首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the current years, changing the land cover/land use had serious hydrological impacts affecting the flood events in the Kelantan River basin. The flood events at the east coast of the peninsular Malaysia got highly affected in the recent decades due to several factors like urbanisation, rapid changes in the utilisation of land and lack of meteorological (i.e. change in climate) and developmental monitoring and planning. The Kelantan River basin has been highly influenced due to a rapid change in land use during 1984 to 2013, which occurred in the form of transformation of agricultural area and deforestation (logging activities). In order to evaluate the influence of the modifications in land cover on the flood events, two hydrological regional models of rainfall-induced runoff event, the Hydrologic Engineering Center (HEC)-Hydrologic Modeling System (HMS) model and improved transient rainfall infiltration and grid-based regional model (Improved TRIGRS), were employed in this study. The responses of land cover changes on the peak flow and runoff volume were investigated using 10 days of hourly rainfall events from 20 December to the end of December 2014 at the study area. The usage of two hydrological models defined that the changes in land use/land cover caused momentous changes in hydrological response towards water flow. The outcomes also revealed that the increase of severe water flow at the study area is a function of urbanisation and deforestation, particularly in the conversion of the forest area to the less canopy coverage, for example, oil palm, mixed agriculture and rubber. The monsoon season floods and runoff escalate in the cleared land or low-density vegetation area, while the normal flow gets the contribution from interflow generated from secondary jungle and forested areas.  相似文献   

2.
一个网格型松散结构分布式水文模型的构建   总被引:2,自引:1,他引:1       下载免费PDF全文
根据流域降雨径流的基本过程,以蓄满产流理论为基础,建立了一个网格型松散结构的分布式流域水文模型。模型将流域离散为包含河道与不包含河道两种类型的单元格,以协克里金方法插值得到空间离散的降雨输入,考虑的产汇流物理过程包括降雨、植被截留及蒸散发、单元格产流、单元格汇流及河网汇流。模型结构简单,参数较少,在充分利用植被覆盖类型图及土地利用类型图的基础上,能够获得大部分参数的选用值。通过在长江三峡区间沿渡河流域的实际应用,模型计算成果令人满意。  相似文献   

3.
Studies on rain-runoff process in the peripheral mountainous area of the Sichuan Basin, which is regarded as a key ecological shelter, will contribute to flood control and environmental protection for the Upper Yangtze River Basin. In two typical catchments--the Fujiang River Catchment and the Wujiang River Catchment, rainfall simulations have been conducted to study the rain-runoff processes of yellow soil and limestone soil in three types of land use--forestland, farmland and grassland. Results showed that (1) within the same rainfall process, overland flow occurs first on farmland, then on grassland, and finally on forestland; (2) soil surface coverage has a great impact on the occurrence and amount of overland flow. The runoff amount can increase 2-4 times after the coverage is removed; (3) the infiltration before the occurrence of overland flow will decrease because of higher gravel contents of soil, but it takes no effect on infiltration once overland flow becomes stable; (4) the runoff coefficient of the limestone soil forestland is greater than that of the yellow soil forest land, but less than that of the farmland; (5) three empirical infiltration models, including Horton' model, Kostiakov' model, and modified Kostiakov' model, were compared by using the observed results under rainfall simulation. The results showed that the Kostiakov' model performed better than both the Horton' model and modified Kostiakov model. According to the results of this research, the Kostiakov's model can be used to simulate rainfall infiltration when water erosion is modeled in the peripheral mountainous area of the Sichuan Basin.  相似文献   

4.
Studies on rain.runoff process in the peripheral mountainous area of the Sichuan Basin,which is re-garded as a key ecological shelter,will contribute to flood control and environmental protection for the Upper Yang-tze River Basin.In two typical catchments--the Fujiang River Catchment and the Wujiang River Catchment,rainfall simulations have been conducted to study the rain-runoff processes of yellow soil and limestone soil in three types of land use-forestland.farmland and grassland.Results showed that(1)within the same rainfall process,overland flow occurs first on farmland,then on grassland,and finally on forestland;(2)soil surface coverage has a great im-pact on the occurrence and amount of overland flow.The runoff amount Can increase 2-4 times after the coverage iS removed;(3)the infiltration before the occurrence of overland flow will decrease because of higher gravel contents of soil.but it takes no effect on infiltration once,overland flow becomes stable;(4)the runoff coefficient of the lime-stone soil forestland iS greater than that of the yellow soil forest land,but less than that of the farmland;(5)threeempirical infiltration models,including Horton'model,Kostiakov'model,and modified Kostiakov'model,were compared by using the observed results under rainfall simulation.The results showed that the Kostiakov'model per-formed better than both the Horton'model and modified Kostiakov model.According to the results of this research,the Kostiakov's model Can be used to simulate rainfall infiltration when water erosion is modeled in the peripheral mountainous area of the Sichuan Basin.  相似文献   

