首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
沙洲是塑造分汊型河道最重要的形态因子,其发育与蚀退由于上游来水来沙变化呈现冲淤交替,从而影响分汊河道输水输沙平衡.通过单个卵石沙洲的淤积和冲刷试验,揭示不同加沙速率、粒径和来流量条件下,沙洲淤积和冲刷规律,并建立简化理论模型分析沙洲淤积速率.结果表明,4组加沙试验中,分流点后出现明显淤积下延至洲头,左汊和右汊成为输沙通道,洲尾中心线两侧的左右汊道有泥沙淤积,洲尾未出现淤积.7组清水冲刷试验中,洲头最先承受冲刷和蚀退,并沿洲体冲刷延伸,洲头冲刷的泥沙沿左右汊水流带到下游,洲尾未出现明显冲刷.卵石沙洲以洲头淤积为主导发育模式,泥沙粒径、洲头坡角和分流角是决定淤积速率的关键因子.  相似文献   

2.
渗流边界上推移质输沙率   总被引:3,自引:2,他引:1       下载免费PDF全文
天然河道边界上常由于地下水和地表水的水位不同而产生渗流,引起水流的非静水压力分布,进而影响推移质输移规律,也使得常用的推移质输沙率公式不再适用.利用水槽试验测定沙波的尺寸及运动速度与床面渗流水力梯度的关系,结果表明沙波的高度及运动速度随着向下渗流强度的加大而增加,随着向上渗流强度的加大而减少;进而结合理论分析,利用沙波运动特点估算推移质输沙率,并推导出推移质输沙率随床面渗流的引入而变化的计算公式,分析渗流引起非静水压力分布下推移质输沙率的变化.  相似文献   

3.
王浩  袁强  孟震  龚家国 《水科学进展》2016,27(6):849-857
在明渠中开展不同水流条件下低强度均匀沙平衡输沙试验,基于灰度相减方法分析整个床面推移质运动特征,以探寻紊流结构与推移质运动之间的作用机理。结果表明:①受水槽横向方向水流强度分布特征影响,推移质运动概率从水槽中线到两侧壁逐渐变小,且基本呈对称分布;②在紊流相干结构作用下,推移质床面在紊流低速条带区形成凸槽,高速条带区形成凹槽,推移质运动概率沿水槽横向方向存在高低相间的带状分区;③随摩阻雷诺数增大,相邻两推移质运动高概率区域的间距值变化范围为0.13~0.24倍水槽宽度,其值随摩阻雷诺数增大而增大;④不同水流条件下,推移质运动高概率区域间距值约为水深的2倍,这与流向涡模型吻合,表明流向涡是诱导床面出现凹凸相间形态的重要因素。  相似文献   

4.
江心洲在何种水动力条件下具有稳定的形态一直是河床演变学中的核心问题,采用河道形态变分分析方法,综合分析分汊型河流在水流连续方程、阻力方程、推移质输沙方程和总流能量方程控制下的自动调整机理。以长江中下游两汊不对称的江心洲为研究对象,将其形态概化为规则的等腰三角形,详细数理分析发现,主汊的分沙比大于分流比是这类江心洲达到平衡的必要条件。当分汊河道达到平衡状态时,江心洲的形态会随着汊道间水沙分配比例的调整而变化,且分流比与分沙比越接近,江心洲越窄长。另外,利用长江中游监利汊道的实测水沙资料对理论分析进行验证,结果表明,江心洲形态的理论计算值与相应的实测值符合程度较好,相对误差为9.0%左右。  相似文献   

