首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
We have studied the Mukundpura CM2 meteorite for magnetic properties as a function of temperature and magnetic field, as well as its Mössbauer spectrum, at room and low temperatures (up to 5 K). We find that the high temperature paramagnetic phase is followed by two magnetic transitions: a weak transition near 125 K and a strong transition at 8 K. The weak (125 K) magnetic phase can be attributed to complex Fe2+–Fe3+ constituents present in the meteorite. The absence of the characteristic sextet corresponding to magnetite in Mossbauer spectrum indicates that this magnetic phase is not magnetite, which, if present, must be in insignificant amount. The 8 K magnetic ordering is superimposed with weak ferromagnetic ordering, showing spin‐glass transition. The Mössbauer spectrum taken at 5 K substantiates the observed spin‐glassy nature, as very large hyperfine field ~32 T is recorded, causing localized subordering leading to spin‐glass behavior. The Mössbauer spectra also confirm that iron is mainly present in serpentine‐group minerals, both in ferrous and ferric states. The complete serpentinization of basic silicates indicates aggressive hydrous alteration. These results show that the observed spin‐glass signature is a characteristic feature of the cronstedtite phase in CM meteorites. This feature is unique to carbonaceous CM chondrites and could be used for nondestructive, quick, and independent classification of this rare class of meteorites. Furthermore, the absence of olivine and the presence of cronstedtite in Mossbauer spectra show that the degree of aqueous alteration observed is the most severe in Mukundpura CM2 meteorite, as compared to many other CM2 meteorites. The degree of aqueous alteration in CM2 carbonaceous chondrites increases in the sequence: Paris, Murchison, Murray, Mighei, Nogoya, Cold Bokkeveld, and Mukundpura.  相似文献   

2.
Meridiani Planum is the first officially recognized meteorite find on the surface of Mars. It was discovered at and named after the landing site of the Mars Exploration Rover Opportunity. Based on its composition, it was classified as a IAB complex iron meteorite. Mössbauer spectra obtained by Opportunity are dominated by kamacite (α‐Fe‐Ni) and exhibit a small contribution of ferric oxide. Several small features in the spectra have been neglected to date. To shed more light on these features, five iron meteorite specimens were investigated as analogs to Meridiani Planum with a laboratory Mössbauer setup. Measurements were performed on (1) their metallic bulk, (2) troilite (FeS) inclusions, (3) cohenite ((Fe,Ni,Co)3C) and schreibersite ((Fe,Ni)3P), and (4) corroded rims. In addition to these room‐temperature measurements, a specimen from the Mundrabilla IAB‐ungrouped meteorite was measured at Mars‐equivalent temperatures. Based on these measurements, the features in Meridiani Planum spectra can be explained with the presence of small amounts of schreibersite and/or cohenite and iron oxides. The iron oxides can be attributed to a previously reported coating on Meridiani Planum. Their presence indicates weathering through the interaction of the meteorite with small amounts of water.  相似文献   

3.
Abstract— Mössbauer spectroscopy is a very useful tool for identifying ferric iron weathering products in meteorites because of the capability to quantify the relative amounts of ferric iron in them. Mössbauer measurements were made of 33 Antarctic H chondrites (predominately H5) and two paired Antarctic CR chondrites. The primary goals of this study are to determine if Mössbauer spectroscopy can be used to determine which phases are weathering in Antarctic meteorites and if the relative amounts of ferric iron correlate with terrestrial age. Determining which minerals are weathering in ordinary chondrites appears very difficult due to variations in composition for different ordinary chondrites of the same meteorite class and possible problems in preparing homogeneous samples. The analysis of the two paired CR chondrites appears to indicate that metallic iron is predominately weathering to produce ferric iron for this class of meteorite. No correlation is seen between the relative amounts of ferric iron and terrestrial age for ordinary chondrites. One Antarctic H5 chondrite (ALHA77294) with a short 14C age of 135 ± 200 years from the dating of interior carbonate weathering products does have a relatively low amount of ferric iron, which is consistent with this meteorite being exposed on the surface for a relatively short time.  相似文献   

