首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fossil oyster reefs are indicators of past sea levels, and their formation is usually dated by means of radiocarbon. However, radiocarbon dating of the shells from coastal areas may be complicated by the varying sources of carbon. Here we applied optical dating methods to date the samples from above and below a fossil oyster bed in a section on the coast of Bohai Bay, China. The optical ages of the sediments were used to constrain the oyster bed. Single-aliquot regenerative-dose procedures using the OSL signal from fine grain quartz, the IRSL and post-IR OSL signals from polymineral fine grains were employed to determine equivalent dose (De). The behaviors of the different luminescence signals from quartz and polymineral grains during De measurements were examined. The results showed that the quartz OSL signal is more reliable than the polymineral IRSL and post-IR OSL signals with respect to dating for these coastal samples. The optical ages indicated that the oyster reef formed between ca. 6.2 and 5.0 ka.  相似文献   

2.
Luminescence dating has long been used for chronological constraints on marine sediments due to the ubiquitous dating materials (quartz and feldspar grains) and its applicability over a relatively long time range. However, one of the main difficulties in luminescence dating on marine sediments is partial bleaching, which causes age overestimations. Especially, partial bleaching is typically difficult to be detected in the fine grain fraction (FG) of marine sediments. The recently developed feldspar post-IR IRSL (pIRIR) protocol can detect non-fading signals and thus avoid feldspar signal instability. In the current study, fine grains were extracted from a gravity core in the northern Sea of Japan, and the aim is to test the feasibility of using different luminescence signals with various bleaching rates to explore the bleaching conditions of fine grain fraction in marine sediments. The results suggest that the quartz OSL signal and polymineral pIRIR signals at stimulation temperatures of 150 °C and 225 °C (pIRIR150 and pIRIR225) of FG were well bleached prior to deposition. The OSL ages were used to establish a chronology for this sedimentary core and the resulting age-depth relationship is self-consistent and comparable with radiocarbon dates. We conclude that different luminescence signals with various bleaching rates can be used to test the bleaching conditions of fine grain fraction in marine sediments; and the luminescence dating can be applied to marine sediments with great potential.  相似文献   

3.
Anomalous fading of the infrared stimulated luminescence (IRSL) signal from the polymineral fine-grain and K-feldspar fractions of aeolian sediments from Hungary has been studied. The samples in this study have previously been dated using the multiple aliquot additive dose (MAAD) protocol to measure the IRSL signal. The IRSL measurements using MAAD were conducted ~4 weeks after the irradiation, making it difficult to assess to what extent these age estimates were affected by anomalous fading. In this study, equivalent doses were obtained using the single aliquot regenerative dose (SAR) protocol. The fading rate for each sample was calculated using the different IRSL components and different parts of the decay curve. For each sample, the middle part of the decay curve always showed a lower fading rate than the initial part of the decay curve. The difference between the fading rates for different parts of the decay curve was greater for the K-feldspars than for the polymineral fine grains. Fading corrected ages were calculated by integrating both the initial and the middle part of the decay curve. These ages were compared with optically stimulated luminescence (OSL) ages from quartz, infrared radiofluorescence (IR-RF) ages obtained from K-feldspars and also with independent ages, provided by radiocarbon dating of shells and charcoal, and uranium-series dating of travertine.  相似文献   

4.
Sediments of river deltas provide valuable records of past coastal environments. Optically-stimulated luminescence (OSL) dating has become an alternative to radiocarbon dating for constraining the sediment chronology in large deltas that allow for sufficient sunlight bleaching of sediments during the fluvial transport. However, its applicability to smaller deltas with mountainous riverine systems has not been confirmed yet. To check this, we examine multiple signals from two Holocene sediment cores in the wave-dominated Thu Bon River delta in central Vietnam. Two cores were collected, respectively, 3.9 km and 1.2 km inland from the present shoreline and both show a >-25-m thick succession of coarsening-upward mud to sand deposits. Coarse grains (180–250 μm in diameter) of quartz and K-feldspar, and fine grains (4–11 μm in diameter) of quartz and polymineral were extracted from the upper and lower parts of the cores for multi-grain measurements of quartz OSL, and of feldspar infrared-stimulated luminescence (IRSL) at 50 °C (IR50) and post-IR IRSL at 175 °C (pIRIR175) to determine burial ages. In addition, facies analysis and radiocarbon dating were conducted. The landward core consists of transgressive to early regressive estuarine and prodelta facies, which is overlain by a sandy beach-shoreface facies. The seaward core consists of a relatively simple shallowing-upward succession from muddy prodelta facies to sandy beach-shoreface facies. All luminescence ages except for pIRIR175 of fine grains are mostly consistent with the radiocarbon ages. Instead, pIRIR175 ages of fine grains are significantly overestimated with variable offsets. OSL and IR50 of fine grains provide reasonable age estimates, as these grains were likely well bleached during the transport even along a short and steep mountainous river. Consistent age estimates of all signals from sand indicate that sand was well-bleached in the beach and shoreface owing to the frequent sediment reworking by waves and currents. These results support the hypothesis that luminescence dating is applicable to Holocene wave-dominated deltas and reiterate that comparing different luminescence signals is an effective way to check reliability of the age estimates in environments where the sunlight bleaching is not ensured.  相似文献   

