首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ramp patterns of temperature and humidity occur coherently at several levels within and above a deciduous forest as shown by data gathered with up to seven triaxial sonic anemometer/thermometers and three Lyman-alpha hygrometers at an experimental site in Ontario, Canada. The ramps appear most clearly in the middle and upper portion of the forest. Time/height cross-sections of scalar contours and velocity vectors, developed from both single events and ensemble averages of several events, portray details of the flow structures associated with the scalar ramps. Near the top of the forest they are composed of a weak ejecting motion transporting warm and/or moist air out of the forest followed by strong sweeps of cool and/or dry air penetrating into the canopy. The sweep is separated from the ejecting air by a sharp scalar microfront. At approximately twice the height of the forest, ejections and sweeps are of about equal strength.In the middle and upper parts of the canopy, sweeps conduct a large proportion of the overall transfer between the forest and the lower atmosphere, with a lesser contribution from ejections. Ejections become equally important aloft. During one 30-min run, identified structures were responsible for more than 75% of the total fluxes of heat and momentum at mid-canopy height. Near the canopy top, the transition from ejection of slow moving fluid to sweep bringing fast moving air from above is very rapid but, at both higher and lower levels, brief periods of upward momentum transfer occur at or immediately before the microfront.  相似文献   

2.
The near-surface flow of a well-resolved large-eddy simulation of the neutrally-stratified planetary boundary layer is used to explore the relationships between coherent structures and the vertical momentum flux. The near-surface flow is characterized by transient streaks, which are alternating bands of relatively higher and lower speed flow that form parallel to the mean shear direction in the lower part of the boundary layer. Although individual streaks are transient, the overall flow is in a quasi-equilibrium state in which the streaks form, grow, decay and regenerate over lifetimes on the order of tens of minutes. Coupled with the streaky flow is an overturning circulation with alternating bands of updrafts and downdrafts approximately centered on the streaks. The surface stress is dominated by upward ejections of slower moving near-surface air and downward sweeps of higher speed air from higher in the boundary layer. Conditional sampling of the ejection and sweep events shows that they are compact, coherent structures and are intimately related to the streaks: ejections (sweeps) preferentially form in the updrafts (downdrafts) of the three-dimensional streak flow. Hence, consistent with other recent studies, we propose that the streak motion plays an important role in the maintenance of the surface stress by establishing the preferential conditions for the ejections and sweeps that dominate the surface stress. The velocity fluctuation spectra in the model near the surface have a k −1 spectral slope over an intermediate range of wavenumbers. This behaviour is consistent with recent theoretical predictions that attempt to evaluate the effects of organized flow, such as near-surface streaks, on the variance spectra.  相似文献   

3.
A conditional sampling technique using a multilevel scheme was applied to the detection of temperature and humidity microfronts and organized ejection/sweep motions under different atmospheric stabilities. Data were obtained with seven triaxial sonic anemometer/thermometers and three Lyman-alpha hygrometers within and above a deciduous forest. Both temperature and humidity microfronts were identified in unstable cases, but only humidity microfronts could be detected under neutral conditions. Inverted temperature ramps occurred under slightly stable conditions. Occasionally, wave-like patterns appeared within the canopy, seemingly coupled with inverse ramps occurring above the forest. The frequency of occurrence of scalar microfronts appears to have no clear dependence on atmospheric stability, and averages 74–84 s per cycle with a mode of about 50 s per cycle. However, the strength of ejections and sweeps, shown by the vertical velocity averaged within structures, was reduced by increasing atmospheric stability. Structures identified under different stabilities show many similarities in their patterns of scalar ramps, and associated velocity and surface pressure. Profiles of short-term averaged longitudinal velocity at different times during the microfront passage show that the air within the canopy was retarded and an intensified shear above the canopy occurred prior to the passage of the microfront. Results from the present conditional analysis strongly suggest an important role of shear instability in the formation of canopy coherent structure.  相似文献   

4.
High-accuracy large-eddy simulations of neutral atmospheric surface-layer flow over a gapped plant canopy strip have been performed. Subgrid-scale (SGS) motions are parameterized by the Sagaut mixed length SGS model, with a modification to compute the SGS characteristic length self-adaptively. Shaw’s plant canopy model, taking the vertical variation of leaf area density into account, is applied to study the response of the atmospheric surface layer to the gapped dense forest strip. Differences in the region far away from the gap and in the middle of the gap are investigated, according to the instantaneous velocity magnitude, the zero-plane displacement, the potential temperature and the streamlines. The large-scale vortex structure, in the form of a roll vortex, is revealed in the region far away from the gap. The nonuniform spatial distribution of plants appears to cause the formation of the coherent structure. The roll vortex starts in the wake of the canopy, and results in strong fluctuations throughout the entire canopy region. Wind sweeps and ejections in the plant canopy are also attributed to the large vortex structure.  相似文献   