5.
新疆阿尔泰山区克兰河上游水文过程对气候变暖的响应   总被引:17,自引:7,他引:10  
额尔齐斯河支流克兰河上游发源于西风带水汽影响的阿尔泰山南坡,主要由融雪径流补给,年内积雪融水可占年径流量的45%.年最大月径流一般出现在6月份,融雪季节4~6月径流量占65%.流域自20世纪60年代开始明显升温,年平均温度从50年代的1.4℃上升到90年代的5.2℃;年降水总量也呈增加趋势,尤其是冬季和初春增加最多.随着气候变暖,河流年内水文过程发生了很大的变化,主要表现在最大月径流由6月提前到5月,月径流总量增加约15%,4~6月融雪径流量也由占年流量的60%增加到近70%.在多年变化趋势上,气温上升主要发生在冬季,降水也以冬季增加明显,而夏季降水呈下降趋势;水文过程主要表现在5月径流呈增加趋势,而6月径流为下降趋势;夏季径流减少而春季径流增加明显.冬春季积雪增加和气温上升,导致融雪洪水增多且洪峰流量增大,使洪水灾害破坏性加大.近些年来气候变暖引起的年内水文过程变化,已经对河流下游的城市供水和农牧业生产产生了影响.  相似文献   

6.
The assessment of land use land cover (LULC) and climate change over the hydrology of a catchment has become inevitable and is an essential aspect to understand the water resources-related problems within the catchment. For large catchments, mesoscale models such as variable infiltration capacity (VIC) model are required for appropriate hydrological assessment. In this study, Ashti Catchment (sub-catchment of Godavari Basin in India) is considered as a case study to evaluate the impacts of LULC changes and rainfall trends on the hydrological variables using VIC model. The land cover data and rainfall trends for 40 years (1971–2010) were used as driving input parameters to simulate the hydrological changes over the Ashti Catchment and the results are compared with observed runoff. The good agreement between observed and simulated streamflows emphasises that the VIC model is able to evaluate the hydrological changes within the major catchment, satisfactorily. Further, the study shows that evapotranspiration is predominantly governed by the vegetation classes. Evapotranspiration is higher for the forest cover as compared to the evapotranspiration for shrubland/grassland, as the trees with deeper roots draws the soil moisture from the deeper soil layers. The results show that the spatial extent of change in rainfall trends is small as compared to the total catchment. The hydrological response of the catchment shows that small changes in monsoon rainfall predominantly contribute to runoff, which results in higher changes in runoff as the potential evapotranspiration within the catchments is achieved. The study also emphasises that the hydrological implications of climate change are not very significant on the Ashti Catchment, during the last 40 years (1971–2010).  相似文献   

7.
As a catchment phenomenon, land use and land cover change (LULCC) has a great role in influencing the hydrological cycle. In this study, decadal LULC maps of 1985, 1995, 2005 and predicted-2025 of the Subarnarekha, Brahmani, Baitarani, Mahanadi and Nagavali River basins of eastern India were analyzed in the framework of the variable infiltration capacity (VIC) macro scale hydrologic model to estimate their relative consequences. The model simulation showed a decrease in ET with 0.0276% during 1985–1995, but a slight increase with 0.0097% during 1995–2005. Conversely, runoff and base flow showed an overall increasing trend with 0.0319 and 0.0041% respectively during 1985–1995. In response to the predicted LULC in 2025, the VIC model simulation estimated reduction of ET with 0.0851% with an increase of runoff by 0.051%. Among the vegetation parameters, leaf area index (LAI) emerged as the most sensitive one to alter the simulated water balance. LULC alterations via deforestation, urbanization, cropland expansions led to reduced canopy cover for interception and transpiration that in turn contributed to overall decrease in ET and increase in runoff and base flow. This study reiterates changes in the hydrology due to LULCC, thereby providing useful inputs for integrated water resources management in the principle of sustained ecology.  相似文献   