5.
In this study we test the potential of the elevated temperature infrared stimulated luminescence (IRSL) signals for dating Romanian loess. The recently developed post-IR IRSL protocol is applied to Romanian loess using polymineral fine grains extracted from the loess-palaeosol sequence at Mircea Vodă (SE Romania). This approach is aimed at obtaining an additional age control to examine the age discrepancy obtained from previous optically stimulated luminescence (OSL) studies using different grain-sizes of quartz (4–11 μm and 63–90 μm).Two preheat post-IR IR stimulation temperature combinations were used, 250–225 °C and 325–300 °C, respectively. The signals obtained are documented in terms of dose response curve, laboratory tests and fading. Although both post-IR IRSL signals exhibit small fading rates, dose response characteristics indicate that these rates may be laboratory artefacts. The post-IR IRSL signal stimulated at 300 °C is observed to suffer from dose dependent initial sensitivity changes as both natural and regenerated signals are observed to lie above the saturation level of the dose response curve. Uncorrected age results obtained using both post-IR IRSL signals are in general agreement with previously reported silt-sized quartz OSL ages for samples collected from the uppermost loess unit L1. For older material, the post-IR IRSL signal stimulated at 225 °C is considered to provide reliable age results, in agreement with independent age control available for this sequence.  相似文献   

6.
Constraining the ages of fluvial terraces is essential to understanding fluvial responses to climate and sea-level changes and estimating uplift/incision. Luminescence dating of sand or silt grains from fluvial terrace deposits in Japan is difficult because sand layers are often absent from gravelly deposits, quartz grains are typically dominated by medium/slow components and/or contaminated by feldspars, and short transport distances and short residence times in riverbeds result in poor bleaching of luminescence signals. Luminescence dating of cobbles may overcome these difficulties, but few studies have applied this technique to fluvial terrace deposits. Here, we examine the utility of luminescence dating applied to three granodiorite cobbles from a late Pleistocene fluvial terrace deposit of the Ara River, Japan. We investigated variations of the infrared stimulated luminescence (IRSL) and post-IR IRSL signals with depth in each cobble. The IRSL and post-IR IRSL signals generally increase with depth, indicating that the cobbles were not completely bleached before deposition. Nonetheless, the IRSL ages of the cobble surfaces (19–17 ka) are consistent with the age of a tephra layer (16–15 ka) at the base of loess deposits overlying the terrace. In contrast, IRSL ages of sand-sized feldspar grains overestimate the depositional age because of incomplete bleaching, whereas silt-sized quartz grains greatly underestimate the depositional age, likely because of the thermal instability of the medium component. Our results demonstrate that luminescence dating of cobbles could provide a better understanding of fluvial systems in which luminescence dating of sand grains is difficult.  相似文献   