4.
The iron‐bearing phases in a ureilite fragment (AS#051) from the Almahata Sitta meteorite are studied using Mössbauer spectroscopy, X‐ray diffraction (XRD), and electron microprobe analysis (EMPA). AS#051 has a typical ureilite texture of medium‐ to coarse‐grained silicates (olivine, orthopyroxene, and pigeonite) with minor opaques (Fe‐Ni metal, troilite, and graphite). The silicate compositions, determined by EMPA, are homogeneous: olivine (Fo90.2), orthopyroxene (En86.3Fs8.6Wo5.1), and pigeonite (En81.6Fs8.9Wo9.5), and are similar to those of magnesian ureilites. The modal abundance of mineral phases was determined by Rietveld refinement of the powder XRD data. The Mössbauer spectra at 295 K and 78 K are composed of two sharp well‐defined paramagnetic doublets superimposed on a well‐resolved magnetic sextet and other weak absorption features. The two paramagnetic doublets are assigned to olivine and pyroxene (orthopyroxene and pigeonite), and the ferromagnetic sextet to kamacite (magnetic hyperfine field ≈ 33.2 T), in agreement with the XRD characterization. The Mössbauer results also show the presence of small amounts of troilite (FeS) and cohenite ([Fe,Ni,Co]3C). Using the Mössbauer data, the relative abundance of each Fe‐bearing phase is determined and compared with the results obtained by XRD.  相似文献   

5.
We studied the interior and the fusion crust of the recently recovered Ozerki L6 meteorite using optical microscopy, scanning electron microscopy (SEM) with energy dispersive spectroscopy, X‐ray diffraction (XRD), magnetization measurements, and Mössbauer spectroscopy. The phase composition of the interior and of the fusion crust was determined by means of SEM, XRD, and Mössbauer spectroscopy. The unit cell parameters for silicate crystals were evaluated from the X‐ray diffractograms and were found the same for the interior and the fusion crust. Magnetization measurements revealed a decrease of the saturation magnetic moment in the fusion crust due to a decrease of Fe‐Ni‐Co alloy content. Both XRD and Mössbauer spectroscopy show the presence of magnesioferrite in the fusion crust. The temperatures of cation equilibrium distribution between the M1 and M2 sites in silicates calculated using the data obtained from XRD and Mössbauer spectroscopy appeared to be in a good consistency: 553 and 479 K for olivine and 1213 and 1202 K for orthopyroxene.  相似文献   

6.
Mössbauer spectra of equilibrated ordinary chondrites consist of two doublets due to paramagnetic iron present in olivines and pyroxenes and two sextets due to magnetically ordered iron present in metallic phases and troilite. The spectral areas of the different mineralogical phases found by Mössbauer spectroscopy in meteorites are proportional to the number of iron atoms in this mineralogical phase. This property of Mössbauer spectra can be the basis for constructing a method for the classification of ordinary chondrites. This idea was first explored at the Mössbauer Laboratory in Kanpur. This group suggested a qualitative method based on 2‐dimensional plots of Mössbauer spectral areas and thus classified properly some meteorites. We constructed a quantitative method using Mössbauer spectral areas, multidimensional discriminant analysis, and Mahalanobis distance (4M method) to determine the probability of a meteorite to be of type H, L, or LL. Based on 59 Mössbauer spectra, we calculated by the 4M method, S cluster , the level of similarity of the Goronyo meteorite to the clusters. On the plot of ferrosilite versus fayalite, the point representing Goronyo is located on the border between H and L areas. Calculated by the 4M method, the meteorite Goronyo is 32% similar to type H, 75% to type L, and 11% to type LL. Additional mineralogical analyses suggested that the Goronyo meteorite would be classified as type L, although it was originally reported as type H in the Meteoritical Bulletin Database.  相似文献   

7.
Abstract— Mössbauer spectra of martian meteorites are currently of great interest due to the Mössbauer spectrometers on the Athena mission MER rovers as well as the European Space Agency Mars Express mission, with its Beagle 2 payload. Also, considerable current effort is being made to understand the oxygen fugacity of martian magmas because of the effect of fO2 on mineral chemistry and crystallization processes. For these 2 reasons, the present study was conceived to acquire room temperature Mössbauer spectra of mineral separates and whole rock samples of 10 SNC meteorites. The results suggest that mineral identification using remote application of this technique will be most useful when the phases present have distinctive parameters arising from Fe in very different coordination polyhedra; for example, pyroxene coexisting with olivine can be discriminated easily, but opx versus cpx cannot. The MER goal of using Mössbauer spectroscopy to quantify the relative amounts of individual mineral species present will be difficult to satisfy if silicates are present because the lack of constraints on wt% FeO contents of individual silicate phases present will make modal calculations impossible. The remote Mössbauer spectroscopy will be most advantageous if the rocks analyzed are predominantly oxides with known stoichiometries, though these phases are not present in the SNCs. As for the detection of martian oxygen fugacity, no evidence exists in the SNC samples studied of a relationship between Fe3+ content and fO2 as calculated by independent methods. Possibly, all of the Fe3+ observed in olivine is the result of dehydrogenation rather than oxidation, and this process may also be the source of all the Fe3+ observed in pyroxene. The observed Fe3+ in pyroxene also likely records an equilibrium between pyroxene and melt at such low fO2 that little or no Fe3+ would be expected.  相似文献   