8.
Due to deficient water resources in the Loess Plateau, watershed management plays a very important role, not only for ecological and environmental protection but also for the social development of the region. To better understand the hydrological and water resource variations in the typical watershed of the Loess Plateau and the Qinghe River Basin, the influences of land cover and climate change were analysed, and a SWAT model was built to simulate the response of the hydrological situation to land cover changes that have occurred over the past 30 years. The results demonstrated that the main land cover change occurring in the Qinghe River Basin was the conversion of land cover from grassland to woodland and farmland from the late 1980s to 2010. Woodland and farmland took 87.36 and 10.55%, respectively, from the overall area transferred over 20 years and more than 18% of the total watershed area. Hydrological simulation results indicated that land cover played a predominant role in the hydrological variation of the Qinghe River Basin, although the effects of climate change should not be discounted. The significant changes in land cover could be superimposed by policy orientation and economic requirements. Although it is hard to evaluate the land cover changes and the corresponding hydrological responses in a simple language, related analyses have demonstrated an increasing trend of runoff in the dry season, while there is a somewhat decreasing trend during the flood season in the river basin. There results could be significant and provide a positive influence on both future flood control and the conservation of water and soil.  相似文献   

9.
胡彩虹  王金星  李析男 《水文》2014,34(1):39-45
在介绍蓄满—超渗兼容模型理论和自由水箱模型理论的基础上,针对其各自的结构特点和产流机理,对二水源蓄满—超渗兼容水文模型进行改进,模型能反映地表径流、壤中流和地下径流的动态变化,可应用于洪水预报、水情模拟、水资源开发和利用等。并将模型应用于伊河流域栾川站,采用单纯形法、罗森布瑞克法及基因法联合自动优选法对模型参数进行了率定,并与原模型进行了比较分析,结果表明,改进模型模拟精度高,且能反映不同径流成分的变化过程。  相似文献   

10.
黑河流域山区植被生态水文功能的研究   总被引:21,自引:5,他引:16  
依据土壤-植被-大气系统的结构特性,从林冠层、苔藓-枯枝落叶层、土壤层剖面结构分析了黑河流域山区水源涵养林在水文过程中的作用.观测试验表明,林冠截留大气降水的32.7%,使到达林地的水分相对减少而养分增加,而林冠遮荫使林内土壤蒸发仅为林外草地的34.2%.苔藓-枯枝落叶层疏松多孔,最大持水量可达12.5mm水层深,加上表层较高的体积含水量和较小的水分变差系数,使其在涵蓄一部分大气降水的同时具有良好的保水性能.林地土壤具有良好的渗透性和涵蓄大气降水的能力,从而减少了地表径流量.森林的蒸散发使林区空气湿度高于周边地区17%,形成山区独特的森林小气候,从而进一步影响着山区的水文过程.  相似文献   

11.
Sǎrǎ?el River basin, which is located in Curvature Subcarpahian area, has been facing an obvious increase in frequency of hydrological risk phenomena, associated with torrential events, during the last years. This trend is highly related to the increase in frequency of the extreme climatic phenomena and to the land use changes. The present study is aimed to highlight the spatial and quantitative changes occurred in surface runoff depth in Sǎrǎ?el catchment, between 1990–2006. This purpose was reached by estimating the surface runoff depth assignable to the average annual rainfall, by means of SCS-CN method, which was integrated into the GIS environment through the ArcCN-Runoff extension, for ArcGIS 10.1. In order to compute the surface runoff depth, by CN method, the land cover and the hydrological soil classes were introduced as vector (polygon data), while the curve number and the average annual rainfall were introduced as tables. After spatially modeling the surface runoff depth for the two years, the 1990 raster dataset was subtracted from the 2006 raster dataset, in order to highlight the changes in surface runoff depth.  相似文献   

12.
采用VIC-3L大尺度分布式水文模型,对老哈河流域的径流及其相关要素进行模拟,分析其变化趋势,研究老哈河流域水文要素变化的影响因素。模拟结果表明:在率定期和验证期内,模拟的流量过程线反映了实测流量过程线的变化趋势,而1997年和1999年模型模拟效果较差的原因是人类活动的影响、枯水年影响、下垫面情况变化等因素影响及VIc-3L模型自身的局限性等。  相似文献   

13.
基于降雨滑坡机理的水文过程监测系统设计   总被引:1,自引:0,他引:1  
本文在简要回顾前人降雨滑坡水文过程研究的基础上,针对深圳市某一填土滑坡,设计了降雨诱发滑坡的水文过程全自动监测系统,可以用来监测滑坡点的降雨特征、饱和-非饱和入渗过程、自由水渗流过程及微承压水渗流过程等降雨条件下斜坡的水文响应过程。该监测系统的提出在降雨条件下微承压水渗流过程的监测方法,体现了基于降雨滑坡水文过程的监测设计思想,不仅有助于降雨滑坡水文作用机理的研究,还给相关工作提供了有益的借鉴意义。  相似文献   