7.
Although there has been significant advancement of OSL (optically stimulated luminescence) dating of quartz and feldspar over the past decade, the luminescence characteristics of quartz grains in many tectonically active areas are not suitable for accurate age determinations using this technique. This study investigates the reasons for this unsuitability and tests a new measurement protocol (ITL), which appears more promising. At two sites along the central Garlock fault in the Mojave Desert, California, USA, samples collected for OSL dating for this study have proven problematic. At the El Paso Peaks (EPP) trench site, a sequence of OSL samples was collected from sandy units with a well-established radiocarbon chronology, providing the opportunity to assess different approaches and optimize our luminescence dating procedures. At Christmas Canyon West (CCW), where future Garlock fault slip rate studies will be conducted using luminescence dating, samples were collected to assess the luminescence characteristics of both quartz and feldspar in this environment. At both sites, signals from quartz and K-feldspar grains are consistently dim. At EPP, quartz results provide age underestimates, while K-feldspar IRSL yields erratic values; the causes of this problematic behavior are unclear. Preliminary minimum isothermal thermoluminescence (ITL) signals of K-feldspar measured during preheating appear to be consistent with the radiocarbon age estimates, demonstrating potential for accurate age determination in this kind of environment using this protocol.  相似文献   

8.
A thick Middle and Late Pleistocene loess-palaeosol sequence is exposed at the Stari Slankamen section in the Vojvodina region situated in the south-eastern part of the Pannonian basin, Serbia. The profile exposes an about 45 m thick series of loess intercalated by at least eight pedocomplexes. Ten samples were dated by luminescence methods using a modified single aliquot regenerative dose (SAR) protocol for polymineral fine grains and for quartz extracts from the upper part of the Stari Slankamen loess sequence. The infrared stimulated luminescence (IRSL) and post-IR optically stimulated luminescence (OSL) signals from all polymineral samples showed anomalous fading, suggesting that the post-IR OSL signal is still dominated by feldspar OSL. The ages ranging from 4.6 to 193 ka were obtained after fading correction. These ages indicate that the loess unit V-L1L1, the weakly developed soil complex V-L1S1 and the loess unit V-L1L2 were deposited during marine isotope stage (MIS) 2, 3, and 4, respectively, and also indicate that the loess unit V-L2 is of the penultimate glacial age.  相似文献   

9.
Optical dating was applied to two loess-paleosol sections (Lujiaowan and Shuixigou) from the northern piedmont of Tianshan Mountain, Xinjiang province, China. The two sections are over 200 km apart and have a similar depositional sequence, which consists of two paleosol layers embedded by one loess layer. Two difficulties were met in optical dating. First, because the sections are located on the slope of the mountain, it was found that some cliff debris, with coarse grains (>200 μm), were mixed with the eolian sediments by rainfall, especially in the paleosol layers. Second, the optically stimulated luminescence (OSL) signals of quartz grains from the deposits were too dim to obtain a reliable equivalent dose (De). The 63–90 μm K-feldspar grains were separated to decrease the debris portion, and they yielded bright infrared stimulated luminescence (IRSL) signals. A multiple-elevated-temperature post-IR IRSL (MET-pIRIR) procedure was applied to determine De. Comparing the optical dating ages of the two sections, the Lujiaowan (LJW) and Shuixigou (SXG) sections recorded almost the same depositional process during the Holocene. The ages of the two loess layers (2.44–3.38 ka at LJW; 2.47–4.36 ka at SXG) suggested that one drought event happened widely in this westerly dominated area. The same drought event 2.5–3.5 ka ago also happened in the Chinese Loess Plateau (CLP), where the summer monsoon dominated. However, the paleosol development period (6.6–4 ka) in the study area was distinguished from the monsoon dominated area (8–4 ka), which suggests an arid early Holocene in the westerly area.  相似文献   

10.
Previous luminescence dating studies on loess from China and Tajikistan have focused on the establishment of the regional chronology of the loess sequences. In order to improve the precision and accuracy of optical ages derived from the loess of the last glacial period in these regions, we have examined the components of luminescence signals in three loess samples from western China and southern Tajikistan. Our results show that the polymineral IRSL and post-IR OSL, and quartz OSL signals from loess of the two regions are represented by three components, which display different bleaching and growth characteristics. While the composition of the polymineral IRSL signals is similar between samples with the same age from the two regions, in the case of quartz there is significant discrepancy in the proportion of the fast and medium components of the OSL signals. Greater difference is observed in the composition of the polymineral post-IR OSL signals for the loess from the two regions. The three components of polymineral IRSL signals yield almost identical equivalent dose values as that derived from the total IRSL signal. An apparent agreement in equivalent dose is observed between the fast component of the polymineral post-IR OSL and the quartz OSL for the loess of western China but not in the loess of the same age from southern Tajikistan. The fast component of the quartz OSL yields an equivalent dose 25% higher than that based on the total signal for the sample from the base of the Late Pleistocene loess in southern Tajikistan. This demonstrates the importance of signal selection for an accurate luminescence dating of Central Asian loess.  相似文献   

