首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 185 毫秒
1.
Absorption cross-sections of nine halomethanes (CCl4, CHCl3, CH2Cl2, CH3Cl, CFCl3, CF2Cl2, CF3Cl, CHFCl2, and CHF2Cl), measured between 174 and 250 nm for temperatures ranging from 225 to 295 K, are presented with uncertainties ranging from 2 to 4% and compared with previous determinations made for comparable temperature ranges.The largest temperature effect which takes place near the absorption threshold, decreases the absorption cross-section up to 50% for highly chlorinated methanes, but is negligible for molecules highly stabilized by hydrogen and/or fluorine. Extrapolated values for temperatures of aeronomical interest are presented, as well as parametrical formulas which give absorption cross-section values for given wavelength and temperature ranges.  相似文献   

2.
Oxidation reactions of the proposed CFC substitutes HCFC-123 (CF3CHCl2) and HCFC-141b (CFCl2CH3) have been studied in the laboratory using long-path Fourier transform infrared spectroscopy. The air oxidation of the HCFCs was initiated by the photolysis of Cl2 forming Cl atoms that abstract H atoms from the HCFC. CF3C(O)Cl was the only carbon containing compound observed in the infrared spectrum of the products of the HCFC-123/Cl2 irradiations and its yield was approximately one. The product data are consistent with formation of CF3C(O)Cl by Cl elimination of the intermediate halogenated alkoxy radical CF3CCl2O. The Cl-initiated oxidation of HCFC-141b led to the formation of CO and C(O)FCl. The product data are consistent with a 1 : 1 relationship between C(O)FCl formed and HCFC-141b reacted. Product data were compatible with both decomposition by cleavage of the C–C bond of the radical CFCl2CH2O leading to the prompt generation of C(O)FCl and reaction of the radical with O2 forming the two carbon halogenated aldehyde CFCl2CH(O), which in the presence of Cl was likely oxidized to C(O)FCl. An approximate method was developed in which the ratio was extracted from analysis of the time evolution of HCFC-141b, C(O)FCl, and CO. The data suggest that the contributions are comparable.  相似文献   

3.
A novel cryogenic sampling method combining the matrix isolation technique with FTIR spectroscopy has been developed for atmospheric trace gas analysis. It is applicable to a wide range of molecules with detection limits typically in the 10–50 ppt range. The method is described along with some measurements of N2O, CFCl3, CF2Cl2, OCS, CS2, SO2 and PAN from samples collected at ground level and from an aircraft between 9 and 14 km.  相似文献   

4.
The absorption cross-sections of HCFC-123 (CF3–CHCl2), HCFC-141b (CH3–CFCl2) and HCFC-142b (CH3–CF2Cl) are measured between 170 and 250 nm for temperatures ranging from 295 to 210 K with uncertainties between 2 and 4%. They are compared with other available determinations. Temperature effects are discussed and parametrical formulae are proposed to compute the absorption cross-section for wavelengths and temperatures useful in atmospheric modelling calculations. Photodissociation coefficients are presented and their temperature-dependence is discussed.  相似文献   

5.
The set of high-resolution infrared solar observations made with the Atmospheric Trace Molecule Spectroscopy (ATMOS)-Fourier transform spectrometer from onboard Spacelab 3 (30 April-1 May 1985) has been used to evaluate the total budgets of the odd chlorine and fluorine chemical families in the stratosphere. These budgets are based on volume mixing ratio profiles measured for HCl, HF, CH3Cl, ClONO2, CCl4, CCl2F2, CCl3F, CHClF2, CF4, COF2, and SF6 near 30° north latitude. When including realistic concentrations for species not measured by ATMOS, i.e., the source gases CH3CCl3 and C2F3Cl3 below 25 km, and the reservoirs ClO, HOCl and COFCl between 15 and 40 km (five gases actually measured by other techniques), the 30° N zonal 1985 mean total mixing ratio of chlorine, Cl, was found to be equal to (2.58±0.10) ppbv (parts per billion by volume) throughout the stratosphere, with no significant decrease near the stratopause. The results for total fluorine indicate a slight, but steady, decrease of its volume mixing ratio with increasing altitude, around a mean stratospheric value of (1.15±0.12) ppbv. Both uncertainties correspond to one standard deviation. These mean springtime 1985 stratospheric budgets are commensurate with values reported for the tropospheric Cl and F concentrations in the early 1980s, when allowance is made for the growth rates of their source gases at the ground and the time required for tropospheric air to be transported into the stratosphere. The results are discussed with emphasis on conservation of fluorine and chlorine and the partitioning among source, sink, and reservoir gases throughout the stratosphere.  相似文献   

