首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Variation in the cadmium (Cd) concentration related to phosphate (PO4) in the surface layer (0–150 m) of the equatorial Pacific (175°E, 170°W, and 160°W) was investigated in January of 2001 and 2002. A plot of Cd against PO4 from 0 to 150 m showed good linearity, and plotted points shifted in the direction of the origin along the regression line from 2001 to 2002. The variation of the Cd concentration in the surface layer was attributed to biological uptake-regeneration, the variation of subsurface water concentration, and the upwelling effect at each station in connection with the El Nino phenomenon.  相似文献   

2.
During Tropical Ocean and Global Atmosphere (TOGA)/Coupled Ocean and Atmosphere Research Experiment (COARE) Intensive Observing Period (IOP), upward-looking acoustic Doppler current profilers (ADCP) and current meters were moored at two equatorial sites (147°E and 154°E) and two off-equatorial sites (2°N and 2°S, 156°E) in the warm pool region of the western equatorial Pacific. Using current data obtained by these moorings, we have shown that there is a dominant signal with a period of about 2 days from the end of November to the middle of December in 1992, except at the equatorial site on 147°E (Ueki et al., 1998). The energy of this quasi-2-day signal for the meridional current is larger than that for the zonal one and the signal has a high coherence between two off-equatorial sites. In this paper, using band-passed time series of the meridional curerent, we investigated characters of the quasi-2-day signal and attempted to interpret this signal as an equatorially trapped wave. Complex empirical orthogonal function (CEOF) analysis reveals two different phase propagating features between the equatorial and off-equatorial site. One is an upward propagating signal, which is dominant near the surface at two off-equatorial sites, and the other is a downward propagating signal, which is dominant near 200 m at the equatorial site. If one interprets the quasi-2-day signal as an equatorially trapped wave, it is suggested that it cannot be explained as a single wave but can be described as the superimposition of several wave signals. The main part of these signals consists of two signals, one caused by a meteorological forcing and another by another factor in the ocean field.  相似文献   

3.
Vertical changes of phytoplankton absorption spectra along 175°E from 48°N to 15°S were examined during spring 1994. The absorption spectra were analyzed using three different approaches; averaging the spectra within same oceanic areas, EOF analysis, and multiple regression analysis. Average spectra showed differences in five oceanic areas; subarctic, Kuroshio, subtropical surface, equatorial surface, and subtropical and equatorial subsurface areas. The distributions of the EOF mode of the variance of absorption spectra and of the pigments estimated by the multiple regression analysis indicated consistent differences of the spectra between those areas. Kuroshio water contains highest chlorophyll a concentrations and low chlorophyll-a-specific absorption spectra, and this may be caused by the package effect with large phytoplankton cell and by low concentrations of photo-protected carotenoids. Subtropical and equatorial subsurface water showed high absorption at 480 nm and indicated the effects of chlorophyll b. Absorption of the subsurface phytoplankton also showed a shift of the blue peak, possibly caused by the presence of divinyl-chlorophyll a. The consistency of the three different analytical methods indicates that the phytoplankton absorption includes significant information on pigment composition along a north-south vertical section of the central North Pacific.  相似文献   

4.
The longitude of the western limit of the equatorial Pacific upwelling is a key parameter for studies of carbon budget and pelagic fisheries variability. Although it is well defined at the surface on the equator by a salinity front and a sharp variation of the partial pressure of CO2, data from two equatorial cruises make it clear that this hydrological limit does not necessarily coincide with the boundary of the nitrate and chlorophyll enriched area. In January-February 1991 during a non-El Niño period, when trade winds and the South Equatorial current (SEC) were favorable to upwelling, the two limits were at the same longitude. Conversely, in September-October 1994 during El Niño conditions, when the equatorial upwelling had stopped, the nitrate and chlorophyll enriched zone was found a few degrees of longitude east of the hydrological boundary (5.5° at the surface and 2.5° for the 50 m upper layer), whereas no such offset was observed for zooplankton biomass. A simple model, based on the HNLC (High Nutrient - Low Chlorophyll) ecosystem functioning, was initialized with nitrate uptake measurements and estimates of upwelling break duration. The model results support the hypothesis that zonal separation of the limits arises from biological processes (i.e. nitrate uptake and phytoplankton grazing) achieved during that upwelling break.  相似文献   