11.
The Altyn Tagh Fault(ATF)is one of the most prominent active strike-slip faults in the India-Eurasia collision. Fresh features of surface ruptures, which are attributed to seismic events taking place in the last millennium, are identified at several sites along the Che'erchen River to Qingshui River section on the central part of ATF. Accurate chronology of these earthquake events would help understand the spatial-temporal relationship of the recent earthquakes. However, great difficulties are encountered. The central ATF is located in the arid area, and the vegetation cover is so limited that rare organic materials appropriate for radiocarbon dating can be found in the sediments. Luminescence dating technique may serve as an alternative to directly determine the burial ages of the earthquake related sediments. The optically stimulated luminescence(OSL)signal of quartz, which has been widely employed for luminescence dating, displays unwanted charateristics for accurate dating. Firstly, the quartz OSL signal is not sensitive to irradiation, which leads to low signal-to-noise ratio or even no measurable quartz OSL signal. Secondly, the targeted samples of the last millennium are very young, and the radiation dose received during the burial is expected to be less than 3~4Gy, which futher deteriorates the signal-to-noise ratio of the quartz OSL signal. Therefore, quartz OSL signal is not appropriate for dating the sediments relevant to the recent earthquakes on ATF.
The infrared stimulated luminescence(IRSL)signal of potassium feldspar is an alternative, and it is in usual an order of maginitude more sensitive to raidation than the quartz OSL signal. The enhanced signal-to-noise ratio makes it applicable to young samples. The post-IR IRSL signal has been successfully applied to date the sediments beyond the Holocene, however, the relatively slow bleaching of the post-IR IRSL signal poses challenges on applying it to young sediments, especially for the sediments deposited during the last millennium. In this study, we investigated the feasibility of using post-IR IRSL signal from potassium feldspar to date the earthquake events of the last millennium by employing modern sag pond deposits with different sorting and expected equivalent dose(De)of 0Gy. Choosing an appropriate measurement procedure and identifying the well bleached pottassium feldspar grains are essential for post-IR IRSL dating of young sediments. The non-fading characteristic of the post-IR IRSL170 signal measured at 170℃ following a prior IR stimulation at 110℃ was verified by employing the De plateau test with respect to the signal integration interval and IR stimulation temperature together. Reducing the amount of potassium feldspar grains mounted on an aliquot would help reveal the among grains variation of bleaching level of post-IR IRSL170 signal before depostion and identify the most sufficiently bleached grains. Therefore, the post-IR IRSL170 De values of 2mm aliquots were measured for three samples with different sedimentary textures. The median of De distribution of well sorted and stratified sag pond deposits is consistent with the minimum De value inferred from the minimum age model(MAM-3) and finite mixture model(FMM), while for the poorly sorted deposits, the median is significantly overestimated compared with the minimum De values from the MAM-3 and the FMM. The minimum De values of 0.6~0.8Gy of all three samples are consistent with the unbleachable residual dose previously reported for post-IR IRSL signals measured at similar temperature for well bleached samples. It implies that by combined use of small aliquot and statistical age models, the well-bleached potassium feldspar grains could be identified. Such an intrinsic unbleachable component needs to be properly corrected when earthquake events of last millennium are to be dated in this area. Otherwise, the post-IR IRSL170 age would be overestimated by 200~300a.
The post-IR IRSL170 procedure investigated in this study is not only applicable for dating the paleoearthquake events along the Altyn Tagh Fault, but also with great potential to be applied to other tectonically active area. With consideration of the potential variability in post-IR IRSL signal characteristics of potassium feldspar grains from different origins, the signal stability needs to be routinely inspected. The modern analog sample would also be informative for justifying the measurement procedure and analytical method employed.  相似文献   

