head, the hydraulic parameters in the gully bed decreased by 3.39–26.07%, 1.49–29.99%, 65.19–67.14%, 67.25–74.96%, 28.53–61.31%, and 67.82–77.14%, respectively, which contributed to the flow energy consumption at the gully head. As flow discharge increased, Reynolds number, shear stress, and stream power increased, while flow velocity, Froude number, unit stream power, and Darcy–Weisbach friction factor did not. The flow energy consumption at the gully head was 9.66–10.13, 13.25–13.74, 15.68–16.41, and 19.28–20.25 J s−1, respectively, under different flow discharges and accounted for 60.58–68.50% of the flow energy consumption of the experimental plots. Generally, the sediment discharges increased rapidly at the initial stage, then increased slowly, and finally reached a steady state condition, which showed a significant declining logarithmic trend with experimental duration (P<.01) and increased with increasing flow discharge. Accordingly, the flow energy consumption was significantly correlated with the sediment yield. These findings could improve our understanding of the hydraulic properties and flow energy characteristics of headcut erosion.  相似文献   

11.
Soil erosion in sloping cropland is a key water and soil conservation issue in the Loess Plateau region, China. How surface roughness influences soil detachment remains unclear due to the inconsistent results obtained from existing studies. The objectives of the present study were to evaluate the effects of tillage practices on soil detachment rate in sloping cropland and establish an accurate empirical model for the prediction of soil detachment rates. A series of movable bed experiments were conducted on sloping surfaces under three different tillage practices (manual dibbling, manual hoeing, and contour drilling), with a smooth surface (non-tillage) as a control. The research indicated that soil detachment rate significantly increased with roughness (p < 0.05) since the average soil detachment rate was the highest under the contour drilling treatment (6.762 g m−2 s−1), followed by manual hoeing (4.180 g m−2 s−1), and manual dibbling (3.334 g m−2 s−1); the lowest detachment rate was observed under the non-tillage treatment (3.214 g m−2 s−1). Slope gradient and unit discharge rate were positively correlated with soil detachment rate and proved to be more influential than soil surface roughness. Four composite hydraulic parameters were introduced to estimate soil detachment rate on tilled surfaces. Regression analyses revealed that stream power was the most effective predictor of soil detachment rate compared with unit length shear force, shear stress, and unit stream power. By integrating surface roughness as a variable, the detachment rate could be accurately described as a nonlinear function of stream power and surface roughness. The results of the present study indicate that tillage practice could influence soil loss on sloping cropland, considering the higher soil detachment rates under all tillage practices tested compared with non-tillage. The results are attributed mainly to concentrated flow caused by the high water storage levels on tilled surfaces, which could damage surface microtopography and, subsequently, the development of headcuts.  相似文献   

12.
Erosion leading to sedimentation in surface water may disrupt aquatic habitats and deliver sediment-bound nutrients that contribute to eutrophication. Land use changes causing loss of native vegetation have accelerated already naturally high erosion rates in New Zealand and increased sedimentation in streams and lakes. Sediment-bound phosphorus (P) makes up 71–79% of the 17–19 t P y−1 delivered from anthropogenic sources to Lake Rotorua in New Zealand. Detainment bunds (DBs) were first implemented in the Lake Rotorua catchment in 2010 as a strategy to address P losses from pastoral agriculture. The bunds are 1.5–2 m high earthen stormwater retention structures constructed across the flow path of targeted low-order ephemeral streams with the purpose of temporarily ponding runoff on productive pastures. The current DB design protocol recommends a minimum pond volume of 120 m3 ha−1 of contributing catchment with a maximum pond storage capacity of 10 000 m3. No previous study has investigated the ability of DBs to decrease annual suspended sediment (SS) loads leaving pastoral catchments. Annual SS yields delivered to two DBs with 20 ha and 55 ha catchments were 109 and 28 kg SS ha−1, respectively, during this 12-month study. The DBs retained 1280 kg (59%) and 789 kg (51%) of annual SS loads delivered from the catchments as a result of the bunds' ability to impede stormflow and facilitate soil infiltration and sediment deposition. The results of this study highlight the ability of DBs to decrease SS loads transported from pastures in surface runoff, even during large storm events, and suggests DBs are able to reduce P loading in Lake Rotorua.  相似文献   

