首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 200 毫秒
1.
The temporal and spatial extent of Holocene climate change is an area of considerable uncertainty, with solar forcing recently proposed to be the origin of cycles identified in the North Atlantic region. To address these issues we have developed an annually resolved record of changes in Irish bog tree populations over the last 7468 years which, together with radiocarbon‐dated bog and lake‐edge populations, extend the dataset back to ~9000 yr ago. The Irish trees underpin the internationally accepted radiocarbon calibration curve, used to derive a proxy of solar activity, and allow us to test solar forcing of Holocene climate change. Tree populations and age structures provide unambiguous evidence of major shifts in Holocene surface moisture, with a dominant cyclicity of 800 yr, similar to marine cycles in the North Atlantic, indicating significant changes in the latitude and intensity of zonal atmospheric circulation across the region. The cycles, however, are not coherent with changes in solar activity (both being on the same absolute timescale), indicating that Holocene North Atlantic climate variability at the millennial and centennial scale is not driven by a linear response to changes in solar activity. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
A tree-ring proxy of summer temperature anomalies for northern Finland for the past 7500 yr was analyzed using Fourier spectrum and wavelet approaches. Multicentennial (250-450 yr) variability is present in the proxy record during most of the time range. This variability is suggested to reflect low-frequency variability in the North Atlantic Oscillation. Century-scale (90-130 yr) variation is another important feature of the tree-ring proxy data during the Holocene and may be attributed to Glessberg solar activity variations. In addition, an approximately 2000-yr quasi-period is found in this temperature proxy data, similar to the millennial-scale variability, present in many climate records from the North Atlantic region. The results point to the importance of multiple forcings underlying significant Holocene climatic fluctuations.  相似文献   

3.
Core MD95‐2011 was taken from the eastern Vøring Plateau, near the Norwegian coast. The section between 250 and 750 cm covers the time period from 13 000 to 2700 cal. yr BP (the Lateglacial and much of the Holocene). Samples at 5 cm intervals were analysed for fossil diatoms. A data‐set of 139 modern sea‐surface diatom samples was related to contemporary sea‐surface temperatures (SSTs) using two different numerical methods. The resulting transfer functions were used to reconstruct past sea‐surface temperatures from the fossil diatom assemblages. After the cold Younger Dryas with summer SSTs about 6°C, temperatures warmed rapidly to about 13°C. One of the fluctuations in the earliest Holocene can be related to the Pre‐Boreal Oscillation, but SSTs were generally unstable until about 9700 cal. yr BP. Evidence from diatom concentration and magnetic susceptibility suggests a change and stabilization of water currents associated with the final melting of the Scandinavian Ice Sheet at c. 8100 cal. yr BP. A period of maximum warmth between 9700 and 6700 cal. yr BP had SSTs 3–5°C warmer than at present. Temperatures cooled gradually until c. 3000 cal. yr BP, and then rose slightly around 2750 cal. yr BP. The varimax factors derived from the Imbrie & Kipp method for sea‐surface‐temperature reconstructions can be interpreted as water‐masses. They show a dominance of Arctic Waters and Sea Ice during the Younger Dryas. The North Atlantic current increased rapidly in strength during the early Holocene, resulting in warmer conditions than previously. Since about 7250 cal. yr BP, Norwegian Atlantic Water gradually replaced the North Atlantic Water, and this, in combination with decreasing summer insolation, led to a gradual cooling of the sea surface. Terrestrial systems in Norway and Iceland responded to this cooling and the increased supply of moisture by renewed glaciation. Periods of glacial advance can be correlated with cool oscillations in the SST reconstructions. By comparison with records of SSTs from other sites in the Norwegian Sea, spatial and temporal changes in patterns of ocean water‐masses are reconstructed, to reveal a complex system of feedbacks and influences on the climate of the North Atlantic and Norway.  相似文献   