5.
“北方海上丝绸之路”作为中国古代与东亚各国进行贸易往来的重要海上通道,促进了宋元时期海上丝绸之路的大发展并成就了明朝大航海的辉煌,研究其始发港的变迁与原因对“海上丝绸之路研究体系”的完善和“21世纪海上丝绸之路”的建设具有重要意义,但目前鲜有研究。基于古代典籍、地方志和历史地图的记载,结合前人对历史时期中国环境变化的认识,对隋唐至明清时期长江三角洲地区“北方海上丝绸之路”主要始发港的变迁与原因进行研究。结果表明: (1)隋唐—明清时期中国长江三角洲地区先后兴起了3个“北方海上丝绸之路”主要始发港,扬州港盛于隋唐,上海港盛于唐宋,明州港(今宁波港)盛于宋元; (2)气候变冷引起的北方少数民族南犯,中原地区经济和政治中心南迁,北方海上丝绸之路的始发港由登州(今蓬莱)迁到了长江三角洲地区; (3)随泥沙堆积,雁形式沙洲发育,河口分汊东伸南移,长江河口海岸由喇叭形的河口湾演化为三角洲,这是引起始发港由扬州港向东迁往上海港、乃至明州港的根本原因; (4)长江河口沙洲的发育,引起了长江扬州港段和上海港段水系的变化,使得2个港作为始发港时,港口的具体位置不断地随河势变化而调整; (5)对外贸易政策的变化亦对始发港的兴衰与变迁起到一定的促进或阻碍作用。  相似文献   

6.
“北方海上丝绸之路”作为中国古代与东亚各国进行贸易往来的重要海上通道,促进了宋元时期海上丝绸之路的大发展并成就了明朝大航海的辉煌,研究其始发港的变迁与原因对“海上丝绸之路研究体系”的完善和“21世纪海上丝绸之路”的建设具有重要意义,但目前鲜有研究。基于古代典籍、地方志和历史地图的记载,结合前人对历史时期中国环境变化的认识,对隋唐至明清时期长江三角洲地区“北方海上丝绸之路”主要始发港的变迁与原因进行研究。结果表明: (1)隋唐—明清时期中国长江三角洲地区先后兴起了3个“北方海上丝绸之路”主要始发港,扬州港盛于隋唐,上海港盛于唐宋,明州港(今宁波港)盛于宋元; (2)气候变冷引起的北方少数民族南犯,中原地区经济和政治中心南迁,北方海上丝绸之路的始发港由登州(今蓬莱)迁到了长江三角洲地区; (3)随泥沙堆积,雁形式沙洲发育,河口分汊东伸南移,长江河口海岸由喇叭形的河口湾演化为三角洲,这是引起始发港由扬州港向东迁往上海港、乃至明州港的根本原因; (4)长江河口沙洲的发育,引起了长江扬州港段和上海港段水系的变化,使得2个港作为始发港时,港口的具体位置不断地随河势变化而调整; (5)对外贸易政策的变化亦对始发港的兴衰与变迁起到一定的促进或阻碍作用。  相似文献   

7.
随着我国许多油田进入高含水开发阶段,剩余油挖潜难度增大,复合分流河道带和单河道的划分已不能满足生产要求,迫切需要进行分流河道内部有利砂体的识别。现代沉积研究是认识分流河道内砂体发育特征的有效手段。通过对鄱阳湖赣江三角洲的现场考察,发现汊口滩是三角洲分流河道中发育的重要砂体类型,以发育在分流河道的分汊口处为典型特征。根据水动力条件、沉积物组合、沉积构造等特征,将汊口滩划分为滩头、滩中、滩尾3个沉积单元。从滩头到滩尾具有水动力条件减弱、沉积物层理规模减小、单砂层厚度减小、粒度变细、泥质夹层增多的特点。汊口滩主要是由于在分汊口处,水流受到汊口的顶托作用流速降低,沉积物按粒度分异堆积形成;堆积方式主要以向上游方向的逆流加积为主。与水道砂体相比,汊口滩发育的层理类型多,而且内部夹层发育,非均质性更强;由于夹层的遮挡作用,砂体不易发生水淹,有利于形成剩余油的富集区。  相似文献   

8.
长江中游瓦口子至马家咀河段二维水沙数学模型   总被引:1,自引:6,他引:1       下载免费PDF全文
针对长江中游瓦口子至马家咀河段(弯曲分汊河段)的水沙运动特点,给出了二维水沙数学模型尤其是推移质不平衡输沙计算的模式,主要包括推移质不平衡输沙方程、床沙级配方程、河床变形方程;对模型中的几个关键问题提出了处理方法,如非均匀沙起动及输移规律、床面混合层厚度等.利用大量的水流及河床变形资料,率定了模型的一些参数,进行了水面线、流速分布及河床变形的详细验证.在此基础上,根据设计部门提供的进出口水沙边界条件,预测了三峡工程蓄水初期该河段的冲淤过程与分布及航道条件的变化.  相似文献   