5.
The Budget of Turbulent Kinetic Energy in the Urban Roughness Sublayer   总被引:4,自引:4,他引:0  
Full-scale observations from two urban sites in Basel, Switzerland were analysed to identify the magnitude of different processes that create, relocate, and dissipate turbulent kinetic energy (TKE) in the urban atmosphere. Two towers equipped with a profile of six ultrasonic anemometers each sampled the flow in the urban roughness sublayer, i.e. from street canyon base up to roughly 2.5 times the mean building height. This observational study suggests a conceptual division of the urban roughness sublayer into three layers: (1) the layer above the highest roofs, where local buoyancy production and local shear production of TKE are counterbalanced by local viscous dissipation rate and scaled turbulence statistics are close to to surface-layer values; (2) the layer around mean building height with a distinct inflexional mean wind profile, a strong shear and wake production of TKE, a more efficient turbulent exchange of momentum, and a notable export of TKE by transport processes; (3) the lower street canyon with imported TKE by transport processes and negligible local production. Averaged integral velocity variances vary significantly with height in the urban roughness sublayer and reflect the driving processes that create or relocate TKE at a particular height. The observed profiles of the terms of the TKE budget and the velocity variances show many similarities to observations within and above vegetation canopies.  相似文献   

6.
Turbulence structure in a deciduous forest   总被引:5,自引:2,他引:5  
Three-dimensional wind velocity components were measured at two levels above and at six levels within a fully-leafed deciduous forest. Greatest shear occurs in the upper 20% of the canopy, where over 70% of the foliage is concentrated. The turbulence structure inside the canopy is characterized as non-Gaussian, intermittant and highly turbulent. This feature is supported by large turbulence intensities, skewness and kurtosis values and by the large infrequent sweeps and ejections that dominate tangential momentum transfer. Considerable day/night differences were observed in the vertical profiles of the mean streamwise wind velocity and turbulence intensities since the stability of the nocturnal boundary layer dampens turbulence above and within the canopy.  相似文献   

7.
Momentum and turbulent kinetic energy (TKE) budgets across a forest edge have been investigated using large-eddy simulation (LES). Edge effects are observed in the rapid variation of a number of budget terms across this vegetation transition. The enhanced drag force at the forest edge is largely balanced by the pressure gradient force and by streamwise advection of upstream momentum, while vertical turbulent diffusion is relatively insignificant. For variance and TKE budgets, the most important processes at the forest edge are production due to the convergence (or divergence) of the mean flow, streamwise advection, pressure diffusion and enhanced dissipation by canopy drag. Turbulent diffusion, pressure redistribution and vertical shear production, which are characteristic processes in homogeneous canopy flow, are less important at the forest transition. We demonstrate that, in the equilibrated canopy flow, a substantial amount of TKE produced in the streamwise direction by the vertical shear of the mean flow is redistributed in the vertical direction by pressure fluctuations. This redistribution process occurs in the upper canopy layers. Part of the TKE in the vertical velocity component is transferred by turbulent and pressure diffusion to the lower canopy levels, where pressure redistribution takes place again and feeds TKE back to the streamwise direction. In this TKE cycle, the primary source terms are vertical shear production for streamwise velocity variance and pressure redistribution for vertical velocity variance. The evolution of these primary source terms downwind of the forest edge largely controls the adjustment rates of velocity variances.  相似文献   