4.
We present two new quantitative July mean temperature (Tjul) reconstructions from the Arctic tree-line region in the Kola Peninsula in north-western Russia. The reconstructions are based on fossil pollen records and cover the Younger Dryas stadial and the Holocene. The inferred temperatures are less reliable during the Younger Dryas because of the poorer fit between the fossil pollen samples and the modern samples in the calibration set than during the Holocene. The results suggest that the Younger Dryas Tjul in the region was 8.0–10.0°C, being 2.0–3.0°C lower than at present. The Holocene summer temperature maximum dates to 7500–6500 cal yr BP, with Tjul about 1.5°C higher than at present. These new records contribute to our understanding of summer temperature changes along the northern-European tree-line region. The Holocene trends are consistent in most of the independent records from the Fennoscandian–Kola tree-line region, with the beginning of the Holocene thermal maximum no sooner than at about 8000 cal yr BP. In the few existing temperature-related records farther east in the Russian Arctic tree line, the period of highest summer temperature begins already at about 10,000 cal yr BP. This difference may reflect the strong influence of the Atlantic coastal current on the atmospheric circulation pattern and the thermal behaviour of the tree-line region on the Atlantic seaboard, and the more direct influence of the summer solar insolation on summer temperature in the region east of the Kola Peninsula.  相似文献   

5.
New multiproxy marine data of the Eemian interglacial (MIS5e) from the Norwegian Sea manifest a cold event with near-glacial surface ocean summer temperatures (3–4 °C). This mid-Eemian cooling divided the otherwise relatively warm interglacial climate and was associated with widespread expansions of winter sea-ice and polar water masses due to changes in atmospheric circulation and ocean stability. While the data also verify a late rather than early last interglacial warm peak, which is in general disharmony with northern hemisphere insolation maximum and the regional climatic progression of the early Holocene, the cold event itself was likely instrumental for delaying the last interglacial climate development in the Polar North when compared with regions farther south. Such a ‘climatic decoupling’ of the Polar region may bear profound implications for the employment of Eemian conditions to help evaluate the present and future state of the Arctic cryosphere during a warming interglacial.  相似文献   

6.
The response of summer precipitation in the western United States to climate variability remains a subject of uncertainty. For example, palaeoclimate records indicate the North American Monsoon (NAM) was stronger and spatially more extensive during the Holocene, whereas recent modelling suggests a weakened NAM response to increasing temperatures. These illustrate diverging pictures of the NAM response to warming. Here, we examine summer precipitation in the southwestern US related to Last Interglacial insolation forcing. Using a high-resolution climate model, we find that Eemian insolation forcing results in overall wetter conditions throughout most of the southwestern US, but significantly drier than present conditions over Arizona. The overall wetter conditions are associated with a northward shift of the anticyclonic circulation aloft and increased moisture in the lower and mid-troposphere during the Eemian. Increased advection of Gulf of Mexico moisture is responsible for increasing precipitation in New Mexico and the northern edges of the NAM region. Drier conditions over Arizona are likely related to reduced local convection associated with reduced vertical moisture transport. These results highlight the spatial complexity of the NAM response to increasing radiative forcing and allow a better understanding of monsoon dynamics and variability in response to a warming climate.  相似文献   

7.
Holocene Treeline History and Climate Change Across Northern Eurasia   总被引:1,自引:0,他引:1  
Radiocarbon-dated macrofossils are used to document Holocene treeline history across northern Russia (including Siberia). Boreal forest development in this region commenced by 10,000 yr B.P. Over most of Russia, forest advanced to or near the current arctic coastline between 9000 and 7000 yr B.P. and retreated to its present position by between 4000 and 3000 yr B.P. Forest establishment and retreat was roughly synchronous across most of northern Russia. Treeline advance on the Kola Peninsula, however, appears to have occurred later than in other regions. During the period of maximum forest extension, the mean July temperatures along the northern coastline of Russia may have been 2.5° to 7.0°C warmer than modern. The development of forest and expansion of treeline likely reflects a number of complimentary environmental conditions, including heightened summer insolation, the demise of Eurasian ice sheets, reduced sea-ice cover, greater continentality with eustatically lower sea level, and extreme Arctic penetration of warm North Atlantic waters. The late Holocene retreat of Eurasian treeline coincides with declining summer insolation, cooling arctic waters, and neoglaciation.  相似文献   

