首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Both wind turning with height and ageostrophic flow in a stably stratified atmospheric boundary layer are analyzed using a three-parameter turbulence model. For a quasi-steady state of the boundary layer, the cross-isobaric flow is determined only by turbulent stress at the surface in the direction of geostrophic wind. The “operative” prediction models, in which the first-order turbulence closure schemes are used, tend to overestimate the boundary-layer depth and underestimate the angle between the surface and geostrophic winds when compared to “research” models (schemes of high-level turbulence closure). The true value of the angle between the surface and geostrophic winds is significant for the presentation of a large-scale flow. A nocturnal low-level jet is a mesoscale phenomenon reflected in data obtained from measurements in a stably stratified atmospheric boundary layer. It is found that such jets are of great importance in transporting humidity, momentum, and air pollution. In this study, the difference between jet flows over a homogeneous underlying surface and over a spatially localized large-scale aerodynamic roughness is shown.  相似文献   

2.
Laboratory experiments on studying the structure of the turbulent air boundary layer over waves were carried out at the Wind-Wave Channel of the Institute of Applied Physics, Russian Academy of Sciences (IAP RAS), in conditions modeling the near-water boundary layer of the atmosphere under strong and hurricane winds and the equivalent wind velocities from 10 to 48 m/s at the standard height of 10 m. A modified technique of Particle Image Velocimetry (PIV) was used to obtain turbulent pulsation averaged velocity fields of the air flow over the water surface curved by a wave and average profiles of the wind velocity. The measurements showed that the logarithmic part of the velocity profile of the air flow in the channel was observed in the immediate vicinity from the water surface (at a distance of 30 mm) and could be detected only using remote methods (PIV). According to the measured velocity profiles, dependences of aerodynamic drag factors of the water surface on the wind velocity at a height of 10 m were retrieved; they were compared with results of contact measurements carried out earlier on the same setup. It is shown that they agree with an accuracy of up to 20%; at moderate and strong wind velocities the coincidence falls within the experimental accuracy.  相似文献   

3.
We present a case study of low-level wind jets induced in sequence by orographic effects off the Pacific coast of northern Japan during 7–11 June 2003, and demonstrate that the transition of the wind jets causes areal differences of wave height variations along the coast. First, we describe evolution and structure of the wind jet by analyzing SeaWinds scatterometer wind measurements. Under the easterly wind, a strong wind jet formed after passing by Cape Erimo. As the wind shifted to the southeast, the wind jet started to decay. In turn, the southerly wind along the coast led to another wind jet in the lee of the easternmost tip of the Sanriku coast. We then identify onsets and decays of the wind jets from time series of wind speed at meteorological stations. Finally, we demonstrate that the transition of the wind jets has local impacts on wave height variations. Significant wave heights measured by altimeters were correlated positively with local wind energy, i.e., squares of wind speeds. Accompanying the wind jet formation/decline, significant differences of wave height variations became marked among wave observation stations located along the coast at intervals of up to 50 km.  相似文献   

4.
The structure of the turbulent boundary layer underneath laboratory wind waves was studied by using a combination of a high-sensitivity thermometer array with a two-component sonic flowmeter. The temperature fluctuations are used to detect movements of water parcels, with temperature as a passive quantity. The turbulence energy was dominant in the frequency range (0.01 0.1 Hz), which was much smaller than the wind-wave frequency (2 5 Hz), and in which the turbulence was anisotropic. There was a frequency range (0.2 2 Hz for velocity, 0.2 5 Hz for temperature fluctuation) where the turbulence was isotropic and had a –5/3 slope in the energy spectrum. These points are the same as those in previous works. However, by analyses of the time series by using a variable-interval time-averaging technique (VITA), it has been found that conspicuous events in this main turbulence energy band are the downward bursting from the vicinity of the water surface. Thus the structure of the water layer underneath the wind waves has characters which are similar to the familiar turbulent boundary layer over a rough solid wall, as already conceived. It has been found that, at the same time, the turbulence energy can be related to quantities of the wind waves (the root mean squared water level fluctuation and the wave peak frequency), for different wind and wave conditions. That is, the turbulence underneath the wind waves develops under a close coupling with the wind waves.  相似文献   

