首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
In this study 50 seismic events, preceding and accompanying the eruptions occurring in 1981 and 1983, have been considered. Seismic moments, fault radii, stress drops and seismic energies have been calculated using Brune’s model (J Geophys Res 75:4997–5009, 1970; J Geophys Res 76:5002, 1971); site, anelastic attenuation along the propagation path, geometrical spreading and interaction with the free surface effects are taken into account. For each event we have also estimated the equivalent Wood–Anderson magnitude (MWAeq) (Scherbaum and Stoll in Bull Seism Soc Am 73:1321–1343, 1983); relations among all these source parameters have been determined. Furthermore, the hypothesis of self-similarity (Aki in J Geophys Res 72:1217–1231, 1967) is not verified for events with seismic moments <1012 N-m: in fact the relationship between log-stress drop and log-moment is linear up to a moment of 1012 N-m (events of 1981 eruption), while for higher moments (events of 1983 eruption) the slope of the regression line is not significantly different from zero. We suppose that such a behaviour is related to a heterogeneous medium with barriers on the faults. Finally, the main conclusion is that eruptions of 1981 and 1983 differ from one another both in eruptive and seismic aspects; analysis of seismic energies indicates an increase in Mt. Etna’s activity, confirmed by studies performed on the following lateral eruption of 1991–1993 (Patanè et al. in Bull Volcanol 47:941–952, 1995), occurring on the same structural trend.  相似文献   

2.
Using the recorded earthquake strong ground motion, the attenuation of peak ground acceleration (PGA) and peak ground velocity (PGV) are derived in the southern Dead Sea Transform region. The expected values of strong motion parameters from future earthquakes are estimated from attenuation equations, which are determined by regression analysis on real accelerograms. In this study, the method of Joyner and Boor [Bull Seismol Soc Am 71(6):2011–2038, 1981] was selected to produce the attenuation model for the southern Dead Sea Transform region. The dataset for PGA consists of 57 recordings from 30 earthquakes and for PGV 26 recordings from 19 earthquakes. The attenuation relations developed in this study are proposed as replacement for former probabilistic relations that have been used for a variety of earthquake engineering applications. The comparison between the derived PGA relations from this study with the former relations clearly shows significant lower values than the other relations.  相似文献   

3.
Probabilistic seismic hazard of Pakistan, Azad-Jammu and Kashmir   总被引:2,自引:2,他引:0  
The seismic hazard study for Pakistan and Azad Jammu and Kashmir has been conducted by using probabilistic approach in terms of peak ground acceleration (PGA) in m/s2 and also seismic hazard response spectra for different cities. A new version of Ambraseys et al. (Bull Earthq Eng 3:1–53, 2005) ground acceleration model is used, and parameterization is based on most recent updated earthquake catalogs that consisted of 14,000 events. The threshold magnitude was fixed at M w 4.8, but seismic zones like northern Pakistan–Tajikistan, Hindukush and northern Afghanistan–Tajikistan border had M w 5.2. The average normalized ‘a’ and ‘b’ values for all zones are 6.15 and 0.95, respectively. Seismicity of study area was modeled, and ground motion was computed for eight frequencies (0.025, 0.1, 0.2, 0.5, 1.0, 1.5, 2.0, 2.5 s) for different annual exceedance rates of 0.02, 0.01, 0.005, 0.002 and 0.001 (return periods 50, 100, 200, 500 and 1,000 years) for stiff rocks at the gridding of 0.1° × 0.1°. Seismic hazard maps based on computed PGA for 0.02, 0.01 and 0.002 annual exceedance are prepared. These maps indicate the earthquake hazard of Pakistan and surrounding areas in the form of acceleration contour lines, which are in agreement with geological and seismotectonic characteristics of the study area. The maximum seismic hazard values are found at Muzaffarabad, Gilgit and Quetta areas.  相似文献   