8.
We compare six high-resolution Holocene, sediment cores along a S–N transect on the Norwegian–Svalbard continental margin from ca 60°N to 77.4°N, northern North Atlantic. Planktonic foraminifera in the cores were investigated to show the changes in upper surface and subsurface water mass distribution and properties, including summer sea-surface temperatures (SST). The cores are located below the axis of the Norwegian Current and the West Spitsbergen Current, which today transport warm Atlantic Water to the Arctic. Sediment accumulation rates are generally high at all the core sites, allowing for a temporal resolution of 10–102 years. SST is reconstructed using different types of transfer functions, resulting in very similar SST trends, with deviations of no more than ±1.0/1.5 °C. A transfer function based on the maximum likelihood statistical approach is found to be most relevant. The reconstruction documents an abrupt change in planktonic foraminiferal faunal composition and an associated warming at the Younger Dryas–Preboreal transition. The earliest part of the Holocene was characterized by large temperature variability, including the Preboreal Oscillations and the 8.2 k event. In general, the early Holocene was characterized by SSTs similar to those of today in the south and warmer than today in the north, and a smaller S–N temperature gradient (0.23 °C/°N) compared to the present temperature gradient (0.46 °C/°N). The southern proxy records (60–69°N) were more strongly influenced by slightly cooler subsurface water probably due to the seasonality of the orbital forcing and increased stratification due to freshening. The northern records (72–77.4°N) display a millennial-scale change associated with reduced insolation and a gradual weakening of the North Atlantic thermohaline circulation (THC). The observed northwards amplification of the early Holocene warming is comparable to the pattern of recent global warming and future climate modelling, which predicts greater warming at higher latitudes. The overall trend during mid and late Holocene was a cooling in the north, stable or weak warming in the south, and a maximum S–N SST gradient of ca 0.7 °C/°N at 5000 cal. years BP. Superimposed on this trend were several abrupt temperature shifts. Four of these shifts, dated to 9000–8000, 5500–3000 and 1000 and 400 cal. years BP, appear to be global, as they correlate with periods of global climate change. In general, there is a good correlation between the northern North Atlantic temperature records and climate records from Norway and Svalbard.  相似文献   

9.
Uranium-series dating of oxygen and carbon isotope records for stalagmite SJ3 collected in Songjia Cave, central China, shows significant variation in past climate and environment during the period 20-10 ka. Stalagmite SJ3 is located more than 1000 km inland of the coastal Hulu Cave in East China and more than 700 km north of the Dongge Cave in Southwest China and, despite minor differences, displays a clear first-order similarity with the Hulu and Dongge records. The coldest climatic phase since the Last Glacial Maximum, which is associated with the Heinrich Event 1 in the North Atlantic region, was clearly recorded in SJ3 between 17.6 and 14.5 ka, in good agreement in timing, duration and extent with the records from Hulu and Dongge caves and the Greenland ice core. The results indicate that there have been synchronous and significant climatic changes across monsoonal China and strong teleconnections between the North Atlantic and East Asia regions during the period 20-10 ka. This is much different from the Holocene Optimum which shows a time shift of more than several thousands years from southeast coastal to inland China. It is likely that temperature change at northern high latitudes during glacial periods exerts stronger influence on the Asian summer monsoon relative to insolation and appears to be capable of perturbing large-scale atmospheric/oceanic circulation patterns in the Northern Hemisphere and thus monsoonal rainfall and paleovegetation in East Asia. Climatic signals in the North Atlantic region propagate rapidly to East Asia during glacial periods by influencing the winter land-sea temperature contrast in the East Asian monsoon region.  相似文献   