5.
A variety of anomalous conditions in the tropical Pacific and Atlantic oceans during the 1991–1992 El Niño event are described. The current El Niño is shown to have specific features, evident in the behaviour of the southern oscillation index and sea surface temperature of the equatorial Pacific Ocean. Also, it was accompanied by warming of the eastern tropical Atlantic. Temperature anomalies of the tropical Atlantic surface water temperature reached their maximum (>3°C) in May–June 1991, i.e. 2–3 months earlier than in the Pacific Ocean.Translated by V. Puchkin.  相似文献   

6.
Methane in the western North Pacific   总被引:7,自引:0,他引:7  
The concentration of methane in about 400 seawater samples collected in the western North Pacific, mostly from 40°N to 5°S along 165°E was determined. While the concentration of methane in the surface water was slightly greater in the high-latitudes, it did not widely vary with a standard deviation of 0.29 n mol/l for a mean value of 2.49 n mol/l. The 90% confidence limit of the mean was 0.08 n mol/l. The degree of oversaturation in 1991 (31±4%) was not different from that in circa 1970. If we assume that this degree of oversaturation occurs in the entire oceans, the annual flux of methane becomes 6×1012g CH4. Both the concentrations of methane and chlorophylla were higher in the surface 100 m layer. However, the correlation between them was not well in the entire surface waters. This may indicate that the production of methane is not directly related to the photosynthetic process. The concentration of methane decreased gradually with increasing depth down to 1000 m. Its horizontally and vertically uniform concentration in the abyssal water suggests that the turnover time of methane in the oxic pelagic water is in the range between a few years and a few hundred years.  相似文献   

7.
Analyses were performed on hydrographic data gathered along the 137°E meridian by the R/V Ryofu Maru of the Japan Meteorological Agency (JMA). Distributions were obtained of the mean and standard deviation of water temperature and salinity along the section. Relationships between interannual variations of these variables and wind forcing were examined. A correlation analysis revealed that temperature change, which occurred in the equatorial region of the western North Pacific accompanied by El Nino and La Nina events, reached about 20°N with the inclination of isotherms across the north equatorial current fluctuating around 20°N. Empirical orthogonal function (EOF) analysis of the winter water temperatures in the section was performed to extract variations following El Nino and La Nina events as the first mode and those corresponding to decadal changes of sea surface temperature (SST) in the North Pacific as the second mode. Interannual variations in the area of the North Pacific tropical saline water (NPTSW) and the North Pacific intermediate water (NPIW) along the section correspond well to interannual variations of the wind-stress curl minimum (negative value) in the area southeast of Japan. A remaining problem is to quantitatively evaluate the lag times of the variations to the wind-stress curl variation. In the equatorial region of the section, the northward extension of saline water is weak, and negative water temperature anomalies have often occurred in connection with El Nino events since the latter half of the 1970s. These changes may be part of the decadal variation of the North Pacific.  相似文献   

8.
Total magnetic intensity and bathymetric surveys were carried out in the northern Bay of Bengal between 6° to 11° 45 N latitudes and east of 84° to 93° 30 E longitudes. The hitherto known 85° E Ridge is characterised as a subsurface feature by a large amplitude, positive magnetic anomaly surrounded by Mesozoic crust. A newly identified NE to NNESSW trending magnetic anomaly between 7° N, 87° 30 E and 10° 30 N, 89–90° E may be one of the unidentified Mesozoic lineations in the northern Bay of Bengal. The Ninetyeast Ridge is not associated with any recognizable magnetic anomaly. The Sunda Trough to the east of the Ninetyeast Ridge is characterised by a positive magnetic anomaly. A combined interpretation, using Werner deconvolution and analytical signal methods, yields basement depths ~ 10 km below sea level. These depths are in agreement with the seismic results of Curray (1991).Deceased 24 December 1991  相似文献   

9.
Distributions of dissolved organic carbon (DOC) as determined by high temperature catalytic oxidation (HTCO) method, are reported for 5 stations located from 15°N to 5°S along the transect of 180° in the central Equatorial Pacific. Vertical profiles of DOC suggest that levels of DOC in the photic layer at a given station are dependent on the vertical stability of the water column and meridional currents in the central Equatorial Pacific. Concentrations of DOC determined by the HTCO method in the northern North to Equatorial Pacific and those of total organic carbon (TOC) determined by Wet Chemical Oxidation (WCO) method during the GEOSECS Pacific cruises indicated that DOC determined by both methods, taken together with the levels of DOC in the surface water, showed clear meridional differences in the areas from north of 40°N to the equatorial region in the Pacific: values were low at high latitudes, namely, in productive areas, but high at low latitudes, namely, in oligotrophic areas, even though the values of DOC determined by the two methods were different.  相似文献   