6.
The relative variances in stratospheric observations of longlived trace gases CH4, N2O, CF2Cl2, CFCl3 show large differences. These differences are greatly reduced when the local mean standard deviation is normalized to the local vertical gradient. This ratio, called ‘equivalent displacement height’ exhibits a characteristic vertical profile which is very similar for all the longlived trace gases, as well as for O3. With the help of this ratio, it is demonstrated that the variances are essentially due to natural causes, i.e., transport. Using the mixing length hypothesis a theoretical expression for the equivalent displacement height is derived. From it the meridional slope of the mixing surfaces and the mixing length can be calculated as function of the altitude. Additional information is obtained on the variance of that slope. The uncertainty of the measured mean trace gas profiles is defined.  相似文献   

7.
A one-dimensional coupled climate and chemistry model has been developed to estimate past and possible future changes in atmospheric temperatures and chemical composition due to human activities. The model takes into account heat flux into the oceans and uses a new tropospheric temperature lapse rate formulation. As found in other studies, we estimate that the combined greenhouse effect of CH4, O3, CF2Cl2, CFCl3 and N2O in the future will be about as large as that of CO2. Our model calculates an increase in average global surface temperatures by about 0.6°C since the start of the industrial era and predicts for A.D. 2050 a twice as large additional rise. Substantial depletions of ozone in the upper stratosphere by between 25% and 55% are calculated, depending on scenario. Accompanying temperature changes are between 15°C and 25°C. Bromine compounds are found to be important, if no rigid international regulations on CFC emissions are effective. Our model may, however, concivably underestimate possible effects of CFCl3, CF2Cl2, C2F3Cl3 and other CFC and organic bromine emissions on lower stratospheric ozone, because it can not simulate the rapid breakdown of ozone which is now being observed worldwide. An uncertainty study regarding the photochemistry of stratospheric ozone, especially in the region below about 25 km, is included. We propose a reaction, involving excited molecular oxygen formation from ozone photolysis, as a possible solution to the problem of ozone concentrations calculated to be too low above 45 km. We also estimate that tropospheric ozone concentrations have grown strongly in the northern hemisphere since pre-industrial times and that further large increases may take place, especially if global emissions of NOx from fossil fuel and biomass burning were to continue to increase. Growing NOx emissions from aircraft may play an important role in ozone concentrations in the upper troposphere and low stratosphere.  相似文献   

8.
Since 1978, a measuring station has been operated at Cape Point (34°21 S, 18°29 E). In this article, results of measurements of CO, CFCl3, CCl4, O3, N2O and CH4 are presented as monthly means and analyzed with respect to long-term trends and seasonal variations. For CO and CH4, very similar seasonal variations have been observed, indicating strong interrelations between these two gases. For CO and O3, no significant changes of the mean annual concentrations can be established for the observation periods of 10 and 5 years, respectively. The measurements yield a growth rate of 9.1 pptv yr-1 for CFCl3 (1980–1987) and 0.6 ppbv yr-1 for N2O (1983–1987). The concentration increases of CH4 (10.3 ppbv yr-1 for 1983–1987) and of CCl4 (2.1 pptv yr-1 for 1980–1988) are analyzed for temporal changes during the last years.Presented at the Second Conference on Baseline Observations in Atmospheric Chemistry (SABOAC II) in Melbourne, Australia, November 1988.  相似文献   