8.
Turbulent Transport of Momentum and Scalars Above an Urban Canopy   总被引:3,自引:3,他引:0  
Turbulent transport of momentum and scalars over an urban canopy is investigated using the quadrant analysis technique. High-frequency measurements are available at three levels above the urban canopy (47, 140 and 280 m). The characteristics of coherent ejection–sweep motions (flux contributions and time fractions) at the three levels are analyzed, particularly focusing on the difference between ejections and sweeps, the dissimilarity between momentum and scalars, and the dissimilarity between the different scalars (i.e., temperature, water vapour and $\hbox {CO}_{2})$ . It is found that ejections dominate momentum and scalar transfer at all three levels under unstable conditions, while sweeps are the dominant eddy motions for transporting momentum and scalars in the urban roughness sublayer under neutral and stable conditions. The flux contributions and time fractions of ejections and sweeps can be adequately captured by assuming a Gaussian joint probability density function for flow variables. However, the inequality of flux contributions from ejections and sweeps is more accurately reproduced by the third-order cumulant expansion method (CEM). The incomplete cumulant expansion method (ICEM) also works well except for $\hbox {CO}_{2}$ at 47 m where the skewness of $\hbox {CO}_{2}$ fluctuations is significantly larger than that for vertical velocity. The dissimilarity between momentum and scalar transfers is linked to the dissimilarity in the characteristics of ejection–sweep motions and is further quantified by measures of transport efficiencies. Atmospheric stability is the controlling factor for the transport efficiencies of momentum and heat, and fitted functions from the literature describe their behaviour fairly accurately. However, transport efficiencies of water vapour and $\hbox {CO}_{2}$ are less affected by the atmospheric stability. The dissimilarity among the three scalars examined in this study is linked to the active role of temperature and to the surface heterogeneity effect.  相似文献   

9.
In the framework of the EGER (ExchanGE processes in mountainous Regions) project, the contribution of coherent structures to vertical and horizontal transports in a tall spruce canopy is investigated. The combination of measurements done in both the vertical and horizontal directions allows us to investigate coherent structures, their temporal scales, their role in flux transport, vertical coupling between the sub-canopy, canopy and air above the canopy, and horizontal coupling in the sub-canopy layer. The temporal scales of coherent structures detected with the horizontally distributed systems in the sub-canopy layer are larger than the temporal scales of coherent structures detected with the vertically distributed systems. The flux contribution of coherent structures to the momentum and sensible heat transport is found to be dominant in the canopy layer. Carbon dioxide and latent heat transport by coherent structures increase with height and reach a maximum at the canopy height. The flux contribution of the ejection decreases with increasing height and becomes dominant above the canopy level. The flux fraction transported during the sweep increases with height and becomes the dominant exchange process at the upper canopy level. The determined exchange regimes indicate consistent decoupling between the sub-canopy, canopy and air above the canopy during evening, nighttime and morning hours, whereas the coupled states and coupled by sweep states between layers are observed mostly during the daytime. Furthermore, the horizontal transport of sensible heat by coherent structures is investigated, and the heterogeneity of the contribution of coherent events to the flux transport is demonstrated. A scheme to determine the horizontal coupling by coherent structures in the sub-canopy layer is proposed, and it is shown that the sub-canopy layer is horizontally coupled mainly in the wind direction. The vertical coupling in most cases is observed together with streamwise horizontal coupling, whereas the cross-stream direction is decoupled.  相似文献   

10.
Turbulence Structure Within and Above a Canopy of Bluff Elements   总被引:2,自引:2,他引:0  
Measurements of turbulence structure in a wind-tunnel model canopy of bluff elements show many of the features associated with vegetation canopies and roughness sublayers but also display features more characteristic of the inertial sublayer (ISL). Points of similarity include the existence of an inflexion point in the space-time averaged streamwise velocity at the canopy top, the variation with height of turbulent second moments and the departure of the turbulent kinetic energy budget from local equilibrium in and just above the canopy. Quadrant analysis shows characteristic dominance of sweep over ejection events within the canopy although sweeps are more frequent than usually seen in vegetation canopies. Points of difference are a u′, w′ correlation coefficient that is closer to the ISL value than to most canopy data, and a turbulent Prandtl number midway between canopy and ISL values. Within the canopy there is distinct spatial partitioning into two flow regimes, the wake and non-wake regions. Both time-mean and conditional statistics take different values in these different regions of the canopy flow. We explain many of these features by appealing to a modified version of the mixing-layer hypothesis that links the dominant turbulent eddies to the instability of the inflexion point at canopy top. However, it is evident that these eddies are perturbed by the quasi-coherent wakes of the bluff canopy elements. Based upon an equation for the instantaneous velocity perturbation, we propose a criterion for deciding when the eddies linked to the inflexion point will dominate flow structure and when that structure will be replaced by an array of superimposed element wakes. In particular, we show that the resemblance of some features of the flow to the ISL does not mean that ISL dynamics operate within bluff-body canopies in any sense.  相似文献   