10.
Ocean upwelling rates are difficult to measure because of the relatively small velocities involved, and therefore are typically inferred from indirect methods such as heat budget estimates or tracer observations. Here we present the first results using a novel technique, based on the isotope 7Be, to infer rates of upwelling along the equator. Beryllium-7 (half-life=53.3 d) is a cosmic-ray produced radioactive nuclide that is deposited by rainfall upon the ocean surface and subsequently enriched and homogenized within the mixed layer. Previous investigations have utilized the penetration of characteristically high mixed layer concentrations into the upper thermocline to trace ocean ventilation and subduction over seasonal timescales. Here, the tracer is used in a reverse sense; that is, the 7Be concentration in the usually 7Be-rich surface mixed layer will be diluted from penetration of 7Be “dead” water upwelled from below. This dilution provides a means to infer upwelling rates. Furthermore, with knowledge of upwelling rates, 7Be profiles can be used to constrain vertical diffusivity within the upper thermocline. These ideas were tested with samples collected during the Tropical Atlantic Climate Experiment (TACE) cruise (May 22-June 27, 2009). The observations indicated a nearly linear relationship between 7Be inventory and mixed layer temperature, as with increased upwelling, lower mixed layer temperatures correspond to greater 7Be dilution from depth. With this data, upwelling rates were estimated at a number of stations near the equator between 0°E and 30°W within and adjacent to the equatorial cold tongue. The derived upwelling rates ranged from 0 to 2.2 m/d, with maximum values found between the equator and 2°S. The corresponding Kz values derived for the upper thermocline were in the range 1-4×10−4 m2/s.  相似文献   

11.
The variability of the New Guinea Coastal Current (NGCC) and New Guinea Coastal Undercurrent (NGCUC) were examined from one year time series of current data from ADCP moorings at 2°S, 142°E and 2.5°S, 142°E. Change in the hydrographic structure induced by monsoonal wind forcing was also examined from hydrographic data along the 142°E covering consecutively two winter seasons and two summer seasons. The westward NGCUC was observed to persist year around. The annual mean depth of the current core was 220 m, the mean speed of the zonal component was 54 cm/s with a standard deviation of 15 cm/s at the 2.5°S site. Velocity fluctuations at 20–30 day period were observed year around. Seasonal reversal of the surface intensified NGCC was clearly observed. In the boreal summer characterized by the southeasterly monsoon, westward currents of over 60 cm/s were dominant in the surface layer. The warm, low-salinity layer thickened at this time and sloped down toward the New Guinea coast from the equator. This surface water accumulation may be caused by onshore Ekman drift at the New Guinea coast, combined with weak Ekman upwelling at the equator. In the boreal winter, an eastward surface current developed to 100 cm/s extending down to 100 m depth in response to the northwesterly monsoonal winds. Coastal upwelling was indicated in this season and the surface water accumulated at the equator due to Ekman convergence. Shipboard ADCP data indicated that the NGCUC intensified in boreal summer as the width and depth of the NGCUC increased.  相似文献   

12.
The distribution of chlorophylla and photosynthetic characterestics of phytoplankters were investigated along 155°W between 50°N and 15°S during the KH-69-4 cruise of the R. V. Hakuh Maru (Aug. 12–Nov. 13, 1969). High concentrations of chlorophylla (more than 0.2 mg Chla/m3) were observed above the depths of 150 m at all stations except in 17°N, 5°S and 15°S. North of 20°N, the depths of chlorophyll accumulation shifted from near the surface to 50–100 m with southwards. In the equatorial region, chlorophyll accumulation centered at a depth of about 70 m and ranged vertically between 10 and 150 m. In all cases in the present study area, chlorophyll accumulation occurred within the euphotic zone (above the depth corresponding to 1% of the surface illumination), and except in the subarctic and some equatorial waters, this was usually prevalent in the lower half of the euphotic zone.The photosynthetic activities (initial slope of P vs I curve) of samples from the depths of chlorophyll accumulation were similar to, or lower than, those of shallow samples from the depths of upper half of the euphotic zone. At the depths of chlorophyll accumulation, calculatedin situ photosynthesis was high in the central Pacific and equatorial waters but low in the subarctic waters.  相似文献   