4.
The presence of quarry and mine blasts in seismic catalogues is detected using the Wiemer and Baer (Bull Seism Soc Am 90(2):525–530, 2000) algorithm. The procedure is based on the observation that quarry blasts generally take place during daytime hours: the areas with a high ratio of daytime and night-time events are likely to be regions with quarry activity. In the first part of this work we have tested the method, using both a synthetic and a regional catalogue; in the second part the procedure has been applied to some of the European regional catalogues available on line. The comparison between the results obtained and the location of known quarries and mines for the analysed catalogues confirms the reliability of the methodology in identifying mining areas.  相似文献   

5.
The use of logic trees in probabilistic seismic hazard analyses often involves a large number of branches that reflect the uncertainty in the selection of different models and in the selection of the parameter values of each model. The sensitivity analysis, as proposed by Rabinowitz and Steinberg [Rabinowitz, N., Steinberg, D.M., 1991. Seismic hazard sensitivity analysis: a multi-parameter approach. Bull. Seismol. Soc. Am. 81, 796–817], is an efficient tool that allows the construction of logic trees focusing attention on the parameters that have greater impact on the hazard.In this paper the sensitivity analysis is performed in order to identify the parameters that have the largest influence on the Western Liguria (North Western Italy) seismic hazard. The analysis is conducted for six strategic sites following the multi-parameter approach developed by Rabinowitz and Steinberg [Rabinowitz, N., Steinberg, D.M., 1991. Seismic hazard sensitivity analysis: a multi-parameter approach. Bull. Seismol. Soc. Am. 81, 796–817] and accounts for both mean hazard values and hazard values corresponding to different percentiles (e.g., 16%-ile and 84%-ile). The results are assessed in terms of the expected PGA with a 10% probability of exceedance in 50 years for rock conditions and account for both the contribution from specific source zones using the Cornell approach [Cornell, C.A., 1968. Engineering seismic risk analysis. Bull. Seismol. Soc. Am. 58, 1583–1606] and the spatially smoothed seismicity [Frankel, A., 1995. Mapping seismic hazard in the Central and Eastern United States. Seismol. Res. Lett. 66, 8–21]. The influence of different procedures for calculating seismic hazard, seismic catalogues (epicentral parameters), source zone models, frequency–magnitude parameters, maximum earthquake magnitude values and attenuation relationships is considered. As a result, the sensitivity analysis allows us to identify the parameters with higher influence on the hazard. Only these parameters should be subjected to careful discussion or further research in order to reduce the uncertainty in the hazard while those with little or no effect can be excluded from subsequent logic-tree-based seismic hazard analyses.  相似文献   

6.
Nearly 108-km lengths of Mersin shores are composed of natural beaches. The region is located between major tourist centers. In the future, this region is thought to be built with a great number of tourist facilities. Turkey’s largest seaport, Ata? refinery (Mersin International Port) is located in Mersin. Recently, Mersin is becoming of great importance to Turkey as the latter plans to construct its second nuclear power plant in the region. Therefore, as nuclear power plants are built to withstand environmental hazards, it is very important to analyze the seismic risk of the areas where the nuclear power plant will be constructed. The region is located between the East Anatolian Fault Zone and Center Anatolian Fault Zone. Based on the Turkey Earthquake Regions Map, Mersin is divided into second-, third-, and fourth-degree earthquake regions. In this study, we sampled earthquakes of magnitude of 4.0 or greater between 01 Jan 1900 and 31 Dec 2010 in the area; seismic hazard of Mersin province was estimated with probabilistic and statistical methods. The study area was selected as the coordinates between 36.03° and 37.42° North and 32.57° and 35.16° East. On the study area, different scaled magnitude values in the last 110 years converted to a common scale (Mw) and earthquake catalog was re-compiled and also seismic sources that may affect the area was determined. In this study, the seismic hazards of the region were obtained using the methods of probability and statistics. This study used three different attenuation relationships. Using the attenuation relationships suggested by Boore et al. (Seismol Res Lett 68(1):128–153, 1997) and Kalkan and Gülkan (Earthquake Spectra 20:1111–1138, 2004), the largest ground acceleration which corresponds to a recurrence period of 475 years was found as 0.08–0.09 g and Akkar and Ça?nan (Bull Seismol Soc Am 100 6:2978–2995, 2010), 0.04 g for bedrock at the central district. When computing for seismic hazard curves, Mut district appears to have a greater seismic hazard compared with other districts. Moreover, according to the attenuation relationships, seismic hazard curves corresponding to a recurrence period of 475 years were obtained for the Mersin Central, Mut, Erdemli, Çaml?yayla, and Tarsus districts.  相似文献   