8.
The Mars Exploration Rover, Spirit, landed on 4 January 2004, in a lava field in Gusev crater on Mars. Samples interpreted as olivine basalt have been investigated with Mössbauer spectroscopy and chemically with Alpha-particle-X-ray spectrometry (APXS).In this contribution we present the results of a new analysis of the Mössbauer spectra of selected rock targets in Gusev crater. The results show that the rock surfaces investigated are inhomogeneous, and show strong enhancement of olivine in the surface layer. By subtraction of the surface signal to obtain the spectrum of the true interior of the rock samples, the measurements show the usual correlation between olivine and iron oxides of olivine basalt.It is argued that the compositional changes observed are related to high temperature oxidation of the rocks, probably during solidification, a process known to lead to anomalously magnetic rocks. The rock Mazatzal is discussed in some detail, and it is suggested that the surface is covered with deposits rich in ferric iron rather than these ferric phases being due to oxidation of the rock. The fact that all the surfaces in this investigation show this same pattern, suggests that the dominating erosion of the surface layer of basaltic rocks at Gusev crater has been mechanical rather than chemical.  相似文献   

9.
The Carancas meteorite fell on 15 September 2007 approximately 10 km south of Desaguadero, near Lake Titicaca, Peru, producing bright lights, clouds of dust in the sky and intense detonations. The Carancas meteorite is classified as a H4–5 ordinary chondrite with shock stage S3 and a degree of weathering W0. The Carancas meteorite is characterized by well defined chondrules composed either of olivine or pyroxene. The Mössbauer spectra show an overlapping of paramagnetic and magnetic phases. The spectra show two quadrupole doublets associated to olivine and pyroxene; and two magnetic sextets, associated with the primary phases kamacite/taenite and Troilite (Fe2+). Metal particles were extracted from the bulk powdered samples exhibit only kamacite and small amounts of the intergrowth tetrataenite/antitaenite. X-Ray diffractogram shows the primary phases olivine, pyroxene, troilite, kamacite, diopside and albite. Iron oxides has not been detected by Mössbauer spectroscopy or XRD as can be expected for a meteorite immediately recovered after its fall.  相似文献   

10.
Abstract— We conducted Mössbauer spectroscopic studies on the Ghubara meteorite which had been described as at least two‐generation regolith breccia on the macro scale. The isomer shift and quadrupole splitting of the Fe‐Ni part are quite different from those obtained in ordinary chondrites, reflecting shock effects. We observed a large amount of magnetite that may have come from weathering of, primarily, the silicate fraction. We found very similar iron mineralogy in the Densmore meteorite.  相似文献   

11.
Some terrestrial areas have climatic and geomorphologic features that favor the preservation, and therefore, accumulation of meteorites. The Atacama Desert in Chile is among the most important of such areas, known as DCA. This desert is the driest on Earth, one of the most arid, uninhabitable localities with semiarid, arid, and hyper‐arid conditions. The meteorites studied here were collected from within the DCA of San Juan and Pampa de Mejillones, located, respectively, in the Central Depression and the Coastal Range of the Atacama Desert. 57Fe Mössbauer spectroscopy was used for quantitative analysis of the degree of weathering of the meteorites, through the determination of the proportions of the various Fe‐bearing phases and in particular the amount of oxidized iron in terrestrial alteration products. The abundance of ferric ions in weathered chondrites can be related to specific precursor compositions and to the level of terrestrial weathering. The aim of the study was the identification, quantification, and differentiation of the weathering products in the ordinary chondrites found in the San Juan and the Pampa de Mejillones areas of the Atacama Desert. The 57Fe Mössbauer spectroscopy study was complemented by synchrotron radiation X‐ray diffraction and magnetic susceptibility measurements. The results allow a clear differentiation of the rate of weathering in meteorite samples collected from the San Juan versus the Pampa de Mejillones areas of the Atacama Desert.  相似文献   