13.
Interannual variability(IAV) in the barrier layer thickness(BLT) and forcing mechanisms in the eastern equatorial Indian Ocean(EEIO) and Bay of Bengal(BoB) are examined using monthly Argo data sets during 2002–2017. The BLT during November–January(NDJ) in the EEIO shows strong IAV, which is associated with the Indian Ocean dipole mode(IOD), with the IOD leading the BLT by two months. During the negative IOD phase, the westerly wind anomalies driving the downwelling Kelvin waves increase the isothermal layer depth(ILD). Moreover, the variability in the mixed layer depth(MLD) is complex. Affected by the Wyrtki jet, the MLD presents negative anomalies west of 85°E and strong positive anomalies between 85°E and 93°E. Therefore, the BLT shows positive anomalies except between 86°E and 92°E in the EEIO. Additionally, the IAV in the BLT during December–February(DJF) in the BoB is also investigated. In the eastern and northeastern BoB, the IAV in the BLT is remotely forced by equatorial zonal wind stress anomalies associated with the El Ni?o-Southern Oscillation(ENSO). In the western BoB, the regional surface wind forcing-related ENSO modulates the BLT variations.  相似文献   

14.
In situ observation of downward solar radiation in the Western Pacific were carried out with voluntary merchant ships for five years from autumn 1990 through autumn 1995. Daily means of the short wave radiation were computed from the observed solar radiation. Then, the effects of shadows of the ship's superstructures on the observed radiation were corrected if needed. A 5-year average of short wave radiation along the main sea-lanes in the Western Pacific was calculated based on the observed daily mean solar radiation. Maximum values of 270–280 Wm–2 are found around 15°–20°N in May and June, while those of 290 Wm–2 are observed south of 18°S in November and December along the lanes. Small annual variations are found in the equatorial region. Annual mean values at the equator are about 230 Wm–2 between New Guinea and Indonesia, and 200 Wm–2 east of New Guinea. The 5-year average of short wave radiation was compared with the climatologies given in previous studies. We have concluded that some of results of previous studies are significantly underestimated.  相似文献   

15.
Oceanic current data in the warm pool region of the western equatorial Pacific measured by upward-looking moored Acoustic Doppler Current Profilers at two equatorial sites (147°E and 154°E) and two off-equatorial sites (2°N and 2°S, 156°E) during TOGA/COARE Intensive Observing Period (IOP) from November 1992 to February 1993 are used to examine short-term variabilities in the upper layer above 160–240 m. In time series of the zonal and meridional currents in many layers, spectral peaks are found at periods around 2 days and 4 days in addition to high energies in a period range longer than 10 days. The signal with the period of about 2 days has significantly high energies at all sites, and its magnitude is higher for the meridional current than for the zonal one. This signal is especially active in the first half of IOP from November to December in 1992. In this period, the quasi-2-day signal in the current field is coherent between northern (2°N) and southern (2°S) stations, but it has no evident relationship with that in the surface wind field around the stations. The quasi-4-day signal with the period of about 4 days has highest energies in layers above 160 m at the southern station, and is coherent between northern and southern stations. Besides, the signal at the station of 2°S has a significantly high coherence with that in the wind at the southern station, suggesting that it is a local phenomenon.  相似文献   

16.
Joseph  E. John  Toh  H.  Fujimoto  H.  Iyengar  R.V.  Singh  B.P.  Utada  H.  Segawa  J. 《Marine Geophysical Researches》2000,21(1-2):1-21
Seafloor magnetometer array experiments were conducted in the Bay of Bengal to delineate the subsurface conductivity structure in the close vicinity of the 85°E Ridge and Ninety East Ridge (NER), and also to study the upper mantle conductivity structure of the Bay of Bengal. The seafloor experiments were conducted in three phases. Array 1991 consisted of five seafloor stations across the 85°E Ridge along 14°N latitude with a land reference station at Selam (SLM). Array 1992 also consisted of five seafloor stations across 85°E Ridge along 12°N latitude. Here we used the data from Annamalainagar Magnetic Obervatory (ANN) as land reference data. Array 1995 consisted of four seafloor stations across the NER along 9°N latitude with land reference station at Tirunelveli (TIR). OBM-S4 magnetometers were used for seafloor measurements. The geomagnetic Depth Sounding (GDS) method was used to investigate the subsurface lateral conductivity contrasts. The vertical gradient sounding (VGS) method was used to deliniate the depth-resistivity structure of the oceanic crust and upper mantle. 1-D inversion of the VGS responses were conducted and obtained a 3-layer depth-resistivity model. The top layer has a resistivity of 150–500 m and a thickness of about 15–50 km. The second layer is highly resistive (2000–9000 m) followed by a very low resistive (0.1–50 m) layer at a depth of about 250–450 km. The 3-component magnetic field variations and the observed induction arrows indicated that the electromagnetic induction process in the Bay of Bengal is complex. We made an attempt to solve this problem numerically and followed two approaches, namely (1) thin-sheet modelling and (2) 3-D forward modelling. These model calculations jointly show that the observed induction arrows could be explained in terms of shallow subsurface features such as deep-sea fans of Bay of Bengal, the resistive 85°E Ridge and the sea water column above the seafloor stations. VGS and 3-D forward model responses agree fairly well and provided depth-resistivity profile as a resistive oceanic crust and upper mantle underlained by a very low resistive zone at a depth of about 250–400 km. This depth-range to the low resistive zone coincide with the seismic low velocity zone of the northeastern Indian Ocean derived from the seismic tomography. Thus we propose an electrical conductivity structure for the oceanic crust and upper mantle of the Bay of Bengal.  相似文献   