10.
Holocene climate change is characterized as generally cooling in high latitudes and drying in tropical and Asian summer monsoonal regions, following the gradual decrease in northern hemisphere summer insolation over the last 12,000 years. However, some recent high-resolution, well-dated monsoon reconstructions seem to suggest an abnormal increase in Asian summer monsoon strength during the late Holocene, against the generally weakening Holocene trend. Here, we synthesize marine and terrestrial moisture records from Asian monsoonal regions that span most of the Holocene period. Late Holocene strengthening of Asian summer monsoon identified from a wealth of the synthesized monsoon records appears to be a robust feature, which warrants further consideration of its possible causes. The possible reverse trend in Asian summer monsoon strength preceding insolation minima seems to have also occurred during previous interglacial periods, based on speleothem records. We further show a similar late Holocene reverse trend in tropical hydrological changes, suggesting that the Asian summer monsoon behavior might be internally linked to the movement of the average position of the ITCZ and ENSO variability during the late Holocene. On the other hand, we suggest that even though several Holocene temperature records indeed show a reverse trend in the late Holocene, the overall evidence for a link between the late Holocene reverse trend in Asian summer monsoon and global temperature changes is insufficient. The reverse trend in Asian summer monsoon during the late Holocene is difficult to be explained with the traditional boreal insolation-driven view. We suggest that this phenomenon might be linked to austral summer insolation changes and/or greenhouse gas increase. However, we caution that additional paleoclimate reconstructions and model simulations are needed to systematically study the spatial pattern and understand underlying mechanism of the late Holocene reverse trend in Asian summer monsoon strength.  相似文献   

11.
洪业汤 《第四纪研究》2002,22(6):524-532
本文试图介绍发生在非冰期,主要是全新世的突然气候变化研究所取得的进展,包括山地冰川和深海沉积物所记录的全新世突然气候变化,季风和干旱气候突然变化,以及突然气候变化与太阳变化的关系。太阳变化对整个全新世气候变化的影响似乎正愈来愈明晰起来。  相似文献   

12.
《Quaternary Science Reviews》2007,26(15-16):2019-2029
Three potential mechanisms behind centennial-scale Holocene cooling events are studied in simulations performed with the coupled climate model ECBilt–CLIO: (1) internal variability, (2) solar forcing, and (3) freshwater forcing. In experiments with constant preindustrial forcings, three centennial-scale cooling events occur spontaneously in 15,000 years. These rare events represent an unstable internal mode of variability that is characterised by a weaker thermohaline circulation, a more southward location of the main site of deep-water formation, expanded sea-ice cover and cooling of 10 °C over the Nordic Seas. This mode is visited more frequently when the climate is cooled by abruptly reducing the solar constant by 5 or 3 Wm−2. Prescribing a solar forcing of the same magnitude, but following a sinusoidal function with a period of 100 or 1000 years, does not result in any centennial-scale cooling events. The latter forcing does however result in more frequent individual cold years in the North Atlantic region that are related to local weakening of the deep convection and sea-ice expansion. Adding realistic freshwater pulses to the Labrador Sea is also able to trigger centennial-scale cooling events with temperature anomalies resembling proxy evidence for the cooling event at 8.2 kyr BP, suggesting that freshwater forcing is a valid explanation for early Holocene cooling events.  相似文献   

13.
Spatial patterns of Holocene glacier advance and retreat in Central Asia   总被引:1,自引:0,他引:1  
Glaciers in the southern Himalayas advanced in the early Holocene despite an increase in incoming summer solar insolation at the top of the atmosphere. These glacier advances are in contrast to the smaller alpine glaciers in the western and northern regions of Central Asia. Two different glacier mass-balance models are used to reconcile this Holocene glacier history with climate by quantifying the change in equilibrium-line altitudes (ELA) for simulated changes in Holocene climate. Both ELA models clearly show that the lowering of ELAs in the southern Himalayas is largely due to a decrease in summer temperatures, and that an increase in monsoonal precipitation accounts for less than 30% of the total ELA changes. The decrease in summer temperatures is a dynamic response to the changes in solar insolation, resulting in both a decrease in incoming shortwave radiation at the surface due to an increase in cloudiness and an increase in evaporative cooling. In the western and northern zones of Central Asia, both ELA models show a rise in ELAs in response to a general increase in summer temperatures. This increase in temperatures in the more northern regions is a direct radiative response to the increase in summer solar insolation.  相似文献   