13.
In high elevation cold regions of the Tibetan Plateau, suspended sediment transfer from glacier meltwater erosion is one of the important hydrological components. The Zhadang glacier is a typical valley‐type glacier in the Nyainqentanglha Mountains on the Tibetan Plateau. To make frequent and long period records of meltwater runoff and sediment processes in the very high elevation and isolated regions, an automatic system was installed near the glacier snout (5400 m a.s.l) in August 2013, to measure the transient discharge and sediment processes at 5‐min interval, which is shorter than the time span for the water flow to traverse the catchment from the farthest end to the watershed outlet. Diurnal variations of discharge, and suspended sediment concentration (SSC) were recorded at high frequency for the Zhadang glacier, before suspended sediment load (SSL) was computed. Hourly SSC varied from the range of 0.2 kg/m3 to 0.5 kg/m3 (at 8:00–9:00) to the range of 2.0 kg/m3 to 4.0 kg/m3 (at 17:00–18:00). The daily SSL was 32.24 t during the intense ablation period. Hourly SSC was linearly correlated with discharge (r = 0.885**, n = 18, p < 0.01). A digit‐eight hysteresis loop was observed for the sediment transport in the glacier area. Air temperature fluctuations influence discharge, and then result in the sediment variations. The results of this study provide insight into the responses of suspended sediment delivery processes with a high frequency data in the high elevation cold regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
《Continental Shelf Research》2006,26(17-18):2073-2091
The eastern part of the chenier plain of the Louisiana coast has been prograding seaward over the last few decades while much of the rest of the Louisiana coast is experiencing high erosion rates. The source of sediment is the Atchafalaya River, which has been delivering sediment to the coastal ocean since the 1940s. Researchers have suggested that the repeated passage of cold fronts during winter and early spring plays an important role in delivering sediment to the coast. A sediment-transport study on the Atchafalaya coast was conducted between October 1997 and March 2001, which included several field experiments in early March, the period of high discharge from the Atchafalaya and frequent cold-front activity. A combination of shipboard profiling and time-series measurements from a bottom tripod and array of wave sensors on the inner shelf has resulted in a data set that illustrates the mechanism of onshore transport. For a cold-front passage sampled in 2001, during pre-front conditions, sediment is resuspended and mixed throughout the water column, with transport rates onshore and to the west of 53 and 184 g s−1 m−1, respectively. Post-front conditions also result in onshore transport due to onshore flow (upwelling) in the lower meter of the water column and formation of a high-concentration bottom layer. Post-front onshore transport rates are 32 g s−1 m−1 and most of the transport occurs in the bottom meter of the water column. The repeated cycling of cold-front passages leads to a positive feedback with transport onshore during both pre- and post-front conditions, and effective attenuation of wave energy over the muddy inner shelf inhibits erosion at the coast. Thus, the chenier-plain coast is experiencing high progradation rates (up to 29 m yr−1), while most of the Gulf coast is eroding.  相似文献   

15.
Surface flow and suspended sediment discharge from the head hollow of the Jozankei Experimental Watershed in Hokkaido, northern Japan, were measured to clarify the implications of subsurface hydrology for soil movement. Subsurface discharges during the extremely large storms of 1993 to 1994 were measured in a V-notch weir installed at a natural spring near the bottom of the head hollow, and shallow groundwater levels were observed in the wells excavated in the hollow. Sediment samples whose particle size range from 0·001 to 0·1 mm were manually and automatically collected at 15 to 60 min intervals, by use of 1 or 21 polyethylene bottles. Maximum concentration and flux of suspended sediment during the storms preceded the peak discharge of subsurface flow by several hours. Neither the changes in concentration (mg l−1) nor flux (mg s−1) of suspended sediment coincided with those in subsurface discharge (l s−1). Furthermore, sediment concentration was poorly correlated with the rate of change in subsurface discharge (l s−2) during the rising limb of the hydrograph. Suspended sediment flux during the acceleratory limb, however, was closely correlated with the rate of change in subsurface discharge. The relationship between suspended sediment flux and rate of change in subsurface discharge were in inverse proportion to initial subsurface discharge before the storm runoff and they represented rare seasonal variation. Subsurface hydraulic erosion and transport of suspended sediment resulting from changes in rate of change in subsurface discharge actively occur during the acceleratory rising limb of the hydrograph. Accordingly, subsurface hydraulic erosion during the acceleratory rising limb of the hydrograph can be physically understood by analysing suspended sediment flux associated with rate of change in subsurface discharge and initial subsurface discharge. © 1997 John Wiley & Sons, Ltd.  相似文献   

16.
Geomorphological evidence and recent trash lines were used as stage indicators in a step-backwater computer model of high discharges through an ungauged bedrock channel. The simulation indicated that the peak discharge from the 26.7 m2 catchment was close to 150m3s?1 during the passage of Hurricane Charlie in August 1986. This estimate can be compared with an estimate of 130–160 m3s?1 obtained using the Flood Studies Report (FSR) unit hydrograph methodology. Other palaeostage marks indicate that higher stages have occurred at an earlier time associated with a discharge of 200 m3s?1. However, consideration of both the geometry of a plunge pool and transport criteria for bedrock blocks in the channel indicates that floods since 1986 have not exceeded 150 m3s?1. Given that the estimated probable maximum flood (PMF) calculated from revised FSR procedure is at least 240 m3s?1, it is concluded that compelling evidence for floods equal to the PMF is lacking. Taking into consideration the uncertainty of the discharge estimation, the 1986 flood computed using field evidence has a minimum return period of 100 years using the FSR procedure. This may be compared with a return period for the same event in the neighbouring gauged River Greta of > 100 years and a rainfall return period of 190 years. In as much as discharges of similar order to FSR estimates are indicated, it is concluded (a) that regional geomorphological evidence and flood simulation within ungauged catchments may be useful as a verification for hydrological estimates of recent widespread flood magnitude and (b) that palaeohydraulic computation can be useful in determining the magnitude of the local maximum [historic] flood when determining design discharges for hydraulic structures within specific catchments.  相似文献   