12.
13.
There are only a few luminescence dating studies of loess sediments in Japan, but interleaved with these deposits are many well-described tephras of known age based on 14C and fission track analysis; these independent age controls provide an opportunity to test the reliability of loess luminescence ages. This study provides such a comparison at two sites in central Honshu, the largest island in the Japanese archipelago. Samples were collected from sequences of interleaved volcanic tephra and loess deposited on a Middle Pleistocene river terrace in the Niigata Prefecture and on an Early to Middle Pleistocene dissected fluvial surface at in the Tochigi Prefecture, Honshu. Equivalent doses (De) were estimated from fine grains (4–11 μm) using both polymineral IR-OSL and (post-IR) blue-OSL, and quartz blue-OSL. The blue-stimulated luminescence signals could be represented by up to three exponentially decaying components; only the most light sensitive of these components was used in the final De estimation. Almost all the estimates of De from polymineral IR-OSL are smaller than those from polymineral (post-IR) blue-OSL and quartz blue-OSL, whereas the latter two are in good agreement. The blue-light stimulated luminescence ages using the most light sensitive component are shown to be in good agreement with the independent control, up to 500 ka. Although the IR-OSL signals underestimate the known age, a simple laboratory fading test is found empirically to correct for this underestimation. We conclude that the most rapidly blue-stimulated luminescence signals from quartz extracted from our loess samples give reliable ages, and that future loess dating studies should concentrate on these signals.  相似文献   

14.
In an attempt to date a palaeolandslide that took place along the Baga Bogd Massif, in Mongolia, the infrared stimulated luminescence (IRSL) method has been applied to lacustrine silty sediments directly overlying the landslide mass. The IRSL age estimates obtained on alkali feldspar grains (>40 μm) and polymineral fine grains (4–11 μm) provide a minimum age for the landslide event. The IRSL ages on alkali feldspars corrected for long-term fading using the protocol of Mejdahl (1988, 1989) suggest that the palaeolandslide occurred at the beginning of the Last Interglacial. These are in good agreement with the 10Be cosmogenic dates obtained on faulted and abandoned alluvial fans in the Gobi-Altay mountains. This study demonstrates for the first time that the IRSL dating method can successfully be applied for establishing landslide chronologies.  相似文献   

15.
We present a multiple luminescence signal measurement procedure that simultaneously measures six different luminescence signals from a single polymineral aliquot (i.e. multiple-signal, short MS-SAR approach). The six signals show different bleaching rates in bleaching experiments, ranging from rapid bleaching for the quartz dominated blue stimulated luminescence signal (measured at 125 °C, BSL-125), to the slow-bleaching polymineral thermoluminescence signal. The bleaching rate of the infrared stimulated luminescence (IRSL) measured at room temperature (IR-25) and elevated temperature post-IR IRSL (pIRIR-90, pIRIR-155, pIRIR-225) signals decrease with increasing measurement temperature. Owing to these different bleaching rates, the MS-SAR approach allows inference of the degree of bleaching, and thereby information on the transport history of sediments. We test this approach by applying the MS-SAR to four coastal samples from a well-monitored sand-nourishment site at the Dutch coast. Our results show that the proposed MS-SAR approach can be utilised to construct bleaching plateaus which provide an independent and time-effective measure of the degree of poor bleaching in a sediment sample based on the measurement of only a few large aliquots. We propose that the MS-SAR protocol can be used to profile the age, luminescence properties and degree of bleaching of minimal prepared polymineral. This pre-profiling will allow the selection of suitable samples for full luminescence dating analysis in a target-orientated and time-effective manner.  相似文献   

16.
A comparative study using quartz optically stimulated luminescence (OSL) and feldspar post-infrared infrared stimulated luminescence (post-IR IRSL) was undertaken on Quaternary fluvial sediments from an unnamed tributary of the Moopetsi River in South Africa. The aim is to assess whether the post-IR IRSL signal can be used to date incompletely bleached sediments. Several post-IR IRSL signals using varying stimulation and preheat temperatures were investigated; of these the post-IR IRSL225 signal was deemed most appropriate for dating because it bleached most rapidly. The feldspar post-IR IRSL225 equivalent dose (De) values from this site are consistently larger than those from quartz OSL, probably due to differences in the bleaching characteristics of the two signals. Additionally, the post-IR IRSL225 De values within a sample showed less variation in precision than the quartz De data, possibly due to greater averaging between grains in the feldspar small aliquots. The agreement between ages based on the OSL and post-IR IRSL225 signals was better for younger samples (<20 ka) than for older ones (>50 ka); the cause of this variation is unclear.  相似文献   