14.
Study of the eolian fraction of late Quaternary sediments from the tropical Atlantic reveals that two modes of long-term climate variability have existed in tropical Africa during the last 150,000 yr. Tropical northwest Africa (i.e., the southwestern Sahara and Sahel) was driest during glaciations and stades, but wetter than at present during interglaciations and interstades. This may be a response to ice sheets at higher latitudes, via equatorward displacement of the westerlies and the subtropical high. In contrast, central equatorial Africa (southeast of the Sahara) was most arid during interstades and times of ice growth, and most humid during deglaciation. Wet periods in this area correspond to insolation maxima in northern hemisphere summer. A 23,000-yr precessional rhythm is suggested, supporting a direct link between African Monsoon intensity and orbitally modulated insolation. The late Holocene is the only time observed when both areas are arid during an interglacial episode. This may reflect, in part, anthropogenic disturbance of late Holocene climates.  相似文献   

15.
At the western continental margin of the Barents Sea, 75°N, hemipelagic sediments provide a record of Holocene climate change with a time resolution of 10-70 years. Planktic foraminifera counts reveal a very early Holocene thermal optimum 10.7-7.7 kyr BP, with summer sea surface temperatures (SST) of 8°C and a much enhanced West Spitsbergen Current. There was a short cooling between 8.8 and 8.2 kyr BP. In the middle and late Holocene summer, SST dropped to 2.5°-5.0°C, indicative of reduced Atlantic heat advection, except for two short warmings near 2.2 and 1.6 kyr BP. Distinct quasi-periodic spikes of coarse sediment fraction (with large portions of lithic grains, benthic and planktic foraminifera) record cascades of cold, dense winter water down the continental slope as a result of enhanced seasonal sea ice formation and storminess on the Barents shelf over the entire Holocene. The spikes primarily cluster near recurrence intervals of 400-650 and 1000-1350 years, when traced over the entire Holocene, but follow significant 885-/840- and 505-/605-year periodicities in the early Holocene. These non-stationary periodicities mimic the Greenland-[Formula: See Text]Be variability, which is a tracer of solar forcing. Further significant Holocene periodicities of 230, (145) and 93 years come close to the deVries and Gleissberg solar cycles.  相似文献   

16.
Dune fields at the northern margin of the East Asian monsoon (EAM), are mosaics of mobile and vegetation-stabilized aeolian dunes. These sand dunes are highly sensitive to environmental change, thus the distribution and the timing of their development may provide important clues to past environmental dynamics. Due to the strong wind erosion and dune migration, long and continuous stratigraphic records are seldom preserved. Synthesizing a large body of events, ultimately producing a relatively complete and high-resolution record, may be a proper method to investigate the dune development history and climate change. In this study, we synthesized a large body of luminescence ages for aeolian deposits from the Mu Us, Otindag, Horqin dune fields at the northern margin of the EAM. The results show that these dune fields, as a whole experienced a most extensive mobility during the early Holocene, followed by a widespread shift toward limited mobility and soil development in the mid-Holocene, and widespread reactivation occurred during late Holocene. The dune developments are directly linked to the effective moisture change controlled by the EAM changes, which respond to the low latitude summer insolation variation. The increased subsidence at the margin contrary to the core EAM, the delay from the feedback of the soil-vegetation-air coupled system, the increased evaporation due to the high temperature all play partial role in the lag of the margin EAM effective moisture change to the low latitude summer insolation. The asynchronous end of the wetter mid-Holocene mainly responds to the southeastwardly shift of the precipitation belt, while the regional sensitivity, response speed and internal feedback also contributed. The correspondence between dune records and North Atlantic drift-ice records of the rapid climate changes implies a close relationship between North Atlantic climate and the frequent dune activity at the northern margin of EAM.  相似文献   

17.
A lake-level record of Lake Ledro (northern Italy) spans the entire Holocene with a chronology derived from 51 radiocarbon dates. It is based on a specific sedimentological approach that combines data from five sediment profiles sampled in distinct locations in the littoral zone. On a millennial scale, the lake-level record shows two successive periods from 11,700 to 4500 cal yr BP and from 4500 cal yr BP to the present, characterized by lower and higher average lake levels, respectively. In addition to key seasonal and inter-hemispherical changes in insolation, the major hydrological change around 4500 cal yr BP may be related to a non-linear response of the climate system to orbitally-driven gradual decrease in insolation. The Ledro record questions the notion of an accentuated summer rain regime in the northern Mediterranean borderlands during the boreal insolation maximum. Moreover, the Ledro record highlights that the Holocene was punctuated by successive centennial-scale highstands. Correlations with the Preboreal oscillation and the 8.2 ka event, and comparison with the atmospheric 14C residual record, suggest that short-lived lake-level fluctuations developed at Ledro in response to (1) final steps of the deglaciation in the North Atlantic area and (2) variations in solar activity.  相似文献   