5.
We perform the experimental verification of the applicability of the theory of similarity to the wave boundary layer and the assessment of wave-induced perturbations of the air flow depending on various conditions of stratification of the atmosphere and the state of the sea. The measurements were carried out from a stationary platform located in the coastal part of the Black Sea. The experimental procedure is based on the simultaneous measurements of the profile and fluctuations of the wind speed at 5–6 levels in the 1.3–21-m layer, the elevations of the sea surface, the directions of waves and winds, and the mean gradients of temperature and humidity of air. The structure of the boundary layer in the region of measurements depends on the direction of the wind. For weak and moderate onshore winds (< 9 m/sec), the approximate balance is preserved between the production and dissipation of turbulent energy in the cases of unstable and neutral stratification. On the average, the estimates of friction velocity according to the profiles are higher than the dissipative estimates by 10% mainly due to the deficiency of dissipation near the surface. For the offshore wind, the structure of the boundary layer abruptly changes and is determined not by the local parameters but by strong turbulent eddies formed over the dry land. The intensity of low-frequency turbulent fluctuations and the gradient of wind velocity near the surface in the coastal zone are 1.5–2 times higher than for the open sea. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 3, pp. 42–61, May–June, 2007.  相似文献   

6.
青岛地区海雾多发,观测表明海雾对沿海地区影响范围不尽相同,特别是海雾影响内陆的机理尚缺乏研究。本文利用观测资料及数值模式统计了青岛地区4月-7月海雾分布特征,并对不同影响范围海雾典型个例进行对比分析,结果表明:海雾发生日数自沿海向内陆递减。胶州湾沿岸雾日数比黄海沿岸明显减少,胶州湾东北部的雾日数要少于胶州湾西北部。海雾多发生于高空形势稳定,低层偏南流场的天气条件下。大气边界层内逆温层的的范围大致影响着海雾的分布。只影响沿海的海雾,地面为偏南风,风速在3~8 m/s之间,内陆风力减弱不明显。500 m以下大气边界层内风速切变大。湍流作用使海雾向内陆推进过程中倾斜抬升为低云,地面雾区减弱。能够影响内陆地区的海雾,多出现在地面风力较弱的情况之下,大部分在1~3 m/s之间。500 m以下大气边界层内风速切变小,大气边界层内湍流强度不强,使沿海到内陆的逆温层能够始终维持,沿海海雾在弱南风影响下延伸影响内陆地区。  相似文献   

7.
两参量的海面阻力系数模式的探讨   总被引:4,自引:0,他引:4  
汪炳祥 《海洋与湖沼》1997,28(1):96-103
从风浪的能量平衡方程出发,引进若干风要素与波要素以及波要素之间的定性关系,经演算可导出海面阻力系数(Cp)或是风速(U)和波龄(β)或是U和波高(H)的函数,然后沿用最小二乘法,终将得出4组12个回归方程。当β(或β)或H为某一给定值,惟有U为唯一参量时,所提各式均可简化为非线性方程:CD=a+b,U+c.U^2;式中a,b和c为三个经验系数,就所检验的例子而言,本文的结果与实际的符合前人的为好。  相似文献   

8.
9.
The velocity fluctuations of wind over wind-waves in a wind tunnel are measured with a X-type hot-wire anemometer at some heights over the water surface.The observed vertical profiles of the wave-induced velocity fluctuations and the wave-induced Reynolds stress at the wave spectral peak frequency are different from those expected from the inviscid quasi-laminar model;i.e., the observed vertical profiles of the power spectral density of the wave-induced horizontal or vertical velocity fluctuations of wind have the minimum value at the height much heigher than the critical layer, and the value of the wave-induced Reynolds stress is negative at several heights over the water surface. From the comparison between the experimental results and the numerical solutions of a linear model of the turbulent shear flow over the wavy boundary, it is shown that the discrepancy described above can be attributed to the atmospheric turbulence.  相似文献   

10.
Taylor-Grörtler vortices are longitudinal vortices resulting from a centrifugal instability. They are generated in the flow having a curved streamline with an increasing velocity in the direction of decreasing curvature.It is shown that the air flow above wind waves and swells also satisfies locally the condition of the centrifugal instability. Numerical calculations indicate the possibility of generation of Taylor-Görtler vortices on the trough of sea waves. For example, when a wind of about 12.2 m/s at 10-m level is blowing over sea waves of the wave length of 15 m like the swell, the critical water wave height beyond which the vortices may be generated is about 0.5 m, and the critical wave length and the height of center of the generated vortices are about 24 m and 3.7 m, respectively. Further, about the relations between the generation of vortices and wind waves, it is shown that the condition of their generation is satisfied at the trough of waves for early stages of the wave generation.In conclusion, it is expected that the Taylor-Görtler vortices change the wind profile along the sea surface, and also, play some part in the growth of wind waves, especially in the formation of their three dimensional structure.  相似文献   

11.
The experimental investigation of the run-up of periodic internal waves in a two-layer fluid on the coastal slope is performed in an open hydrochannel at the Physical Department of the Lomonosov Moscow State University. The waves are produced by a wave generator. We study the transformation of waves, the vertical structure of the field of velocities of mass transfer, and the behavior of the parameters of internal waves propagating over the sloping bottom. It is shown that the run-up and breaking of internal waves are accompanied by periodic emissions of portions of the heavier fluid from the bottom layer upward along the slope. The Stokes drift velocity changes its sign as a function of depth. Moreover, both the wave length (the horizontal distance between the neighboring crests) and the height of waves over the sloping bottom (the elevation of the crest over the slope along the vertical) decrease as the wave approaches the coast.  相似文献   