12.
Abstract— Mössbauer spectroscopic studies of the Didwana‐Rajod chondrite, which fell on 1991 August 12 in western Rajasthan, India, are presented. The results are compared with the Mössbauer data of several enstatite and ordinary chondrites including the Dhajala chondrite for which Mössbauer data were acquired during the present study. The Didwana‐Rajod chondrite's iron phases and its oxidation states strongly suggest that it should be classified as an H‐type ordinary chondrite instead of the earlier suggestion (based on petrographic studies) that it could be an enstatite chondrite. The present study demonstrates that Mössbauer spectroscopy is a very powerful technique for aiding in the classification of meteorites.  相似文献   

13.
Abstract— A newly fallen Sudanese meteorite named Al Zarnkh was investigated using room and liquid nitrogen temperature Mössbauer measurements, X‐ray diffraction (XRD), and electron probe microanalysis (EPMA) in conjunction with energy dispersive X‐ray microscopy. The Mössbauer spectra exhibited strong paramagnetic doublets with magnetic sextets. The doublets are assigned to olivine and pyroxene, while the magnetic sextets are assigned to troilite and kamacite. Based on microprobe analyses and textural studies, olivine is the most abundant phase and occurs as fine to medium grained laths both in the groundmass and in barred olivine chondrules. Both orthopyroxenes and clinopyroxenes are present and these tend to be granular. Plagioclase is an abundant interstitial groundmass phase. Chromites were detected in some groundmass olivine and are highly chromiumand iron‐rich with no Fe3+ detected. The kamacite contains small amounts of Co. The mole fraction of the Fe end‐member of olivine (fayalite) and orthopyroxene (ferrosilite) are found to be about 28% and 23%, respectively. These values are compared with that obtained from two chondritic meteorites. Based on these results, the studied meteorite is classified as an ordinary LL5 chondrite.  相似文献   

14.
Abstract— An improvement in the velocity resolution and quality of Mössbauer spectra has been applied to a group of ordinary chondrites. This improvement permitted us to carry out a more detailed study of the iron bearing phases in these samples than has previously been possible. Mössbauer spectra of 11 ordinary chondrites of L and H chemical groups were measured using 4096 channels and presented for further analysis in 1024 channels. Subspectra of the metal grains of several chondrites demonstrated the presence of at least two magnetic sextets related to the main Fe(Ni, Co) phases. Moreover, Mössbauer study of extracted metal grains from Tsarev L5 revealed three sextets and one singlet spectral components related to various α‐Fe(Ni, Co), α‘‐Fe(Ni, Co), α2‐Fe(Ni, Co), and γ‐Fe(Ni, Co) phases. Each subspectrum of olivine and pyroxene in Mössbauer spectra of ordinary chondrites was fitted by superposition of two quadrupole doublets related to M1 and M2 sites in minerals for the first time. An analysis of relative areas and Mössbauer hyperfine parameters was performed and some differences for L and H chondrites as well as for M1 and M2 sites were observed. Mössbauer parameters of troilite and oxidized iron were analyzed. In contrast to a previous study with 512‐channel spectra, the presence of oxidized iron was found in all chondrites.  相似文献   

15.
Abstract— Two meteorites belonging to the howardite‐eucrite‐diogenite (HED) group fell recently in Rajasthan, India. One of these, Piplia Kalan, was classified as a eucrite and the other, Lohawat, as a howardite. In this study, we present the results of Mössbauer spectroscopic investigations of these two meteorites. We also compare the results with the Mössbauer experiments reported for the Kapoeta howardite and look for systematics in the Mössbauer spectra of HED meteorites.  相似文献   