9.
The products of the Cl-atom initiated reactions of a series of hydrofluorocarbons (HFCs) and hydrochlorofluorocarbons (HCFCs) in air have been investigated at 298 K and one atmosphere (740 Torr total pressure) of air. The products observed and quantified and their yields (%) were as follows: from CHF2Cl (HCFC-22), C(O)F2 (100%); from CHFCl2 (HCFC-21), C(O)FCl (100%); from CH2FCl (HCFC-31), HC(O)F (100%); from CH3F (HFC-41), HC(O)F (100%); from CH3CFCl2 (HCFC-141b), C(O)FCl (100%); from CH3CF2Cl (HCFC-142b), C(O)F2 (100%); from CH3CHF2 (HFC-152a), C(O)F2 (92%); from CHCl2CF3 (HCFC-123), CF3C(O)Cl (98%); from CHFClCF3 (HCFC-124), CF3C(O)F (101%); and from CHF2CF3 (HFC-125), C(O)F2 (100%). The reaction mechanisms are discussed.  相似文献   

10.
A field study of trace gas emissions from biomass burning in Equatorial Africa gave methyl chloride emission ratios of 4.3×10–5±0.8×10–5 mol CH3Cl/mol CO2. Based on the global emission rates for CO2 from biomass burning we estimate a range of 226–904×109 g/y as global emission rate with a best estimate of 515×109 g/y. This is somewhat lower than a previous estimate which has been based on laboratory studies. Nevertheless, our emission rate estimates correspond to 10–40% of the global turnover of methyl chloride and thus support the importance of biomass burning as methyl chloride source. The emission ratios for other halocarbons (CH2Cl2, CHCl3, CCl4, CH3CCl3, C2HCl3, C2Cl4, F-113) are lower. In general there seems to be a substantial decrease with increasing complexity of the compounds and number of halogen atoms. For dichloromethane biomass burning still contributes significantly to the total global budget and in the Southern Hemisphere biomass burning is probably the most important source for atmospheric dichloromethane. For the global budgets of other halocarbons biomass burning is of very limited relevance.  相似文献   

11.
Synoptic conditions of extreme rainwater pollution episodes, evidenced by maximum values of parameters measured in the protected area of Wielkopolski National Park (western-central Poland), were analysed in this study. Precipitation samples were tested for the following parameters: pH, electrical conductivity and the concentration of the following elements: F-, Cl-, NO2-, NO3-, PO43-, SO42- and Na+, NH4+, K+, Mg2+, Ca2+. It was assumed, that in winter, western advection of Atlantic air masses was the most frequent aerosol and pollution transport scenario for the investigated area. In summer the most heavily pollution occur at the intensified meridional flow over the central Europe, indicating advection of cooler air from northern Europe and the North Sea. In most of cases, the weather conditions causing extreme concentration of examined pollutants, were determined by the movement of weather fronts over considerable parts of Poland and by precipitation caused by those fronts.  相似文献   

12.
The paper presents a coupled chemical-radiative one-dimensional model which is used to assess the steady-state and time-dependent composition and temperature changes in relation to the release in the atmosphere of chemicals such as CO2, N2O, CH4, NO x and chlorofluorocarbons.The model indicates that a doubling in CO2 leads to an increase in temperature of 12.7 K near the stratopause and to an increase in total ozone of 3.3% with a local enhancement of 17% at 40 km altitude. Additional release of N2O leads to an ozone reduction in the middle stratosphere. The reduction in the ozone column is predicted to be equal to 8.8% when the amount of N2O is doubled. The chemical effect of CH4 on ozone is particularly important in the troposphere. A doubling in the mixing ratio of this gas enhances the O3 concentration by 11% at 5 km. The predicted increase of the ozone column is equal to 1.4%. A constant emission of CFCl3 (230 kT/yr) and CF2Cl2 (300 kT/yr) leads to a steady-state reduction in the ozone column of 1.9% compared to the present-day situation. The effect of some uncertainties in the chemical scheme as well as the impact of a high chlorine perturbation are briefly discussed.Finally the results of a time dependent calculation assuming a realistic scenario for the emission of chemical species are presented and analyzed.  相似文献   