12.
When long, fast swell waves travel in approximately the same direction as the wind, the surface stress is reduced compared with under wind-sea conditions. Using measurements from the Östergarnsholm site in the Baltic Sea, new expressions of the roughness length were developed for wind sea and swell. These new expressions were implemented in the RCA3 regional climate model covering Europe. A 3-year simulation and two case studies using the wavefield from the ECMWF reanalysis (ERA-40) were analysed using the improved formulations. Wind-following swell led to a significant reduction of mean wind stress and heat fluxes. The mean surface layer wind speed was redistributed horizontally and the marine boundary layer cooled and dried slightly. This cooling was most pronounced over North Sea and the Norwegian Sea (almost 0.2 °C annually on average) whereas the drying was most pronounced over the Mediterranean Sea (almost 0.4 g kg−1). Somewhat less convective precipitation and low-level cloudiness over the sea areas were also indicated, in particular over the Mediterranean Sea. The impact on the atmosphere, however, is significantly locally greater in time and space.  相似文献   

13.
The problems of wind-induced waves on the sea surface are considered. To this end, the empirical fetch laws that determine variations in the basic periods and heights of waves in relation to their fetch are used. The relation between the fetch and the physical time is found, as are the dependences of the basic characteristics of waves on the time of wind forcing. It is found that about 5% of wind energy dissipated in the near-water air layer contributes to the growth of wave heights, i.e. wave energy, although this quantity depends on the age of waves and the exponent in the fetch laws. With consideration for estimates of the probability distribution functions for the wind over the world ocean [11], it is found that the rate of wind-energy dissipation in the near-water air layer is on the order of 1 W/m2. The calculations of wind waves [19] for the world ocean for 2007 have made it possible to assess the mean characteristics of the cycle of wave development and their seasonal variations. An analysis of these calculations [19] shows that about 20% of wind energy is transferred to the water surface. The remaining amount (80%) of wind energy is spent on the generation of turbulence in the near-water air layer. About 2%, i.e., one tenth of the energy transferred to water, is spent on turbulence generation due to the instability of the vertical velocity profile of the Stokes drift current and on energy dissipation in the surf zones. Of the remaining 18%, 5% is spent directly on wave growth and 13% is spent on the generation of turbulence during wave breaking and on a small-scale spectral region. These annually and globally mean estimates have a seasonal cycle with an amplitude on the order of 20% in absolute values but with a smaller amplitude in relative values. According to [19] and to the results of this study, the annually mean height of waves is estimated as 2.7 m and their age is estimated as 1.17.  相似文献   

14.
《Journal of Sea Research》2002,47(3-4):209-222
Velocity and temperature measurements obtained with acoustic Doppler current profilers and thermistor strings are used to evaluate the production of internal wave band kinetic energy mainly in the frequency band σ>15 cpd. Results from a flat 19 m deep, vigorous tidal environment in a shelf sea are compared with energy production in a bottom boundary layer above a continental slope. In the tidal environment, maximum production occurs in the near-bottom and near-surface layers. A distinct mid-depth maximum in KE production occurs during a period when wind speeds exceed 10 m s−1 and significant wave height ∼2 m. At the same time, no significant changes in the along-shore current speed take place but the cross-shore current, generated by strong stratification, is weakened. This suggests a direct energy input from the wind via surface waves into the water column turbulence. Maximum kinetic energy production in the frequency band σ>1.9 cpd, thus including the semidiurnal tide, occurs at mid-depth when strong stratification is present. The overall magnitude of internal wave band kinetic energy production agrees well with independent dissipation estimates obtained from microstructure profilers. Above the sloping bottom, KE production is somewhat larger than observed in the shallow tidal environment, despite rms currents being ∼50% smaller and wind effects being small. Above the sloping bottom KE shear production was comparable to buoyancy production. The latter was negligible at the shelf sea site.  相似文献   

15.
根据 1 994年 9月 1 8— 30日南沙群岛海域渚碧礁的近海面大气湍流观测实验资料 ,分别计算了该海域光滑海面和粗糙海面上的空气动力粗糙度 (z0 )、中性曳力系数 (CDN)。利用Brutsaert的假定 ,推导了一组求取标量粗糙度 (zT,zQ)、整体输送系数 (感热交换系数CHN、水汽交换系数CEN)的公式。在此基础上分别计算和分析了该海域近海面光滑海面和粗糙海面上z0 ,zT,zQ,CDN,CHN,CEN 及它们关于水平风速u分量的分布 ,并得到了一些有意义的结论。  相似文献   