17.
Cataclysmic releases from the glacially dammed Lake Missoula, producing exceptionally large floods, have resulted in significant erosional processes occurring over relatively short time spans. Erosional landforms produced by the cataclysmic Missoula floods appear to follow a temporal sequence in many areas of eastern Washington State. This study has focused on the sequence observed between Celilo and the John Day River, where the erosional features can be physically quantified in terms of stream power and geomorphic work. The step-backwater calculations in conjunction with the geologic evidence of maximum flow stages, indicate a peak discharge for the largest Missoula flood of 10 × 106m3s−1. The analysis of local flow hydraulics and its spatial variation were obtained calculating the hydrodynamic variables within the different segments of a cross-section. The nature and patterns of erosional features left by the floods are controlled by the local hydraulic variations. Therefore, the association of local hydraulic parameters with erosional and depositional flood features was critical in understanding landform development and geomorphic processes. The critical stream power required to initiate erosion varied for the different landforms of the erosional sequence, ranging from 500 W m−2 for the streamlined hills, up to 4500 W m−2 to initiate processes producing inner channels. Erosion is possible only during catastrophic floods exceeding those thresholds of stream power below which no work is expended in erosion. In fact, despite the multiple outbursts which occurred during the late Pleistocene, only a few of them had the required magnitude to overcome the threshold conditions and accomplish significant geomorphic work. © 1997 by John Wiley & Sons, Ltd.  相似文献   

18.
三峡工程运行后长江中下游河道洲滩普遍冲刷萎缩,航道条件极不稳定.为探究影响洲滩演变的主控因素,采用近期水文、泥沙和地形观测资料,以下荆江铁铺水道广兴洲边滩为例,分析了边界条件、水沙过程及整治工程等因素对洲滩调整特征的影响程度.结果表明:洲滩组成中的细沙(0.125 mm15000 m3/s)有一定关系,其持续时间越长,一般表现为滩体面积越小;汛期悬移质分组沙输移过程中,细沙的大幅减少导致边滩萎缩明显,其影响程度比漫滩流量更大.滩体冲淤变形特征与前3年漫滩流量下平均水流冲刷强度的相关性最好.守护工程实施后,漫滩流量下平均水流冲刷强度仍然较大,但滩体后退趋势得以抑制且小幅淤积,工程效果得以充分发挥.  相似文献   

19.
三峡工程运用后长江中游荆江河段河床持续冲刷,局部河段崩岸频发,影响河道内悬沙输移与河床形态调整.本研究采用实测长程河道地形及固定断面地形资料,确定了2002-2018年荆江河段的主要崩岸区域,估算了崩岸土体的泥沙总量,进而定量分析了河岸崩退对河床调整的影响.计算结果表明:荆江段累计河岸崩退体积约为2.0亿m3,约占该河...  相似文献   

20.
The collapse of soil pipes due to internal erosion can result in fully mature gullies. Few studies have measured the rates of sediment detachment and transport through soil pipes in situ. The objectives of this work were to determine suspended sediment concentration (SSC) in soil pipes as a function of pipeflow rate to develop sediment rating curves (SRC) and measure the bedload transport as a function of cumulative flow per storm event. H-flumes were installed in seven discontinuous gullies formed by pipe collapse and instrumented for pipe discharge measurements and suspended sediment sampling. The typical response to pipeflow was an initial flush of high concentration of suspended sediment followed by a decrease as pipeflow increased (rising limb of hydrograph). Pipeflows were often so dynamic that it was difficult to consistently capture the initial flush of sediment, resulting in weak to non-existent SRCs. The falling limb of the hydrograph tended to have a relatively low SSC. Thus, soil pipe SRCs tended to be better represented by hysteretic SRCs, although relationships between SSC and flow rate were poorly represented by SRCs. A power law equation given by SSC = aQb was adopted to represent the SRC relationships. Fitting this equation to data showed a correlation between the offset, a, and the slope, b, with the slope decreasing as the offset increases. Both SRC parameters (a and b) were correlated to the contributing area of the individual pipe. Bedload appeared to be an important contributor to sediment transport, with bedload – expressed as an average event sediment concentration (mg l−1) – decreasing as the volume of the event discharge (m3) increased. A significant portion (11–31%) of the bedload material was gravel and aggregates (>2 mm diameter material). While this work was the first to determine SRCs for soil pipes, refined sampling and measurement techniques are needed. © 2020 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号