13.
The ultraviolet absorption cross sections were measured for CF3Br, CF2ClBr, CF2Br-CF2Br, CF2Br2, CHF2Br, CHFBr-CF3, CH2Br-CF3, CHClBr-CF3 in the wavelength range 190–320 nm at 295 K. The photolysis is concluded to be the minor atmospheric sink for CHF2Br, CHFBr-CF3, CH2Br-CF3, CHClBr-CF3.  相似文献   

14.
Methane,carbon monoxide and methylchloroform in the southern hemisphere   总被引:1,自引:0,他引:1  
New observational data on CH4, CO and CH3CCl3 in the southern hemisphere are reported. The data are analysed for long term trends and seasonal cycles. CH3CCl3 data are used to scale the OH fields incorporated in a two dimensional model, which in turn, is used to constrain the magnitude of a global CH4 source function. The possible causes of observed seasonality of CH3CCl3, CH4 and CO are identified, and several other aspects of observed CH4 variability are discussed.Possible future research directions are also given.  相似文献   

15.
Products and mechanisms for the gas-phase reactions of NO3 radicals with CH2=CHCl, CH2=CCl2, CHCl=CCl2,cis-CHCl=CHCl andtrans-CHCl=CHCl in air have been studied. The experiments were carried out at 295±2 K and 740±5 Torr in a 480-L Teflon-coated reaction chamber and at 295±2 K and 760±5 Torr in a 250-L stainless steel reactor. NO3 was generated by the thermal dissociation of N2O5. Experiments with15NO3 and CD2CDCl have also been performed. The initially formed nitrate peroxynitrates decay into carbonyl compounds, nitrates, HCl and ClNO2. In adidtion, there are indications of nitrooxy acid chlorides being produced. The reactions with CH2=CCl2 and CHCl=CCl2 are more complex due to release of chlorine atoms which eventually lead to formation of chloroacid chlorides.A general reaction mechanism is proposed and the observed concentration-time profiles of reactants and products are simulated for each compound. The rate constants for the initial step of NO3 addition to the chloroethenes are determined as: (2.6±0.5, 9.4±0.9, 2.0±0.4 and 1.4±0.4) × 10–16 cm3 molecule–1 s–1 for CH2=CHCl, CH2=CCl2, CHCl=CCl2 andcis-CHCl=CHCl, respectively.  相似文献   

16.
There are large uncertainties in identifying and quantifying the natural and anthropogenic sources of chloromethanes – methyl chloride (CH3Cl), chloroform (CHCl3) and dichloromethane (CH2Cl2), which are responsible for about 15% of the total chlorine in the stratosphere. We report two years of in situ observations of these species from the AGAGE (Advanced Global Atmospheric Gas Experiment) program at Cape Grim, Tasmania (41° S, 145° E). The average background levels of CH3Cl, CHCl3 and CH2Cl2 during 1998–2000 were 551± 8, 6.3± 0.2 and 8.9± 0.2 ppt (dry air mole fractions expressed in parts per 1012) respectively, with a two-year average amplitude of the seasonal cycles in background air of 25, 1.1 and 1.5 ppt respectively. The CH3Cl and CHCl3 records at Cape Grim show clear episodes of elevated mixing ratios up to 1300 ppt and 55 ppt respectively, which are highly correlated, suggesting common source(s). Trajectory analyses show that the sources of CH3Cl and CHCl3 that are responsible for these elevated observations are located in coastal-terrestrial and/or coastal-seawater regions in Tasmania and the south-eastern Australian mainland. Elevated levels of CH2Cl2 (up to 70 ppt above background) are associated mainly with emissions from the Melbourne/Port Phillip region, a large urban/industrial complex (population 3.5 million) 300 km north of Cape Grim.Now at the Centre for Atmospheric ChemistryNow at School of Environmental Sciences  相似文献   