7.
A total of 163 free-field acceleration time histories recorded at epicentral distances of up to 200 km from 32 earthquakes with moment magnitudes ranging from M w 4.9 to 7.4 have been used to investigate the predictive capabilities of the local, regional, and next generation attenuation (NGA) ground-motion prediction equations and determine their applicability for northern Iran. Two different statistical approaches, namely the likelihood method (LH) of Scherbaum et al. (Bull Seismol Soc Am 94:341–348, 2004) and the average log-likelihood method (LLH) of Scherbaum et al. (Bull Seismol Soc Am 99:3234–3247, 2009), have been applied for evaluation of these models. The best-fitting models (considering both the LH and LLH results) over the entire frequency range of interest are those of Ghasemi et al. (Seismol 13:499–515, 2009a) and Soghrat et al. (Geophys J Int 188:645–679, 2012) among the local models, Abrahamson and Silva (Earthq Spectra 24:67–97, 2008) and Chiou and Youngs (Earthq Spectra 24:173–215, 2008) among the NGA models, and finally Akkar and Bommer (Seism Res Lett 81:195–206, 2010) among the regional models.  相似文献   

8.
Multiple approaches are used to study the potential seismic hazard in the North China Craton (NCC, or North China Plain), where approximately 15 % of the Chinese population resides and under which active faults are located. In this study, we develop a new modified Mercalli intensity (MMI) attenuation relationship for the NCC using intensity data from 10 instrumentally recorded events. We then utilize this relationship to infer the magnitude and epicentral location of historic events based on the method proposed by Bakun and Wentworth (Bull Seismol Soc Am 87(6):1502–1521, 1997). In addition, a modified stochastic finite fault model is employed to simulate the strong ground motions caused by these historic events. The simulated peak ground accelerations and velocities are then converted into regional MMI distributions through empirical relationships, and these synthetic MMI maps are compared to field observations. The resultant MMI attenuation versus distance models of the 1976 M w 7.6 Tangshan event and the 1679 M 8.0 Sanhe-Pinggu event are consistent with the empirical attenuation relationships, and the location and size of the meizoseismal area (>VIII) are consistent with observations. The successful modeling of these historic events indicates that a stochastic finite fault model constrained by the regional MMI attenuation relationship can be used to evaluate a wide range of scenarios based on modern computational simulations. These findings may also provide useful information for the estimation and mitigation of potential seismic hazards in this region.  相似文献   

9.
A probabilistic procedure was applied to assess seismic hazard for the sites of five Greek cities (Athens, Heraklion, Patras, Thessaloniki and Volos) using peak ground acceleration as the hazard parameter. The methodology allows the use of either historical or instrumental data, or a combination of both. It has been developed specifically for the estimation of seismic hazard at a given site and does not require any specification of seismic sources or/and seismic zones. A new relation for the attenuation of peak ground acceleration was employed for the shallow seismicity in Greece. The computations involved the area- and site-specific parts. When assessing magnitude recurrence for the areas surrounding the five cities, the maximum magnitude, mmax, was estimated using a recently derived equation. The site-specific results were expressed as probabilities that a given peak ground acceleration value will be exceeded at least once during a time interval of 1, 50 and 100 years at the sites of the cities. They were based on the maximum peak ground acceleration values computed by assuming the occurrence of the strongest possible earthquake (of magnitude mmax) at a very short distance from the site and using the mean value obtained with the help of the attenuation law. This gave 0.24 g for Athens, 0.53 g for Heraklion (shallow) and 0.39 g Heraklion (intermediate-depth seismicity), 0.30 g for Patras, 0.35 g for Thessaloniki and 0.30 g for Volos. In addition, the probabilities of exceedance of the estimated maximum peak ground acceleration values were calculated for the sites. The standard deviation of the new Greek attenuation law demonstrates the uncertainty and large variation of predicted peak ground acceleration values.  相似文献   