9.
采用图像识别与推移质动态监测技术,开展基于双峰型非均匀推移质的系列水槽试验.通过引入反映床面粗糙度、粘性底层特性与颗粒非均匀度η(粗细比)的综合水流强度函数Ψb、特征弗劳德数Frb,系统研究了不同水流强度与床沙组成条件下的推移质输移特性以及颗粒非均匀度对输沙率的影响.通过对关键因子的辨识与量纲分析,提出了双峰型非均匀推移质输移模式,建立了基于近壁特征因子的水流强度Ψb与非均匀推移质输移强度Φ'的函数关系.对双峰型底沙输移机理的分析表明,非均匀沙的组成特征使得η成为影响Φ'的重要参量;正是细粒对粗粒的解怙作用对粗沙运动产生重要影响,使推移质输移率与颗粒非均匀度间呈现驼峰关系,峰值对应的粗细比ηc约为3∶7.  相似文献   

10.
河海交互作用沉积与平原地貌发育*   总被引:3,自引:15,他引:3  
河流是搬运陆源泥沙的主要动力,对相邻的海岸海洋沉积动力有巨大影响。中国河流汇入海洋中的泥沙曾占全球入海泥沙的10 % ,现代中国边缘海大陆架在晚更新世时曾是海岸平原,河-海交互作用是形成海岸平原与浅海输积泥沙的主要因素。本文选择5个不同类型的河流展示其不同的泥沙运动与河口沉积的特性以及对相邻陆架之影响,包括: 1)强潮型动力的鸭绿江河口湾,形成从陆向海与从海向陆的双向水流交汇沉积,海岸形成潮流脊体系。 2)季风波浪为主导动力的滦河口,以泥沙的横向运动为主,形成沙坝环绕的双重海岸,沉积粒径自海向陆减小; 沿岸浪流携运泥沙向河口两侧分布,使沙坝具有沙咀状的复合特点。 3)弱潮型、多沙的黄河口,径流于两侧堆积指状沙咀,沙咀下风侧形成粉砂粘土淤泥湾,沿岸流携运泥沙向渤海湾延伸为淤泥舌。 4)径流与沿岸流组合作用的沉积模式,以长江口为代表,泥沙沿岸向南输运为主导,向海岸与向内陆架构成颗粒变细的带状沉积,外陆架出露残留砂。 5)充填河口湾的三角洲,以珠江为代表,河流分汊与会潮点泥沙堆积,悬移质扩散至湾外,被沿岸流携带沿海岸向SW运移,外陆架为残留砂沉积。20世纪80年代以来,上述河流均受到人为活动的改造影响,河流自然过程与河海交互作用效应均发生改变。本文主要以滦河三角洲为例阐述河-海交互作用与平原的地貌特征。  相似文献   

11.
A tidally averaged model of estuarine dynamics is used to estimate sediment transport in the Hudson River estuary over the period 1918 to 2005. In long-term and seasonal means, along-channel gradients in sediment flux depend on the estuarine salinity gradient and along-channel depth profile. Lateral depth variation across the estuary affects the near-bottom baroclinic circulation and consequently the direction of net sediment flux, with generally up-estuary transport in the channel and down-estuary transport on the shoals. Sediment transport capacity in the lower estuary depends largely on river discharge, but is modified by the timing of discharge events with respect to the spring–neap cycle and subtidal fluctuations in sea level. Sediment transport capacity also depends on the duration of high-discharge events relative to the estuarine response time, a factor that varies seasonally with discharge and estuarine length. Sediment fluxes are calculated with the assumption that over long periods, the system approaches morphological equilibrium and sediment accumulation equals sea level rise. The inferred across- and along-channel distributions of sediment erodibility correspond with observations of bed properties. Equilibrium is assumed at long time scales, but at annual to decadal time scales the estuary can develop an excess or deficit of sediment relative to equilibrium. On average, sediment accumulates in the estuary during low- and high-discharge periods and is exported during moderate discharge. During high-discharge periods, maximum export coincides with maximum sediment supply from the watershed, but the nearly cubic discharge dependence of fluvial sediment supply overwhelms the roughly linear increase in estuarine transport capacity. Consequently, sediment accumulates in the estuary during the highest flow conditions. Uncertainty remains in the model, particularly with sediment properties and boundary conditions, but the results clearly indicate variability in the sediment mass balance over long time scales due to discharge events.  相似文献   