18.
Two sediment cores recovered from Dahu Swamp, which is located in eastern Nanling Mountains in south China, were selected for investigation of palaeoclimatic changes. Multi‐proxy records of the two cores including lithological variation, organic carbon isotope ratio, dry bulk density, organic matter content, magnetic susceptibility, humification degree, median grain size and geochemical proxies reveal that during the last deglaciation three drier phases correspond to the Oldest, Older and Younger Dryas cooling events, and the intercalated two wetter phases synchronise with the Bølling and Allerød warming events. The Holocene Optimum, which was resulted from a strengthening of the East Asian (EA) summer monsoon, occurred in the early and mid Holocene (ca. 10–6 cal. ka BP). In the mid and late Holocene (ca. 6–3 cal. ka BP), a prevailing dry climate suggested a weakening of the EA summer monsoon. The general trend of Holocene climatic changes in this study agrees with the 25° N summer solar insolation, suggesting that orbitally induced insolation may have played an important role in the Holocene climate in the study region. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The northeastern Qinghai-Tibetan Plateau(QTP) of China is located at the triple junction of the Asian winter and summer monsoons and the westerlies, where paleoclimatic evolution has an important scientific significance for recognizing the spatial-temporal pattern of Asian monsoons in the past and predicting environmental change in the future. Nevertheless, the framework of the Holocene moisture variation and related mechanisms remain controversial, owing to complex hydroclimatic conditions triggered by the landform of the large mountain-arid basin. Here, we employed geochemical proxies from typical aeolian sand-palaeosol sequences in the Gonghe Basin, northeastern QTP, together with Optically Stimulated Luminescence(OSL) dating, to reconstruct the pattern of effective moisture variation and associated mechanisms in this region. Our results indicate that the regional effective moisture was at its lowest until 9–8 ka, and approached a maximum during 8–4/3 ka of the middle Holocene. Afterwards, the climate became relatively dry in general, but with a transient humid interval around 2–1 ka. Our geochemical evidence indicates that the dry early Holocene probably can be attributed to a strong winter monsoon forced by remnant ice sheet, combined with the high evaporation caused by solar insolation. Also, shifts of humid-dry are closely linked to the Asian summer monsoonal strength and therefore the balance of evaporation-precipitation in the middle and late Holocene. Thus, the pattern of the Holocene effective moisture variation is characterized as the ‘monsoon model' in a closed intermontane arid and semi-arid basin near the western Asian monsoonal limit.  相似文献   

20.
Lake-water oxygen-isotope histories for three lakes in northern Russia, derived from the cellulose oxygen-isotope stratigraphies of sediment cores, provide the basis for preliminary reconstruction of Holocene paleohydrology in two regions along the boreal treeline. Deconvolution of shifting precipitation δ18O from secondary evaporative isotopic enrichment is aided by knowledge of the distribution of isotopes in modern precipitation, the isotopic composition of paleo-waters preserved in frozen peat deposits, as well as other supporting paleoclimatic information. These data indicate that during the early Holocene, when the boreal treeline advanced to the current arctic coastline, conditions in the lower Yenisey River region were moist compared to the present, whereas greater aridity prevailed to the east near the lower Lena River. This longitudinal moisture gradient is consistent with the suggestion that oceanic forcing (increased sea-surface temperatures in the Nordic Seas and reduced sea-ice cover) was a major contributor to the development of a more maritime climate in western Eurasia, in addition to increased summer insolation. East of the Taimyr Peninsula, large tracts of the continental shelf exposed by glacial sea-level drawdown may have suppressed maritime climatic influence in what are now coastal areas. In contrast, during the late Holocene the two regions have apparently experienced coherent shifts in effective moisture. The similarity of the records may primarily reflect reduced North Atlantic influence in the Nordic Seas and southward retreat of coastline in eastern Siberia, coupled with declining summer insolation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号