17.
Dating agricultural artefacts such as field walls and clearance cairns using radiocarbon can be challenging, especially since the association with datable material may be poor. Rock surface burial dating using luminescence offers an alternative. Here we report on the luminescence dating of a medieval circular stone-walled enclosure at Sønnebøe, northern Scania, Sweden, using both buried rocks and sediments. Luminescence burial profiles from IRSL signals measured at 50 °C (IR50) indicated significant prior light exposure in 7 of the 8 samples tested (5 granite, 2 felsic gneiss), in some cases multiple exposure burial cycles were indicated. These rock surfaces had apparently been exposed for sufficient time to allow accurate IRSL ages for the most recent burial event. In contrasts, no useful post-IR IRSL profiles were obtained indicating that this signal was not sufficiently reset to allow accurate determination of the burial dose on any of these rocks. IR50 fading corrections (typically ∼50%) were derived by comparing field saturation with that induced in the laboratory. Quartz extracted from sediments surrounding the rocks gave an average measured to given dose ratio of 1.03 ± 0.01 (n = 90), and these sediment samples were then dated using multigrain aliquots; the corresponding feldspar dose recovery ratio obtained using rock samples was 0.98 ± 0.05 (n = 28). A total of 15 ages were derived; 8 quartz OSL ages from the disturbed coarse grained sediments surrounding the structure, and 7 fading corrected IR50 ages from the surfaces of rocks (2–3 mm chips, ∼1 mm thick) used in the construction of the structure itself. The exposure events preserved by the ring enclosure stones unequivocally show wall building taking place at the site between 800 and 300 years ago.  相似文献   

18.
19.
Fluvial sediments of the middle Atbara River Valley, eastern Sudan, contain abundant vertebrate fossils and stone tools. Previous work described two sedimentary units, the Butana Bridge Synthem (BBS) and the Khashm El Girba Synthem (KGS), with three divisions each (BBS1-3 and KGS1-3, from bottom to top, respectively). 230Th/U dating on bivalve shells suggested an age of ∼126 and ∼92 ka for the basal KGS2 and basal KGS3, respectively, and mammalian biochronology in combination with magnetostratigraphy suggested an age of late Early to early Middle Pleistocene for the underlying BBS. To establish a detailed chronology of this fluvial sedimentary sequence, we collected 17 luminescence samples from both sides of the Atbara River close to the Butana Bridge. Quartz OSL dating was applied to samples from the upper part of the profile (upper KGS2 and KGS3), but the signal reached saturation within the upper ∼10 m of the sequence. To select a suitable feldspar signal to date older samples beyond the limit of the quartz OSL, a comparison of the quartz OSL, feldspar post-IR IRSL at 225 and 290 °C, and pulsed IRSL signal at 50 °C was conducted for a sample from KGS3. The result showed that only the fading corrected pulsed IRSL yielded an age consistent with the quartz OSL, and the post-IR IRSL signals (both at 225 and 290 °C) overestimated the quartz age significantly. We therefore selected the pulsed IRSL signal to date the older deposits. The luminescence ages indicate that the entire BBS - KGS sequence was deposited between 224 ± 23 ka and <17 ± 1 ka, corresponding to marine isotope stages (MIS) 7–2, significantly revising previous conclusions.  相似文献   

20.
The geological record preserved in coastal salt marshes provides an opportunity to determine past hurricane activity during the Late Holocene in New England, USA. High precision dating is important to correlate overwash sand layers associated with hurricane strikes between different sites along the coastline. Three different optical dating methods have been tested and compared with independent age control; i) optically stimulated luminescence from quartz, ii) infrared stimulated luminescence from K-feldspar, and iii) a subtraction method.Quartz and K-feldspar dating results for three samples in a core from Round Hill Beach Marsh are in stratigraphic order and they are consistent within errors with radiocarbon ages and with each other. Subtraction dating results agreed with the quartz and K-feldspar ages for two of the three samples, but the subtraction age of the youngest sample gave an age underestimate. Replicate equivalent dose values from quartz showed a larger variation than those from feldspars, and this resulted in larger errors for the quartz and subtraction ages than those based on feldspars. K-feldspar yields the most precise optical ages, but is complicated by the need to correct for anomalous fading. Both quartz and K-feldspar are suitable for optical dating of hurricane overwash deposits in New England.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号