14.
提出了一个基于统计理论的产流模型,该模型考虑了降雨、土壤下渗能力及土壤蓄水容量的空间变异性。假定每个时段的降雨量在空间上可以用概率密度函数或分布函数描述,根据实测降雨资料通过统计拟合优度途径估计各时段降雨的空间概率分布;采用抛物线型函数分别描述土壤下渗能力和土壤蓄水容量的空间分布。按照超渗产流机制计算地表产流量,通过降雨量和土壤下渗能力的联合分布推导得到地表径流量的统计分布,进而得到平均产流量的解析表达式。下渗水量补充土壤含水量,假定满足田间持水量后形成地下径流,其产流量根据下渗量和土壤蓄水容量的空间分配曲线进行计算。以半湿润的黄河支流伊河东湾流域为例,对模型进行了验证和应用,并与新安江模型的结果进行了对比。结果表明,模型对所研究的半湿润区的洪水模拟预报有较好的模拟效果。  相似文献   

15.
砾石覆盖紫色土坡耕地水文过程   总被引:15,自引:0,他引:15       下载免费PDF全文
紫色土中砾石分布广泛,地表常为砾石覆盖,砾石覆盖对土壤水文过程有着重要影响。试验小区(2 m×1 m)为坡度23°的坡耕地, 试验降雨强度为(53.9±2.8)mm/h、 (90.8±6.1)mm/h和(134.3±14.9)mm/h, 砾石覆盖度为0%,11%,20%,33%和42%。通过原位人工模拟降雨试验,定量研究了不同降雨强度下砾石覆盖对降雨入渗、地表产流及壤中流产流的影响。结果表明:砾石覆盖对入渗过程影响显著,稳定入渗速率及稳定入渗系数与砾石覆盖度呈正相关关系,3种降雨强度下,稳定入渗系数分别为47.70%~86.59%,30.61%~82.83%、17.76%~77.44%,42%砾石覆盖度小区的稳定入渗速率分别是裸露小区的1.95~4.94倍;地表砾石覆盖延迟地表产流、减少地表径流量,地表产流时间随着砾石覆盖度的提高呈增加趋势,地表径流速率及地表径流系数随砾石覆盖度的增加而降低,相对地表径流系数与地表砾石覆盖度呈指数负相关关系;地表砾石覆盖促进壤中流的发生、增加壤中流量,壤中流产流时间随着砾石覆盖度的增加逐渐缩短,壤中流径流速率及壤中流径流系数随地表砾石覆盖度的增加而提高,相对壤中流径流系数与地表砾石覆盖度呈指数正相关关系。  相似文献   

16.
The water resource and its change of mountainous area are very important to the oasis economic system and ecosystem in the arid areas of northwest China. Accurately understanding the water transfer and circulation process among vegetation, soil, and atmosphere over different hydrological units in mountainous areas such as snow and ice, cold desert, forest and grassland is the basic scientific issue of water research in cold and arid regions, which is also the basis of water resource delicacy management and regulation. There are many research results on the hydrological function of different land covers in mountain areas, basin hydrological processes, however, there are only very limited studies on the water internal recycle at basin scale. The quantitative study on the mechanism of water internal recycle is still at the starting stage, which faces many challenges. The key project “Study on water internal recycle processes and mechanism in typical mountain areas of inland basins, Northwest China” funded by National Natural Science Foundation of China will select the Aksu River and Shule River Basin, which have better observation basis, as study area. The internal mechanism of moisture transfer and exchange process of different land cover and atmosphere, the internal mechanism of water cycle in the basin, and water transfer paths in atmosphere will be studied through enhancing runoff plot experiments on different land cover, analyzing the mechanism of water vapor transfer and exchange between different land covers in the watershed by isotope tracing on the water vapor flux of vegetation water, soil moisture and atmospheric moisture, improving the algorithms of remote sensing inversion and ground verification on land surface evapotranspiration on different land cover, and analyzing the water vapor flux from reanalysis data, and the coupling modeling of regional climate model and land surface process model. At last, the effect of different land cover in hydrological process of mountain area, and the impact of land cover on downstream oasis will be systematically analyzed.  相似文献   