11.
The performance of the modulated-gradient subgrid-scale (SGS) model is investigated using large-eddy simulation (LES) of the neutral atmospheric boundary layer within the weather research and forecasting model. Since the model includes a finite-difference scheme for spatial derivatives, the discretization errors may affect the simulation results. We focus here on understanding the effects of finite-difference schemes on the momentum balance and the mean velocity distribution, and the requirement (or not) of the ad hoc canopy model. We find that, unlike the Smagorinsky and turbulent kinetic energy (TKE) models, the calculated mean velocity and vertical shear using the modulated-gradient model, are in good agreement with Monin–Obukhov similarity theory, without the need for an extra near-wall canopy model. The structure of the near-wall turbulent eddies is better resolved using the modulated-gradient model in comparison with the classical Smagorinsky and TKE models, which are too dissipative and yield unrealistic smoothing of the smallest resolved scales. Moreover, the SGS fluxes obtained from the modulated-gradient model are much smaller near the wall in comparison with those obtained from the regular Smagorinsky and TKE models. The apparent inability of the LES model in reproducing the mean streamwise component of the momentum balance using the total (resolved plus SGS) stress near the surface is probably due to the effect of the discretization errors, which can be calculated a posteriori using the Taylor-series expansion of the resolved velocity field. Overall, we demonstrate that the modulated-gradient model is less dissipative and yields more accurate results in comparison with the classical Smagorinsky model, with similar computational costs.  相似文献   

12.
利用中尺度WRF模式对于2007年7月一次典型的梅雨锋暴雨过程进行了高分辨率数值模拟,对于边界层内的热通量输送和湍流动能的时空变化特征,以及湍流动能各收支项的分布及变化特征进行了分析。结果表明,降水发生时段内边界层热通量和湍流动能的时空分布特征与晴空日变化特征表现出显著不同,潜热通量随高度自下而上呈现"正—负—正"的分布,感热通量以负值为主,负值中心高度与潜热通量由负转正的高度相对应,湍流动能的发展高度与持续时间都有所增加,降水区近地面湍流动能弱于其他区域,但是在468 m以上高度则显著强于其他区域。降水区湍流动能的来源主要是平均风切变所产生的机械湍流,浮力作用与粘性耗散在降水期间消耗湍流动能,湍流输送作用将低层的湍流动能输送至较高的高度,使低层减小而高层增大,临界高度与湍流动能的大值中心高度对应。  相似文献   

13.
Turbulence structures in the katabatic flow in the stable boundary layer (SBL) over the ice sheet are studied for two case studies with high wind speeds during the aircraft-based experiment KABEG (Katabatic wind and boundary layer front experiment around Greenland) in the area of southern Greenland. The aircraft data allow the direct determination of turbulence structures in the katabatic flow. For the first time, this allows the study of the turbulence structure in the katabatic wind system over the whole boundary layer and over a horizontal scale of 80 km.The katabatic flow is associated with a low-level jet (LLJ), with maximum wind speeds up to 25 m s-1. Turbulent kinetic energy (TKE) and the magnitude of the turbulent fluxes show a strong decrease below the LLJ. Sensible heat fluxes at the lowest level have values down to -25 W m-2. Latent heat fluxes are small in general, but evaporation values of up to +13 W m-2 are also measured. Turbulence spectra show a well-defined inertial subrange and a clear spectral gap around 250-m wavelength. While turbulence intensity decreases monotonously with height above the LLJ for the upper part of the slope, high spectral intensities are also present at upper levels close to the ice edge. Normalized fluxes and variances generally follow power-law profiles in the SBL.Terms of the TKE budget are computed from the aircraft data. The TKE destruction by the negative buoyancy is found to be very small, and the dissipation rate exceeds the dynamical production.  相似文献   

14.
A Large Eddy Simulation (LES) model representing the air flow within and above a plant canopy layer has been completed. Using this model, the organized structures of turbulent flow in the early developmental stages of a crop are simulated and discussed in detail.The effect of the drag due to vegetation is expressed by a term added to the three-dimensional Navier-Stokes equation averaged over the grid scale. For the formulation of sub-grid turbulence processes, the equations for the time-dependent SGS (Sub-Grid-Scale) turbulence energy equation is used, which includes the effects of dissipation (both by viscosity and leaf drag), shear production and diffusion.The organized structure of turbulent flow at the air-plant interface, obtained numerically by the model, yields its contribution to momentum transfer. The three-dimensional large eddy structures, which are composed of spanwise vortices (rolls) and streamwise vortices (ribs), are simulated near the air-plant interface. They are induced by the shear instability at inflection points of the velocity profile. The structure clearly has a life cycle. The instantaneous image of the structure is similar to those observed in the field observations of Gaoet al. (1989) and in the laboratory flume experiments of Ikeda and Ota (1992). These organized structures also account for the well known fact that the sweep motion of turbulence dominates momentum transport within and just above a plant canopy, and the motion of ejection prevails in the higher regions.  相似文献   