16.
Abstract— Carbonaceous chondrites are among the most analyzed geological materials on Earth. However, despite this attention, and unlike most terrestrial rocks, little is known on the abundance of individual phases within them. Here, we show how a combination of several novel X‐ray diffraction (XRD) techniques (including a high‐brightness X‐ray MicroSource®), and Mössbauer spectroscopy, allows a complete modal mineralogy to be ascertained from even the most highly unequilibrated, fine‐grained chondrites for all minerals of abundance >1 wt%. Knowledge of the modal mineralogy of a sample also allows us to calculate grain density. We analyzed Allende, Murchison, Tagish Lake, and Orgueil. Based on our modal data, the grain density estimates for Allende, Murchison, and Orgueil are close to literature values. In the case of Tagish Lake, there is no published grain density, although a bulk density measurement does exist. Taking our estimate of grain density, and the measured bulk density, we calculate an exceptionally high porosity of 41% for this meteorite, similar to some chondritic IDPs and in line with a porosity calculated from an entry model for the Tagish Lake fireball. Although it is an oxidized CV, magnetite is present in Allende at a level of <0.5 wt% or <0.3 vol%, a result that is substantiated by several other instrumental studies. This may be an oxidized meteorite, but that oxidation is not manifested in abundant magnetite. In addition, we note appreciable fayalitic olivine in Orgueil, detected by both XRD and Mössbauer. We employed MicroSource® XRD to look at heterogeneity in mineral abundance in Orgueil and found substantial variation, with phyllosilicates varying inversely with olivine. The data suggest that Orgueil was initially composed primarily of anhydrous materials, which have been partially, but not completely, altered. Although the data are preliminary, comparison between our XRD modal assessment, bulk chemistry, grain density, and Mössbauer data, suggests that our estimates of mineral abundance are robust. The advent of MicroSource® XRD allows similar modal data to be acquired from samples as small as a few hundred micrograms.  相似文献   

17.
Abstract— The Nakhla meteorite, commonly accepted to have originated from Mars, is a cumulus clinopyroxenite with ~10 vol% of Fe‐rich olivine. Almost all olivine grains in Nakhla contain dark lamellar inclusions (less than 2–3 μm wide). High‐resolution scanning and transmission electron microscopy revealed that the inclusions are complex intergrowths of augite and magnetite. Such a symplectic intergrowth of augite and magnetite in olivine was known in some terrestrial rocks, lunar rocks, and a few meteorites. The inclusion in Nakhla olivine is the first symplectite found in a martian rock. Apparently, the presence of Fe3+ in olivine under an oxidizing condition on Mars caused symplectic exsolution at high temperature (>900 °C) during cooling.  相似文献   

18.
Abstract— This study presents compositional data and 57Fe Mössbauer spectra, taken at 295 K and 85 K, of two fragments of the enstatite (EL6) chondrite Neuschwanstein that fell near the famous Neuschwanstein castle (Bavaria, southern Germany) on April 6, 2002. Main silicate minerals are enstatite (Fs 2) and plagioclase (An 20), the main opaque minerals are kamacite and troilite. Small amounts of oldhamite, daubreelite, and schreibersite have been found. The presented Mössbauer data are the first data gathered for an EL6 chondrite. The dominant parts of each Mössbauer spectrum consist of two six‐line patterns due to the presence of ferromagnetic phases kamacite and troilite. In contrast to other chondrites, peaks of other iron species in the central parts of the spectra are missing due to an extremely low content of Fe‐bearing paramagnetic components. The hyperfine interaction parameters for kamacite are internal magnetic hyperfine field Hhf = 333.2 kOe, isomer shift (relative to a metallic Fe foil) IS = 0.01 mm/s, quadrupole splitting QS = 0 mm/s, line width W = 0.41 mm/s. The data for troilite are Hhf = 305.5 kOe, IS = 0.75 mm/s, QS = ?0.85 mm/s, W = 0.34 mm/s.  相似文献   

19.
Abstract— An undocumented mass of 28 kg, recovered from a museum collection, is examined by several methods: optical microscopy, scanning electron microscopy, X-ray diffraction, Mössbauer spectroscopy and chemical analyses by atomic absorption, energy- and wavelength-dispersive X-ray spectrometry and, with respect to the trace elements Ir, As, Au, by neutron activation. The structure and the mineralogical chemical composition of the mass identify it as a fragment of the Santa Catharina iron meteorite from Brazil.  相似文献   

20.
Abstract— Over 4450 meteorite specimens with a total mass of 168 760 g have been found in the Gold Basin (L4) strewn field over an area of 225 km2. The meteorite is a breccia, composed only of fragments of L‐chondrite materials. The parent meteoroid had a kinetic energy equivalent to ~5 to 50 ktons when it hit the top of the atmosphere. Cosmogenic nuclide studies indicate the meteorite has a terrestrial age of 15 000 ± 600 years, corresponding to the Late Pinedale portion of the Wisconsin Glaciation. Conditions in the Gold Basin, which is now part of the Mojave Desert, were wetter and cooler at the time of the fall. Mössbauer analyses indicate the sample is 30 to 35% oxidized. This is less than that in meteorites with similar ages found in eastern New Mexico, but comparable to that found in meteorites from the Sahara and the Nullarbor Region. Oxidation is likely to have occurred soon after the fall, when exposure to precipitation was at its maximum. Four other new meteorites were also found in the Gold Basin strewn field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号