17.
四个概念性水文模型在黑河流域上游的应用与比较分析   总被引:3,自引:1,他引:2  
首先结合新安江模型、TopModel、HBV模型和Sacramento模型机理,从模型结构的土层划分、土壤水分计算、蒸散发计算、产流区不均匀性的考虑、产流机制、下渗机制等多个方面进行了理论上的比较,然后选择黑河流域上游为研究区,结合模拟结果对这四个概念性水文模型在黑河上游山区流域应用情况,从土壤水分、蒸散发、径流过程和各径流组分四个方面进行了分析比较。结果显示,概念性水文模型对黑河干流上游山区径流模拟有较好的模拟效果,但是对土壤水分、蒸散发等水文过程只能描述其变化趋势,难以定量,同时,我们还可以得出在所用四个模型中,HBV模型在黑河干流上游山区出山口的径流拟合中有和其他3个模型相当的Nash-Sutcliffe效率系数,并且在枯水期的表现也好,适用性最好。  相似文献   

18.
史晓亮  杨志勇  绪正瑞  李颖 《水文》2014,34(6):26-32
降雨输入对分布式流域水文模拟具有重要影响。针对流域降雨资料不完整的情况,以武烈河流域为例,基于反距离加权平均法对雨量站降雨资料进行插补延长,并结合SWAT模型研究了降雨输入不确定性对分布式流域水文模拟的影响。结果表明:不同降雨输入对流域平均降雨量的影响较小,但基于气象站资料的降雨数据在降雨空间差异显著的年份会明显低估面雨量,且在夏季汛期表现更为显著;不同降雨输入对分布式流域水文模拟的影响较大;在雨量站降雨资料不完整的情况下,通过对雨量站降雨数据进行插补延长,相对于直接利用气象站降雨资料,在一定程度上可以提高径流模拟精度,满足降雨资料欠缺流域分布式水文模拟的实际需求。  相似文献   

19.
张艳林  常晓丽  梁继  何瑞霞 《冰川冻土》2016,38(5):1362-1372
冻土对寒区水文过程具有重要的调节作用,是寒区水循环研究的核心内容之一.在分布式水文模型中对土壤冻融过程进行显式表达,对探索寒区水循环的机理、定量研究寒区流域径流的时空变化十分重要.先在黑河上游八宝河流域对考虑了土壤冻融过程的分布式水文模型进行简单验证,然后分析土壤冻融对流域水文过程的影响.对考虑和不考虑土壤冻融的模型模拟结果进行对比,发现冻土对流域的产流方式和速度有很大的影响,主要表现为:1)考虑冻土时,流域产流以壤中流为主,径流对降雨或融雪的响应速度较快,径流过程线变化较为剧烈,径流系数较高.冻土有效地阻碍了入渗过程,促进地表径流和壤中流的形成.壤中流发生的平均土壤深度冬季深,春季浅,年平均深度约为1.1 m;2)在不考虑冻土时,土壤下渗能力强,地下水补给是考虑冻土时的3倍,流域产流方式以基流为主,径流对降雨或融雪的响应速度减缓,径流过程线较为平滑,夏季洪峰在时间上存在明显的延迟.即便在降水强度较大的夏天,流域内都不会产生地表产流,而且壤中流产流的平均土壤深度平稳地处于2.4 m左右.研究对从机理上认识土壤冻融对水文过程的影响有一定的帮助.  相似文献   

20.
1950~2005年大通河流域径流变化特征及影响因素   总被引:3,自引:2,他引:1       下载免费PDF全文
张晓晓  张钰  徐浩杰 《水文》2013,33(6):90-96
以大通河流域享堂水文站1950~2005年实测径流数据为基础,综合运用趋势分析、累积距平、R/S分析、Morlet小波分析、降水-径流深度双累积曲线等数理统计方法,研究了大通河流域径流的年内分配、年际变化和周期振荡特征、并定量分析了气候因素和人类活动因素对径流变化的影响。结果表明:(1)大通河径流年内主要集中在510月,占年径流总量的82%左右。1950~2005年,大通河流域年径流呈微弱减少趋势,递减率为-0.55×108m3/10a(R2=0.025,P=0.249),Hurst指数为0.58,表明未来一段时间内径流仍可能呈减少趋势;(2)1950~2005年,大通河流域年径流在27a时间尺度上周期震荡明显,经历了"多-少-多-少-多-少-多"7个循环交替;(3)大通河流域降水-径流深度双累积曲线在1994年发生显著偏移,1994年之前径流变化主要受降水影响,1994年以后,径流变化主要受人类活动影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号