12.
为阐明强潮河口最大浑浊带的形成机制及其运动规律,通过瓯江和椒(灵)江实测资料分析,系统分析了强潮河口最大浑浊带形成的影响因素及其与河口地貌的响应关系。考虑黏性细颗粒泥沙运动特性和盐度的影响,开发了强潮河口最大浑浊带数学模型,对椒(灵)江枯季大潮最大浑浊带运移过程进行了模拟。结果表明:①强潮河口最大浑浊带是潮波变形、咸淡水混合、泥沙再悬浮等复杂因素在一定河口边界和泥沙条件下相互作用的产物,潮波变形和泥沙供给是影响最大浑浊带形成的关键因素。②强潮河口最大浑浊带模拟必须充分考虑潮流、盐淡水混合、泥沙周期性起动、絮凝和沉积密实等因素,所建立的数学模型可用于强潮河口最大浑浊带研究。  相似文献   

13.
This paper examines sediment transport, sedimentation and properties of suspended matter and sediments in the Ra?a River estuary, a small, rock-bounded, microtidal, low-wave-energy karstic estuary in the north-eastern Adriatic. The Ra?a River is characterized by large variation in water flow and variable load of mineral particles. More than 90% of this load is brought into the estuary as fine-grained suspended matter, consisting of only 24–36% of carbonates, the rest being clays. Sedimentation occurs at the salt wedge, resulting in a prograding estuarine delta. Salt-induced flocculation is the predominant process of sediment deposition. The Ra?a estuary is infilling with sediment, and classifies as a disequilibrium estuary. We propose a modification of Cooper's (1993) classification scheme to include river-dominated, disequilibrium estuaries, with the Ra?a River as an example.  相似文献   

14.
The spatial distribution of clay minerals in sandstones, which may both enhance or degrade reservoir quality, is poorly understood. To address this, clay mineral distribution patterns and host‐sediment properties (grain size, sorting, clay fraction abundance and bioturbation intensity) have, for the first time, been determined and mapped at an unprecedentedly high‐resolution in a modern estuarine setting (Ravenglass Estuary, UK). Results show that the estuary sediment is dominated by illite with subordinate chlorite and kaolinite, although the rivers supply sediment with less illite and significantly more chlorite than found in the estuary. Fluvial‐supplied sediment has been locally diluted by sediment derived from glaciogenic drift deposits on the margins of the estuary. Detailed clay mineral maps and statistical analyses reveal that the estuary has a heterogeneous distribution of illite, chlorite and kaolinite. Chlorite is relatively most abundant on the northern foreshore and backshore and is concentrated in coarse‐grained inner estuary dunes and tidal bars. Illite is relatively most abundant (as well as being most crystalline and most Fe–Mg‐rich) in fine‐grained inner estuary and central basin mud and mixed flats. Kaolinite has the highest abundance in fluvial sediment and is relatively homogenous in tidally‐influenced environments. Clay mineral distribution patterns in the Ravenglass Estuary have been strongly influenced by sediment supply (residence time) and subsequently modified by hydrodynamic processes. There is no relationship between macro‐faunal bioturbation intensity and the abundance of chlorite, illite or kaolinite. Based on this modern‐analogue study, outer estuarine sediments are likely to be heavily quartz cemented in deeply‐buried (burial temperatures exceeding 80 to 100°C) sandstone reservoirs due to a paucity of clay grade material (<0·5%) to form complete grain coats. In contrast, chlorite‐enriched tidal bars and dunes in the inner estuary, with their well‐developed detrital clay coats, are likely to have quartz cement inhibiting authigenic clay coats in deeply‐buried sandstones.  相似文献   