17.
Hydrographic measurements by CTD were made in the western-central Equatorial Pacific (160°W–147°E) during the Japanese Pacific Climate Study cruise in January–February 1991. InT-S diagram, three water masses are seen in the layer of kg/m3: salinity water corresponding to the Tropical Water of eastern South Pacific origin, less saline water in the North Pacific, and water with salinity between the above two, found on the equator. In three meridional sections (160°W–160°E), the Tropical Water of eastern South Pacific origin extends further equatorward than the climatological data of Levitus (1982).  相似文献   

18.
Sinking matter collected by sediment traps, which were deployed in the equatorial Pacific Ocean at 175°E for about 11 months during 1992–1993, were analyzed for their flux and labile components in terms of amino acids and hexosamines. The samples provided a temporal resolution of 15 days and were collected from 1357 (shallow trap) and 4363 m (deep trap) depths where sea floor depth was 4880 m. Particle flux along with major components (carbonate, organic matter, biogenic opal and lithogenic material) and amino acid parameters showed distinct temporal variations, which were more pronounced in the shallow trap relative to deep trap. A coupling between the fluxes in the shallow and deep traps was more evident during the period of maximum particle flux, which seems to be connected with the short reappearance of non-El Niño conditions in equatorial Pacific during the 1991–1993 El Niño event. The biogeochemical indicators C/N, Asp/Bala, Glu/Gaba, Bala+Gaba mol%, THAA-C% and THAA-N% implied that the increase in sinking flux was associated with upwelling and enhanced surface production. Degradation of sinking particulate organic matter between the shallow and deep traps was also evident. Occasionally higher mass and major component fluxes in the deep trap relative to the shallow trap are attributed to contribution of resuspended particulates from sea floor (nepheloid layer) or to laterally advected particulates from nearby areas. Carbonate and opal composition of the sinking flux showed a predominance of calcareous plankton; however, Asp/Gly mol ratio and Ser+Thr mol% indicated enhanced occurrence of diatoms during the periods of higher flux.  相似文献   

19.
Seismic reflection profiles from the equatorial Atlantic off Africa between 12°N and 1°N reveal remarkably widespread deformation of oceanic sediments in an area lacking teleseismic activity. Uplift of abyssal plain sequences has occurred along the eastern extensions of large-offset fracture zones on the Mid-Atlantic Ridge. Between the major transforms pervasive deformation is imaged in the sedimentary column. Diapirism and faulting may have been associated with extensive fluid migration and sediment mobilization. The deformation occurred during the late Cenozoic and was probably related to reactivation of Cretaceous transforms.  相似文献   

20.
In January–February 1987, an urgent cruise JENEX-87 was carried out in the central equatorial Pacific during the occurrence of the 1986–87 El Niño. This cruise, supported by the Japan Science and Technology Agency, supplied heat flux data through the sea surface, on the basis of direct measurements of short- and long-wave radiation fluxes.In the time average, the heat gain due to the radiation flux (153 W m–2) was almost compensated by the heat loss due to latent heat flux (130 W m–2), and thus the net heat gain was small in magnitude (20 W m–2). On the other hand, day-to-day changes of the net heat flux ranged within ±130 W m–2, mainly reflecting the downward short-wave radiation variations.The heat balance in the surface oceanic mixed layer was investigated in two quadrangle areas (160°E-180° and 180°-160°W between 2°N and 2°S), using the surface heat flux and estimating the advective heat fluxes due to the geostrophic and Ekman currents. In these two quadrangles, we respectively derived –187±88 W m–2 and +27±95 W m–2. The former value, which is equivalent to about 1°C month–1 drop of the mixed layer temperature, is evidence of the abnormal oceanic condition in the occurrence of the 1986–87 El Niño event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号