10.
There are significant advantages in using indirect pedo-transfer functions, (PTFs) for the estimation of unsaturated soil properties. The pedo-transfer functions can be used for the estimation of the soil–water characteristic curve (SWCC) which in turn is used for the estimation of other unsaturated soil properties. The accuracy of the indirect pedo-transfer function method for the estimation of the SWCC depends on the PTF and the equation used to best-fit the particle-size distribution (PSD) data. The objectives of this study are to: (1) evaluate the performance of the Fredlund et al. (Can Geotech J 37:817–827, 2000) equation for best-fitting the particle-size distribution, (PSD) data, and, (2) compare the predictions made by two of the commonly used PTFs; namely, Arya and Paris (Soil Sci Soc Am J 45:1023–1030, 1981) and Fredlund et al. (Can Geotech J 39:1103–1117, 2002), for estimating the SWCC from the PSD. The authors used 258 measured PSDs and SWCC datasets from the Loess Plateau, China, for this study. The dataset consisted of 187 silt–loam soils, 41 loam soils, 11 silt–clay–loam soils, 10 sand–loam soils, 6 silt–clay soils, and 3 loam–sand soils. The SWCC and PSD datasets were measured using a Pressure Plate apparatus and the pipette method, respectively. The comparison between the estimated and measured particle-size distribution curves showed that the Fredlund et al. (Can Geotech J 37:817–827, 2000) equation closely prepresented the PSD for all soils in the Loess Plateau, with a lower root mean square error (RMSE) of 0.869%. The comparison between the estimated and measured water contents at the same suction showed that the Fredlund et al. (Can Geotech J 39:1103–1117, 2002) PTF performed somewhat better than the Arya and Paris (Soil Sci Soc Am J 45:1023–1030, 1981) function. The Fredlund et al. method had RMSE value of 0.039 cm3 cm−3 as opposed to 0.046 cm3 cm−3 for the Arya and Paris (Soil Sci Soc Am J 45:1023–1030, 1981) method. The Fredlund et al. (Can Geotech J 39:1103–1117, 2002) PTF produced the closest predictions for sand–loam, loam–sand, and loam soils, with a lower RMSE for gravimetric water content ranging from 0.006 to 0.036 cm3 cm−3. There were consistent over-estimations observed for silt–loam, silt–clay–loam, and slit–clay soils with RMSE values for gravimetric water content ranging from 0.037 to 0.043 cm3 cm−3. The measured and estimated air-entry values were closest when using the Fredlund et al. (Can Geotech J 39:1103–1117, 2002) PTF. The measured and estimated maximum slopes on the SWCC were closest when using the Arya and Paris (Soil Sci Soc Am J 45:1023–1030, 1981) PTF.  相似文献   

11.
Earthquake-induced landslides are responsible worldwide for significant socioeconomic losses and historically have a prominent position in the list of natural hazards affecting the Iran plateau. As a step toward the development of tools for the assessment and the management of this kind of hazard at regional scale, an empirical estimator of coseismic displacements along potential sliding surfaces was obtained through a regression analysis for the Zagros region, a mountainous Iranian region subjected to earthquake-induced landslides. This estimator, based on the Newmark’s model, allows to evaluate the expected permanent displacement (named “Newmark displacement”) induced by seismic shaking of defined energy on potential sliding surface characterized by a given critical acceleration. To produce regression models for Newmark displacement estimators, a data set was constructed for different critical acceleration values on the basis of 108 accelerometric recordings from 80 Iranian earthquakes with moment magnitudes between 3.6 and 7. The empirical estimator has a general form, proposed by Jibson (Eng Geol 91:209–218, 2007), relating Newmark displacement to Arias intensity (as parameter representing the energy of the seismic forces) and to critical acceleration (as parameter representing the dynamic shear resistance of the sliding mass). As an example of application, this relation was employed to provide a basic document for earthquake-induced landslide hazard assessment at regional scale, according to a method proposed by Del Gaudio et al. (Bull Seismol Soc Am 93:557–569, 2003), applied to the whole Iranian territory, including Zagros region. This method consists in evaluating the shear resistance required to slopes to limit the occurrence of seismically induced failures, on the basis of the Newmark’s model. The obtained results show that the exposure to landslide seismic induction is maximum in the Alborz Mountains region, where critical accelerations up to ~0.1 g are required to limit the probability of seismic triggering of coherent type landslides within 10% in 50 years.  相似文献   