15.
Assessments of coupled barrier island-estuary storm response are rare. Hurricane Sandy made landfall during an investigation in Barnegat Bay-Little Egg Harbor estuary that included water quality monitoring, geomorphologic characterization, and numerical modeling; this provided an opportunity to characterize the storm response of the barrier island-estuary system. Barrier island morphologic response was characterized by significant changes in shoreline position, dune elevation, and beach volume; morphologic changes within the estuary were less dramatic with a net gain of only 200,000 m3 of sediment. When observed, estuarine deposition was adjacent to the back-barrier shoreline or collocated with maximum estuary depths. Estuarine sedimentologic changes correlated well with bed shear stresses derived from numerically simulated storm conditions, suggesting that change is linked to winnowing from elevated storm-related wave-current interactions rather than deposition. Rapid storm-related changes in estuarine water level, turbidity, and salinity were coincident with minima in island and estuarine widths, which may have influenced the location of two barrier island breaches. Barrier-estuary connectivity, or the transport of sediment from barrier island to estuary, was influenced by barrier island land use and width. Coupled assessments like this one provide critical information about storm-related coastal and estuarine sediment transport that may not be evident from investigations that consider only one component of the coastal system.  相似文献   

16.
Future estuarine geomorphic change, in response to climate change, sea-level rise, and watershed sediment supply, may govern ecological function, navigation, and water quality. We estimated geomorphic changes in Suisun Bay, CA, under four scenarios using a tidal-timescale hydrodynamic/sediment transport model. Computational expense and data needs were reduced using the morphological hydrograph concept and the morphological acceleration factor. The four scenarios included (1) present-day conditions; (2) sea-level rise and freshwater flow changes of 2030; (3) sea-level rise and decreased watershed sediment supply of 2030; and (4) sea-level rise, freshwater flow changes, and decreased watershed sediment supply of 2030. Sea-level rise increased water levels thereby reducing wave-induced bottom shear stress and sediment redistribution during the wind-wave season. Decreased watershed sediment supply reduced net deposition within the estuary, while minor changes in freshwater flow timing and magnitude induced the smallest overall effect. In all future scenarios, net deposition in the entire estuary and in the shallowest areas did not keep pace with sea-level rise, suggesting that intertidal and wetland areas may struggle to maintain elevation. Tidal-timescale simulations using future conditions were also used to infer changes in optical depth: though sea-level rise acts to decrease mean light irradiance, decreased suspended-sediment concentrations increase irradiance, yielding small changes in optical depth. The modeling results also assisted with the development of a dimensionless estuarine geomorphic number representing the ratio of potential sediment import forces to sediment export forces; we found the number to be linearly related to relative geomorphic change in Suisun Bay. The methods implemented here are widely applicable to evaluating future scenarios of estuarine change over decadal timescales.  相似文献   

17.
The effect of pulsed events on estuarine turbidity maxima (ETM) was investigated with the Princeton Ocean Model, a three-dimensional hydrodynamic model. The theoretical model was adapted to a straight-channel estuary and enhanced with sediment transport, erosion, deposition, and burial components. Wind and river pulse scenarios from the numerical model were compared to field observations before and after river pulse and wind events in upper Chesapeake Bay. Numerical studies and field observations demonstrated that the salt front and ETM had rapid and nonlinear responses to short-term pulses in river flow and wind. Although increases and decreases in river flow caused down-estuary and up-estuary (respectively) movements of the salt front, the effect of increased river flow was more pronounced than that of decreased river flow. Along-channel wind events also elicited non-linear responses. The salt front moved in the opposite direction of wind stress, shifting up-estuary in response to down-estuary winds and vice-versa. Modeled pulsed events affected suspended sediment distributions by modifying the location of the salt front, near-bottom shear stress, and the location of bottom sediment in relation to stratification within the salt front. Bottom sediment accumulated near the convergent zone at the tip of the salt front, but lagged behind the rapid response of the salt front during wind events. While increases in river flow and along-channel winds resulted in sediment transport down-estuary, only reductions in river flow resulted in consistent up-estuary movement of bottom sediment. Model predictions suggest that wind and river pulse events significantly influence salt front structure and circulation patterns, and have an important role in the transport of sediment in upper estuaries.  相似文献   

18.
河口盐水入侵作用研究动态综述   总被引:9,自引:0,他引:9  
河口是河流径流与海洋水体交接的过滤地带。由于水流扩散,挟沙能力降低,河流挟带的泥沙进入河口后将逐渐沉降。但沉降的泥沙常在某段槽床聚积,形成拦门沙坝而阻碍航运。拦门沙形成的原因与河口环流、泥沙絮凝沉降和最大混浊带等现象紧密关联,而这些现象又由盐水入使所造成。本文综述了国内外对河口盐水入侵作用的认识和研究进展,以及目前的研究动态。  相似文献   