16.
This report describes extensive investigations of the near bottom layer of the Western Baltic (Mecklenburg Bight, Darss Sill and Arkona Basin) which were conducted over a 5 year period to determine the typical structure, vertical thickness, vertical turbulence structure, and spatial and temporal variability of this water mass with regard to the area's particular hydrographic conditions. Series of vertical profiles were obtained using the microstructure profiler MSS86, which is capable of measuring high resolution profiles of temperature, conductivity, current shear, light attenuation and pressure down to the seafloor. The near bottom current structure was simultaneously measured with conventional current metres at fixed depths. A typical vertical density structure of the near bottom layer was found. At all investigation sites the Bottom Boundary Layer was separated from the overlying water mass by a well pronounced thermohaline pycnocline. A homogeneous water layer was situated above the bottom with a mean thickness of 2.2 m and typical variation between 0.5 and 3.5 m. The thickness of both the homogeneous layer and of the near bottom layer vary considerably. It is suggested that horizontal advection is responsible for these fluctuations in thickness. The variation in thickness of the Homogeneous Layer is independent of the local mean current velocity, wind speed and energy dissipation rate. Over periods of about 2 days the thickness of the Homogeneous Layer is determined by the average wind speed. The Bottom Boundary Layer shows its own characteristic dynamic, which is largely decoupled from that of the remaining water body. A logarithmic layer was generally not resolved by the current measurements. From dissipation rate measurements, the wall layer was determined to be 0.9 m thick. There was no significant correlation between the dissipation rate and the local wind speed, or between the dissipation rate and local mean current u100. This means that any simple parameterisation relating u100 or friction velocity to the locally produced turbulence and consequently to the resuspension of sediment is probably not applicable to shallow sea areas with properties like the Western Baltic. The investigation of sediment concentration in the BBL illustrates the importance of local effects combined with advection. The sediment stratified layer covers only the bottom most 50 cm.  相似文献   

17.
Effect of air-sea temperature difference on the momentum exchange between air and sea for fetch-limited casesChengZhanandWuSh...  相似文献   

18.
Based on vector-algebraic analysis of random processes, we study the statistical structure of the synoptic variability of currents measured by an ADCP in the upper mixed layer in the central part of the continental slope of the Laptev Sea in 2006–2007. The results of statistical analysis show that in some cases the synoptic currents in the surface layer of the sea are signs of wind drift currents. This is indicated by the high correlation between the tangential friction of wind and currents, as well as the reversal of the depth of current vectors and the major axes of the ellipses of the mean-square deviation of the Ekman spiral. Due to the large variability of wind flows and stratification of water masses, the penetration depth of these currents is small and varies from 6 to 30 m, with pronounced seasonal variation. In deeper layers, no relationship between the currents and anemobaric forces is traced. It is concluded that the fluctuations of synoptic scale currents in the area of the continental slope of the Laptev Sea represent a superposition of Ekman drift currents and movements associated with free baroclinic Kelvin waves. These currents are the dominant contributor in the upper 30-m layer of the ocean, while waves play a key role in deeper waters.  相似文献   

19.
海面的曳力系数和空气动力学粗糙度长度是计算海气动量、感热和水汽通量交换必需的参数。基于在“黑格比”和“灿都”台风期间收集的涡动相关系统观测数据, 文章研究了10m风速和摩擦速度之间、10m风速和曳力系数之间、以及10m风速和动力粗糙度长度之间的参数化关系。结果表明: 曳力系数和摩擦速度及10m风速之间存在抛物线关系, 动力粗糙度长度与摩擦速度及10m风速之间存在自然指数关系; 临界摩擦速度为0.83m·s-1, 临界10m级风速为23.69m·s-1。  相似文献   

20.
Wind-velocity data obtained from in situ measurements at the Golitsyno-4 marine stationary platform have been compared with QuikSCAT scatterometer data; NCEP, MERRA, and ERA-Interim global reanalyses and MM5 regional atmospheric reanalysis. In order to adjust wind velocity measured at a height of 37 m above the sea surface to a standard height of 10 m with stratification taken into account, the Monin–Obukhov theory and regional atmospheric reanalysis data are used. Data obtained with the QuikSCAT scatterometer most adequately describe the real variability of wind over the Black Sea. Errors in reanalysis data are not high either: the regression coefficient varies from 0.98 to 1.06, the rms deviation of the velocity amplitude varies from 1.90 to 2.24 m/s, and the rms deviation of the direction angle varies from 26° to 36°. Errors in determining the velocity and direction of wind depend on its amplitude: under weak winds (<3 m/s), the velocity of wind is overestimated and errors significantly increase in determining its direction; under strong winds (>12 m/s), its velocity is underestimated. The influence of these errors on both spatial and temporal estimates of the characteristics of wind over the Black Sea is briefly considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号