12.
In this paper, we present a probabilistic seismic hazard analysis (PSHA) for mainland Spain that takes into account recent new results in seismicity, seismic zoning, and strong ground attenuation not considered in the latest PSHA of the Spanish Building Code. Those new input data have been obtained as a three-step project carried out in order to improve the existing hazard map for mainland Spain. We have produced a new earthquake catalogue for the area, in which the earthquakes are given in moment magnitude through specific deduced relationships for our territory based on intensity data (Mezcua et al. in Seismol Res Lett 75:75–81, 2004). In addition, we included a new seismogenetic zoning based on the recent partial zoning studies performed by different authors. Finally, as we have developed a new strong ground motion model for the area García Blanco (2009), it was considered in the hazard calculation together with other attenuations gathered from different authors using data compatible with our region. With this new data, a logic tree process is defined to quantify the epistemic uncertainty related to those parts of the process. A sensitivity test has been included in order to analyze the different models of ground motion and seismotectonic zonation used in this work. Finally, after applying a weighting scheme, a mean hazard map for PGA, based on rock type condition for 10% exceedance probability in 50 years, is presented, including 15th and 85th percentile hazard maps. The main differences with the present official building code hazard map are analyzed.  相似文献   

13.
Empirical Green??s function (EGF) technique is considered to be most effective technique for simulation of ground motions due to a finite earthquake source. In the present paper, this technique has been used to simulate ground motion due to a great earthquake. The coastal region of Sumatra Island has been visited by a great earthquake on December 26, 2004. This earthquake has been recorded at several broadband stations including a nearest broadband station PSI in Indonesia. The shear wave contributions in both horizontal components have been simulated at PSI station using EGF technique. The comparison of simulated and observed waveform has been made for various possibilities of rupture parameters in terms of root mean square error. The final rupture model supports rupture velocity of 3.0?km/s with nucleation point supporting northward propagating rupture that coincide with high-slip asperity defined by Sorensen et al. (Bull Seism Soc Am 97:S139?CS151, 2007). The final modeling parameters have been used to simulate record at MDRS station in coastal state of Tamilnadu, India. In an attempt to model a scenario of great earthquake in the Andaman Island, a hypothetical rupture plane is modeled in this region. The event occurred on August 10, 2008 of magnitude 6.2 (M w ) recorded on strong motion array at Port Blair has been used as EGF to simulate records due to the hypothetical great earthquake. Possibilities of earthquake due to the oblique strike-slip and thrust mechanism have been modeled in the present paper. Several possibilities of nucleation point for both cases has been considered, and it is seen that variation of peak ground acceleration at Port Blair station for strike-slip and thrust mechanism is 126?C738 gals and 647?C2,571 gals, respectively, which indicate high seismic hazard potential of Andaman Island.  相似文献   