19.
Sediment transport and trapping in the Hudson River estuary   总被引:3,自引:0,他引:3  
The Hudson River estuary has a pronounced turbidity maximum zone, in which rapid, short-term deposition of sediment occurs during and following the spring freshet. Water-column measurements of currents and suspended sediment were performed during the spring of 1999 to determine the rate and mechanisms of sediment transport and trapping in the estuary. The net convergence of sediment in the lower estuary was approximately 300,000 tons, consistent with an estimate based on sediment cores. The major input of sediment from the watershed occurred during the spring freshet, as expected. Unexpected, however, was that an even larger quantity of sediment was transported landward into the estuary during the 3-mo observation period. The landward movement was largely accomplished by tidal pumping (i.e., the correlation between concentration and velocity at tidal frequencies) during spring tides, when the concentrations were 5 to 10 times higher than during neap tides. The landward flux is not consistent with the long-term sediment budget, which requires a seaward flux at the mouth to account for the excess input from the watershed relative to net accumulation. The anomalous, landward transport in 1999 occurred in part because the freshet was relatively weak, and the freshet occurred during neapetides when sediment resuspension was minimal. An extreme freshet occurred during 1998, which may have provided a repository of sediment just seaward of the mouth that re-entered the estuary in 1999. The amplitude of the spring freshet and its timing with respect to the spring-neap cycle cause large interannual variations in estuarine sediment flux. These variations can result in the remobilization of previously deposited sediment, the mass of which may exceed the annual inputs from the watershed.  相似文献   

20.
Sedimentation in a river dominated estuary   总被引:2,自引:0,他引:2  
The Mgeni Estuary on the wave dominated east coast of South Africa occupies a narrow, bedrock confined, alluvial valley and is partially blocked at the coast by an elongate sandy barrier. Fluvial sediment extends to the barrier and marine deposition is restricted to a small flood tidal delta. Sequential aerial photography, sediment sampling and topographical surveys reveal a cyclical pattern of sedimentation that is mediated by severe fluvial floods which exceed normal energy thresholds. During severe floods (up to 10x 103 m3 s?1), lateral channel confinement promotes vertical erosion ofbed material. Eroded material is deposited as an ephemeral delta in the sea. After floods the river gradient is restored within a few months through rapid fluvial deposition and formation of a shallow, braided channel. Over an extended period (approximately 70 years) the estuary banks and bars are stabilised by vegetation and mud deposition. Subsequent downcutting in marginal areas transforms the channel to an anastomosing pattern which represents a stable morphology which adjusts to the normal range of hydrodynamic conditions. This cyclical pattern of deposition produces multiple fill sequences in such estuaries under conditions of stable sea level. The barrier and adjacent coastline prograde temporarily after major floods as the eroded barrier is reformed by wave action, but excess sediment is ultimately eroded as waves adjust the barrier to an equilibrium plan form morphology. Deltaic progradation is prevented by a steep nearshore slope, and rapid sediment dispersal by wave action and shelf currents. During transgression, estuarine sedimentation patterns are controlled by the balance between sedimentation rates and receiving basin volume. If fluvial sedimentation keeps pace with the volume increase of a basin an estuary may remain shallow and river dominated throughout its evolution and excess fluvial sediments pass through the estuary into the sea. Only if the rate of volume increase of the drowned river valley exceeds the volume of sediment supply are deep water environments formed. Under such conditions an estuary becomes a sediment sink and infills by deltaic progradation and lateral accretion as predicted by evolutionary models for microtidal estuaries. Bedrock valley geometry may exert an important control on this rate of volume increase independently of variations in the rate of relative sea level change. If estuarine morphology is viewed as a function of the balance of wave, tidal and fluvial processes, the Mgeni Estuary may be defined as a river dominated estuary in which deltaic progradation at the coast is limited by high wave energy. It is broadly representative of other river dominated estuaries along the Natal coast and a conceptual regional depositional model is proposed. Refinement of a globally applicable model will require further comparative studies of river dominated estuaries in this and other settings, but it is proposed that river dominated estuaries represent a distinct type of estuarine morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号