15.
Large-Scale Motions in the Marine Atmospheric Surface Layer   总被引:2,自引:2,他引:0  
Multi-level turbulent wind data from the Risø Air-Sea Experiments (RASEX) were used to examine the structure of large-scale motions in the marine atmospheric surface layer. The quadrant technique was used to identify flux events (ejections/sweeps). Ejections, which appear to occur in groups, are seen to occur first at the upper level, moving successively to lower levels with small time delays. A strong correlation between events at different heights suggests that they may all be part of a single large structure. Cross-correlation between velocity signals was used to estimate orientation of the structure using Taylor's hypothesis. The inclination of this structure is shallow ( 15°) near the surface and increases with height. Spatial representations of the fluctuating wind vectors show a structure that is strikingly similar to conceptual models of transverse vortices and shear layers seen in laboratory flows and direct numerical simulation (DNS) of low Reynolds number flows. Spatial visualization of velocity fluctuations during other time periods and conditions clearly shows the existence of shear layers, transverse vortices, plumes, and downdrafts of various sizes and strengths. A quantitative analysis shows an increase in the frequency of shear related events with increasing wind speed.  相似文献   

16.
This is the first of two papers reporting the results of a study of the turbulence regimes and exchange processes within and above an extensive Douglas-fir stand. The experiment was conducted on Vancouver Island during a two-week rainless period in July and August 1990. The experimental site was located on a 5o slope. The stand, which was planted in 1962, and thinned and pruned uniformly in 1988, had a (projected) leaf area index of 5.4 and a heighth=16.7 m. Two eddy correlation units were operated in the daytime to measure the fluctuations in the three velocity components, air temperature and water vapour density, with one mounted permanently at a height of 23.0m (z/h=1.38) and the other at various heights in the stand with two to three 8-hour periods of measurement at each level. Humidity and radiation regimes both above and beneath the overstory and profiles of wind speed and air temperature were also measured. The most important findings are:
  1. A marked secondary maximum in the wind speed profile occurred in the middle of the trunk space (aroundz/h=0.12). The turbulence intensities for the longitudinal and lateral velocity components increased with decreasing height, but the intensity for the vertical velocity component had a maximum atz/h=0.60 (middle of the canopy layer). Magnitudes of the higher order moments (skewness and kurtosis) for the three velocity components were higher in the canopy layer than in the trunk space and above the stand.
  2. There was a 20% reduction in Reynolds stress fromz/h=1.00 to 1.38. Negative Reynolds stress or upward momentum flux perisistently occurred atz/h=0.12 and 0.42 (base of the canopy), and was correlated with negative wind speed gradients at the two heights. The longitudinal pressure gradient due to the land-sea/upslope-downslope circulations was believed to be the main factor responsible for the negative Reynolds stress.
  3. Momentum transfer was highly intermittent. Sweep and ejection events dominated the transfer atz/h=0.60, 1.00 and 1.38, with sweeps playing the more important role of the two atz/h=0.60 and 1.00 and the less important role atz/h=1.38. But interaction events were of greater magnitude than sweep and ejection events atz/h=0.12 and 0.42.
  相似文献   

17.
To investigate tubulence characteristics and organized motion within and above an urban canopy, field observations were conducted in July 1991 and November 1992 in Sapporo, Japan. The measurement heights were 5.4, 10.3, 18, 35 and 45 m above ground; the canopy height was 7 m. The profiles of u peaked slightly above the canopy, while v and w had nearly uniform profiles. Vertical profiles of Reynolds stress - peaked slightly at 1.5 times the canopy height and decreased slowly with height thereafter. A four-quadrant analysis showed that sweep and ejection motions caused high-velocity fluid from above moves downward toward the surface and low-velocity fluid from below moves upward. An ensemble-averaging technique was used to isolate typical features of the flow and temperature fields. A time-height cross-section of velocity vectors and temperature contours showed details of the flow structures associated with temperature ramps. It has been noted that the organized motions play important roles in the transport of heat near the urban canopy, where the sweep motion causes negative temperature fluctuations and the ejection motion causes positive temperature fluctuations.  相似文献   