14.
In a previous paper (Makropoulos and Burton, 1985) the seismic hazard in Greece was examined in terms of magnitude recurrence using Gumbel's third asymptotic distribution of extreme values and concepts of the physical process of strain energy release. The present study extends the seismic hazard methods beyond magnitude to the estimation of expectations of levels of peak ground acceleration exceedance thus allowing for a direct comparison between these two methodologies as well as establishing information relevant to design and planning criteria.The limited number of strong motion records do not permit regional study of attenuation of ground vibration in Greece. An average formula is derived from eight well known formulae which resulted from worldwide studies, this is: a = 2164 e0.70m (r+20)−1.80 cm s−2 where a is peak ground acceleration, m is earthquake magnitude and r is hypocentral distance in kilometres. This formula agrees with the observed values of peak ground acceleration values recorded in Greece.Acceleration seismic hazard is calculated at each of six chosen cities. Values of maximum acceleration with probability 70% of not been exceeded in the next 25, 50, 100, and 200 years are obtained along with corresponding values of velocity and displacement. The same detailed acceleration evaluation is then applied to the whole area of Greece by dividing it into cells of 0.5° lat × 0.5° long, and the results are illustrated through isoacceleration maps.Differences in magnitude and acceleration hazard maps reflect the fact that in acceleration hazard assessment the focal distance from a particular place in an important factor. The cities of Heraklion and Rodhos have the lowest acceleration hazard although the expected earthquakes may have large magnitude. Intermediate depth earthquakes characterise these two cities. Acceleration estimates, unlike magnitude hazard parameters, refer to a particular place and not to an area around it. Hence, even if two places have similar earthquake depth distributions, the hazards may differ significantly because of the different spatial distribution of the foci. This is observed in the case of Athens and Corinth. These cities have almost the same magnitude hazard, but the acceleration hazard is much lower for Athens where the hazard is mainly due to more distant earthquakes.The isoacceleration maps for Greece as a whole also define areas of high seismic hazard. These are the areas around Cephalonia and Leukas Islands in the Ionian Sea and the eastern Sporadhes, Lesbos Islands and Chalkidiki in the Northern Aegean Sea. At the 70% probability level the maximum acceleration is expected to be around 0.2g within the next 50 years. The areas where the maximum acceleration at the 70% probability level is expected to reach a value of 0.3g in the next 200 years are around Cephalonia and Leukas Islands and near the Dardanelles.  相似文献   

15.
Probabilistic seismic hazard analysis for Bangalore   总被引:5,自引:3,他引:2  
This article presents the results of probabilistic seismic hazard analysis (PSHA) for Bangalore, South India. Analyses have been carried out considering the seismotectonic parameters of the region covering a radius of 350 km keeping Bangalore as the center. Seismic hazard parameter ‘b’ has been evaluated considering the available earthquake data using (1) Gutenberg–Richter (G–R) relationship and (2) Kijko and Sellevoll (1989, 1992) method utilizing extreme and complete catalogs. The ‘b’ parameter was estimated to be 0.62 to 0.98 from G–R relation and 0.87 ± 0.03 from Kijko and Sellevoll method. The results obtained are a little higher than the ‘b’ values published earlier for southern India. Further, probabilistic seismic hazard analysis for Bangalore region has been carried out considering six seismogenic sources. From the analysis, mean annual rate of exceedance and cumulative probability hazard curve for peak ground acceleration (PGA) and spectral acceleration (Sa) have been generated. The quantified hazard values in terms of the rock level peak ground acceleration (PGA) are mapped for 10% probability of exceedance in 50 years on a grid size of 0.5 km × 0.5 km. In addition, Uniform Hazard Response Spectrum (UHRS) at rock level is also developed for the 5% damping corresponding to 10% probability of exceedance in 50 years. The peak ground acceleration (PGA) value of 0.121 g obtained from the present investigation is slightly lower (but comparable) than the PGA values obtained from the deterministic seismic hazard analysis (DSHA) for the same area. However, the PGA value obtained in the current investigation is higher than PGA values reported in the global seismic hazard assessment program (GSHAP) maps of Bhatia et al. (1999) for the shield area.  相似文献   