17.
The multi-channel reactions (1) CCl3CH2OH+Cl→ products and (2) CCl3CH2OH+OH→ products have been investigated by using the dual-level direct dynamics method. Two reaction channels, i.e., methylene- and hydroxyl-hydrogen abstraction, are identified for each reaction. The optimized geometries and frequencies of the stationary points are calculated at the B3LYP/6-311G(d,p) and MP2/6-311G(d,p) levels. Higher-level energies are obtained at the MC-QCISD and G3(MP2) levels based on the B3LYP and MP2 geometries, respectively, as well as by the CCSD(T)/6-31G(d)+CF method using the B3LYP geometries. Complexes with energies lower than those of the reactants are located at the entrance of each reaction channel. The rate constants for each reaction channel are evaluated by using the canonical variational transition state theory (CVT) incorporating the small-curvature tunneling (SCT) correction in a temperature range of 200–2000 K at the MC-QCISD//B3LYP/6-311G(d,p) level. The agreement of the calculated rate constants and experimental values for two reactions is seen to be remarkably good. Theoretical results indicate that in a low temperature range, the branching ratio to the hydroxyl-H-abstraction channel for both reactions is found negligible. The reactions proceed practically via methylene-H-abstraction yielding the products of CCl3CHOH+HCl and CCl3CHOH+H2O, respectively; while for reaction of CCl3CH2OH+Cl, hydroxyl-H-abstraction channel appears to be probable with the increase of temperature. The enthalpies of formation for the CCl3CH2OH, CCl3CHOH, and CCl3CH2O species are evaluated via isodesmic reactions at several levels.  相似文献   

18.
Seven years of daily gas chromatographic measurements of CCl4 at the five globally distributed ALE/GAGE surface sites are reported. It is determined that CCl4 has been accumulating in the atmosphere at a rate of 1.3±0.1%/yr over the period 1978–1985 and that the releases of CCl4 into the atmosphere have remained fairly constant, with the smallest releases in 1981–1982. Using an inversion scheme based on a nine box model of the atmosphere, we infer a CCl4 lifetime of approximately 40 yr, an inventory on 1 July 1978 of (2.08±0.07)×109 kg and an average rate of release over the period 1978–1985 of (0.9±0.9)×107 kg/yr. These results produce excellent agreement with a release scenario derived from global production estimates for CCl4 and the major CCl4 byproduct, the chlorofluorocarbons. However, to obtain this consistency, it is necessary that our current ALE/GAGE absolute calibration standard be reduced approximately 25% thus bringing it into agreement with measurements by Yokohata et al. (1985) and Hanst et al. (1975).  相似文献   

19.
Rate constants have been measured for the gas-phase reactions of hydroxyl radical with two halons and three of their proposed substitutes and also with CHClBr-CF3 using the discharge-flow-EPR technique over the temperature range 298–460 K. The following Arrhenius expressions have been derived (units are 10–13 cm3 molecule–1 s–1): (9.3 –0.9 +1.0 ) exp{–(1326±33)/T} for CHF2Br; (7.2 –0.6 +0.7 ) exp{–(1111±32)/T} for CHFBrCF3; (8.5 –0.8 +0.9 ) exp{–(1113±35)/T} for CH2BrCF3; (12.8 –1.2 +1.5 ) exp{–(995±38)/T} for CHClBrCF3. The rate constants at 298 K have been estimated to be <2×10–17 cm3 molecule–1 s–1 for CF3Br and CF2Br—CF2Br. The atmospheric lifetimes due to hydroxyl attack have been estimated to be 5.5, 3.3, 2.8, and 1.2 years for CHF2Br, CHFBr—CF3, CH2Br—CF3 and CHClBr—CF3, respectively.  相似文献   

20.
As a possible tropospheric sink of trichlorofluoromethane (CCl3F), its adsorption and reaction on solid particles were studied with or without UV light longer than 310 nm. The adsorption and photodesorption occurred for most of the particles examined. The amounts depended not only on the BET surface area but also on the chemical property of the particles. The reaction rates were less than 0.1% h-1. The surface induced degradation of CCl3F in air was confirmed under photoirradiation at room temperature by the detection of Cl- or F- on some metal oxides. When the particles were pretreated with heat and evacuation, the reaction rate became larger and disproportionation of CCl3F took place. The tropospheric lifetime of CCl3F was reevaluated based on a reported model. It is suggested that the heterogeneous reaction of CCl3F on particles may be a possible tropospheric sink.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号