18.
The processes influencing turbulence in a deciduous forest and the relevant length and time scales are investigated with spectral and cross-correlation analysis. Wind velocity power spectra were computed from three-dimensional wind velocity measurements made at six levels inside the plant canopy and at one level above the canopy. Velocity spectra measured within the plant canopy differ from those measured in the surface boundary layer. Noted features associated with the within-canopy turbulence spectra are: (a) power spectra measured in the canopy crown peak at higher wavenumbers than do those measured in the subcanopy trunkspace and above the canopy; (b) peak spectral values collapse to a relatively universal value when scaled according to a non-dimensional frequency comprised of the product of the natural frequency and the Eulerian time scale for vertical velocity; (c) at wavenumbers exceeding the spectral peak, the slopes of the power spectra are more negative than those observed in the surface boundary layer; (d) Eulerian length scales decrease with depth into the canopy crown, then increase with further depth into the canopy; (e) turbulent events below crown closure are more correlated with turbulent events above the canopy than are those occurring in the canopy crown; and (f) Taylor's frozen eddy hypothesis is not valid in a plant canopy. Interactions between plant elements and the mean wind and turbulence alter the processes that produce, transport and remove turbulent kinetic energy and account for the noted observations.  相似文献   

19.
The flux contribution of coherent structures to the total exchange of energy and matter is investigated in a spruce canopy of moderate density in heterogeneous, complex terrain. The study deploys two methods of analysis to estimate the coherent exchange: conditional averages in combination with wavelet analysis, and quadrant analysis. The data were obtained by high-frequency single-point measurements using sonic anemometers and gas analysers at five observation heights above and within the canopy and subcanopy, and represent a period of up to 2.5 months. The study mainly addresses the momentum transfer and exchange of sensible heat throughout the roughness sublayer, while results are provided for the exchange of carbon dioxide and water vapour above the canopy. The magnitude of the flux contribution of coherent structures largely depends on the method of analysis, and it is demonstrated that these differences are attributed to differences in the sampling strategy between the two methods. Despite the differences, relational properties such as sweep and ejection ratios and the variation of the flux contribution with height were in agreement for both methods. The sweep phase of coherent structures is the dominant process close to and within the canopy, whereas the ejections gain importance with increasing distance to the canopy. The efficiency of the coherent exchange in transporting scalars exceeds that for momentum by a factor of two. The occurrence of coherent structures results in a flux error less than 4% for the eddy-covariance method. Based on the physical processes identified from the analysis of the ejection and sweep phases along the vertical profile in the roughness sublayer, a classification scheme for the identification of exchange regimes is developed. This scheme allows one to estimate the region of the canopy participating in the exchange of energy and matter with the above-canopy air under varying environmental conditions.  相似文献   

20.
This is the first of a series of three papers describing experiments on the dispersion of trace heat from elevated line and plane sources within a model plant canopy in a wind tunnel. Here we consider the wind field and turbulence structure. The model canopy consisted of bluff elements 60 mm high and 10 mm wide in a diamond array with frontal area index 0.23; streamwise and vertical velocity components were measured with a special three-hot-wire anemometer designed for optimum performance in flows of high turbulence intensity. We found that:
  1. The momentum flux due to spatial correlations between time-averaged streamwise and vertical velocity components (the dispersive flux) was negligible, at heights near and above the top of the canopy.
  2. In the turbulent energy budget, turbulent transport was a major loss (of about one-third of local production) near the top of the canopy, and was the principal gain mechanism lower down. Wake production was greater than shear production throughout the canopy. Pressure transport just above the canopy, inferred by difference, appeared to be a gain in approximate balance with the turbulent transport loss.
  3. In the shear stress budget, wake production was negligible. The role of turbulent transport was equivalent to that in the turbulent energy budget, though smaller.
  4. Velocity spectra above and within the canopy showed the dominance of large eddies occupying much of the boundary layer and moving downstream with a height-independent convection velocity. Within the canopy, much of the vertical but relatively little of the streamwise variance occurred at frequencies characteristic of wake turbulence.
  5. Quadrant analysis of the shear stress showed only a slight excess of sweeps over ejections near the top of the canopy, in contrast with previous studies. This is a result of improved measurement techniques; it suggests some reappraisal of inferences previously drawn from quadrant analysis.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号