16.
Earthquake Hazard Assessment in the Oran Region (Northwest Algeria)   总被引:4,自引:1,他引:4  
Bouhadad  Youcef  Laouami  Nasser 《Natural Hazards》2002,26(3):227-243
This paper deals with the probabilistic seismic hazard analysis carried out in the Oran region, situated in the Northwest of Algeria. This part of Algeriawas historically struck by strong earthquakes. It was particularly affected during theOctober 9, 1790 Oran earthquake of intensity X. The main purpose of this work is to assessseismic hazard on rocks in order to provide engineers and planners with a basic tool for seismicrisk mitigation. The probabilistic approach is used in order to take into account uncertaintiesin seismic hazard assessment. Seismic sources are defined in the light of the most recentresults obtained from seismotectonics analyses carried out in North Algeria.Source parameters such as b-values, slip rate and maximum magnitude are assessed for eachseismic source. The attenuation of ground shaking motion with distance is estimated byusing attenuation relationships developed elsewhere throughout the world (Sadigh et al., 1993; Ambraseys and Bommer, 1991). The two relationships agree well with the local data. Differentchoices of source parameter values and attenuation relationships are assigned weights in alogic tree model. Results are presented as relationships between values of peak groundacceleration (PGA) and annual frequency of exceedance, and maps of hazard for returnperiods of 200 years and 500 years. A maximum peak ground acceleration of 0.42 g is obtainedfor the Oran site for a return period of 500 years.  相似文献   

17.
A probabilistic seismic hazard analysis for the states of Tripura and Mizoram in North East India is presented in this paper to evaluate the ground motion at bedrock level. Analyses were performed considering the available earthquake catalogs collected from different sources since 1731–2010 within a distance of 500 km from the political boundaries of the states. Earthquake data were declustered to remove the foreshocks and aftershocks in time and space window and then statistical analysis was carried out for data completeness. Based on seismicity, tectonic features and fault rupture mechanism, this region was divided into six major seismogenic zones and subsequently seismicity parameters (a and b) were calculated using Gutenberg–Richter (G–R) relationship. Faults data were extracted from SEISAT (Seismotectonic atlas of India, Geological Survey of India, New Delhi, 2000) published by Geological Survey of India and also from satellite images. The study area was divided into small grids of size 0.05° × 0.05° (approximately 5 km × 5 km), and the hazard parameters (rock level peak horizontal acceleration and spectral accelerations) were calculated at the center of each of these grid cells considering all the seismic sources within a radius of 500 km. Probabilistic seismic hazard analyses were carried out for Tripura and Mizoram states using the predictive ground motion equations given by Atkinson and Boore (Bull Seismol Soc Am 93:1703–1729, 2003) and Gupta (Soil Dyn Earthq Eng 30:368–377, 2010) for subduction belt. Attenuation relations were validated with the observed PGA values. Results are presented in the form of hazard curve, peak ground acceleration (PGA) and uniform hazard spectra for Agartala and Aizawl city (respective capital cities of Tripura and Mizoram states). Spatial variation of PGA at bedrock level with 2 and 10 % probability of exceedance in 50 years has been presented in the paper.  相似文献   

18.
Seismic hazard and site-specific ground motion for typical ports of Gujarat   总被引:3,自引:3,他引:0  
Economic importance of major ports is well known, and if ports are located in seismically active regions, then site-specific seismic hazard studies are essential to mitigate the seismic risk of the ports. Seismic design of port sites and related structures can be accomplished in three steps that include assessment of regional seismicity, geotechnical hazards, and soil structure interaction analysis. In the present study, site-specific probabilistic seismic hazard analysis is performed to identify the seismic hazard associated with four typical port sites of Gujarat state (bounded by 20°–25.5°N and 68°–75°E) of India viz. Kandla, Mundra, Hazira, and Dahej ports. The primary aim of the study is to develop consistent seismic ground motion for the structures within the four port sites for different three levels of ground shaking, i.e., operating level earthquake (72 years return period), contingency level earthquake (CLE) (475 year return period), and maximum considered earthquake (2,475 year return period). The geotechnical characterization for each port site is carried out using available geotechnical data. Shear wave velocities of the soil profile are estimated from SPT blow counts using various empirical formulae. Seismicity of the Gujarat region is modeled through delineating the 40 fault sources based on the seismotectonic setting. The Gujarat state is divided into three regions, i.e., Kachchh, Saurashtra, and Mainland Gujarat, and regional recurrence relations are assigned in the form of Gutenberg-Richter parameters in order to calculate seismic hazard associated with each port site. The horizontal component of ground acceleration for three levels of ground shaking is estimated by using different ground motion attenuation relations (GMAR) including one country-specific GMAR for Peninsular India. Uncertainty in seismic hazard computations is handled by using logic tree approach to develop uniform hazard spectra for 5% damping which are consistent with the specified three levels of ground shaking. Using recorded acceleration time history of Bhuj 2001 earthquake as the input time motion, synthetic time histories are generated to match the developed designed response spectra to study site-specific responses of port sites during different levels of ground shaking. It is observed that the Mundra and Kandla port sites are most vulnerable sites for seismic hazard as estimated CLE ground motion is in order of 0.79 and 0.48 g for Mundra and Kandla port sites, respectively. Hazira and Dahej port sites have comparatively less hazard with estimated CLE ground motion of 0.17 and 0.11 g, respectively. The ground amplification factor is observed at all sites which ranges from 1.3 to 2.0 for the frequency range of 1.0–2.7 Hz. The obtained spectral accelerations for the three levels of ground motions and obtained transfer functions for each port sites are compared with provisions made in Indian seismic code IS:1893-Part 1 (2002). The outcome of present study is recommended for further performance-based design to evaluate the seismic response of the port structures with respect to various performance levels.  相似文献   

19.
This paper presents a simulation of three components of near-field ground shaking recorded during the main shock at three stations of the September 16, 1978, Tabas (M w = 7.4), Iran, earthquake, close to the causative fault. A hybrid method composed of a discrete wavenumber method developed by Bouchon (Bouchon in Bull Seismol Soc Am 71:959–971, 1981; Cotton and Coutant in Geophys J Int 128:676–688, 1997) and a stochastic finite-fault modeling based on a dynamic corner frequency proposed by Motazedian and Atkinson (Bull Seismol Soc Am 95:995–1010, 2005), modified by Assatourians and Atkinson (Bull Seismol Soc Am 97:935–1949, 2007), is used for generating the seismograms at low (0.1–1.0 Hz) and high frequencies (1.0–20.0 Hz), respectively. The results are validated by comparing the simulated peak acceleration, peak velocity, peak displacement, Arias intensity, the integral of velocity squared, Fourier spectrum and acceleration response spectrum on a frequency-by-frequency basis, the shape of the normalized integrals of acceleration and velocity squared, and the cross-correlation with the observed time-series data. Each characteristic is compared on a scale from 0 to 10, with 10 being perfect agreement. Also, the results are validated by comparing the simulated ground motions with the modified Mercalli intensity observations reported by reconnaissance teams and showed reasonable agreement. The results of the present study imply that the damage distribution pattern of the 1978 Tabas earthquake can be explained by the source directivity effect.  相似文献   

20.
The seismically active Northwest (NW) Himalaya falls within Seismic Zone IV and V of the hazard zonation map of India. The region has suffered several moderate (~25), large-to-great earthquakes (~4) since Assam earthquake of 1897. In view of the major advancement made in understanding the seismicity and seismotectonics of this region during the last two decades, an updated probabilistic seismic hazard map of NW Himalaya and its adjoining areas covering 28–34°N and 74–82°E is prepared. The northwest Himalaya and its adjoining area is divided into nineteen different seismogenic source zones; and two different region-specific attenuation relationships have been used for seismic hazard assessment. The peak ground acceleration (PGA) estimated for 10% probability of exceedance in 50 and 10 years at locations defined in the grid of 0.25 × 0.25°. The computed seismic hazard map reveals longitudinal variation in hazard level along the NW Himalayan arc. The high hazard potential zones are centred around Kashmir region (0.70 g/0.35 g), Kangra region (0.50 g/0.020 g), Kaurik-Spitti region (0.45 g/0.20 g), Garhwal region (0.50 g/0.20 g) and Darchula region (0.50 g/0.20 g) with intervening low hazard area of the order of 0.25 g/0.02 g for 10% probability in 50 and 10 years in each region respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号