首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
《Comptes Rendus Geoscience》2008,340(9-10):644-650
The knowledge of past catastrophic events can improve flood risk mitigation policy, with a better awareness against risk. As such historical information is usually available in Europe for the past five centuries, historians are able to understand how past society dealt with flood risk, and hydrologists can include information on past floods into an adapted probabilistic framework. In France, Flood Risk Mitigation Maps are based either on the largest historical known flood event or on the 100-year flood event if it is greater. Two actions can be suggested in terms of promoting the use of historical information for flood risk management: (1) the development of a regional flood data base, with both historical and current data, in order to get a good feedback on recent events and to improve the flood risk education and awareness; (2) the commitment to keep a persistent/perennial management of a reference network of hydrometeorological observations for climate change studies.  相似文献   

2.
Flash flood forecasting of catchment systems is one of the challenges especially in the arid ungauged basins. This study is attempted to estimate the relationship between rainfall and runoff and also to provide flash flood hazard warnings for ungauged basins based on the hydrological characteristics using geographic information system (GIS). Morphometric characteristics of drainage basins provide a means for describing the hydrological behavior of a basin. The study examined the morphometric parameters of Wadi Rabigh with emphasis on its implication for hydrologic processes through the integration analysis between morphometric parameters and GIS techniques. Data for this study were obtained from ASTER data for digital elevation model (DEM) with 30-m resolution, topographic map (1:50,000), and geological maps (1,250,000) which were subject to field confirmation. About 36 morphometric parameters were measured and calculated, and interlinked to produce nine effective parameters for the evaluation of the flash flood hazard degree of the study area. Based on nine effective morphometric parameters that directly influence on the hydrologic behavior of the Wadi through time of concentration, the flash flood hazard of the Rabigh basin and its subbasins was identified and classified into three groups (High, medium, and low hazard degree). The present work proved that the physiographic features of drainage basin contribute to the possibility of a flash flood hazard evaluation for any particular drainage area. The study provides details on the flash flood prone subbasins and the mitigation measures. This study also helps to plan rainwater harvesting and watershed management in the flash flood alert zones. Based on two historical data events of rainfall and the corresponding maximum flow rate, morphometric parameters and Stormwater Management and Design Aid software (SMADA 6), it could be to generate the hydrograph of Wadi Rabigh basin. As a result of the model applied to Wadi Rabigh basin, a rainfall event of a total of 22 mm with a duration of 5 h at the station nearby the study area, which has an exceedance probability of 50 % and return period around 2 years, produces a discharge volume of 15.2?×?106 m3 at the delta, outlet of the basin, as 12.5 mm of the rainfall infiltrates (recharge).  相似文献   

3.
This contribution explores the evolution of the flood risk in the Metropolitan Area of Barcelona (MAB; Northeast Spain) from 1981 to 2015, and how it has been affected by changes in land use, population and precipitation. To complete this study, we analysed PRESSGAMA and INUNGAMA databases to look for all the information related to the floods and flash floods that have affected the chosen region. The “Consorcio de Compensación de Seguros”, a state insurance company for extraordinary risks, provided data on economic damage. The extreme precipitation trend was analysed by the Fabra Observatory and El Prat-Airport Observatory, and daily precipitation data were provided by the State Meteorological Agency of Spain (AEMET) and the Meteorological Service of Catalonia (SMC). Population data were obtained from the Statistical Institute of Catalonia (IDESCAT). Changes in land use were estimated from the land use maps for Catalonia corresponding to 1956, 1993, 2000, 2005 and 2009. Prevention measures like rainwater tanks and improvements to the drainage system were also been considered. The specific case of Barcelona is presented, a city recognised by United Nations International Strategy for Disaster Reduction as a model city for urban resilience to floods. The evolution of flood events in the MAB does not show any significant trend for this period. We argue that the evolution in floods can be explained, at least in part, by the lack of trend in extreme precipitation indices, and also by the improvements in flood prevention measures.  相似文献   

4.
Extreme sea-level events (e.g. caused by storm surges) can cause coastal flooding, and considerable disruption and damage. To understand the impacts or hazards expected by different sea levels, waves and defence failures, it is useful to monitor and analyse coastal flood events, including generating numerical simulations of floodplain inundation. Ideally, any such modelling should be calibrated and validated using information recorded during real events, which can also add plausibility to synthetic flood event simulations. However, such data are rarely compiled for coastal floods. This paper demonstrates the capture of such a flood event dataset, and its integration with defence and floodplain modelling to reconstruct, archive and better understand the regional impacts of the event. The case-study event comprised a significant storm surge, high tide and waves in the English Channel on 10 March 2008, which resulted in flooding in at least 37 distinct areas across the Solent, UK (mainly due to overflow and outflanking of defences). The land area flooded may have exceeded 7 km2, with the breaching of a shingle barrier at Selsey contributing to up to 90 % of this area. Whilst sea floods are common in the Solent, this is the first regional dataset on flood extent. The compilation of data for the validation of coastal inundation modelling is discussed, and the implications for the analysis of future coastal flooding threats to population, business and infrastructure in the region.  相似文献   

5.
针对缺乏水位流量资料的山区小流域地区山洪临界雨量难以确定的问题,以四川省南江河上游流域作为研究区域,基于德国Geomer公司开发的二维非恒定流水动力模型"FloodArea ",利用流域逐时降雨资料,地形高程数据以及土地利用数据,重现南江" 6·28"山洪暴发的动态演进过程,对模拟得到的逐时淹没深度与1~24 h累积流域面雨量求相关,选取预警点淹没深度与累积面雨量的相关系数最高的时效作为预警点致灾临界雨量阈值的预报时效,通过建立预警点淹没深度与预报时效累积面雨量的回归方程,从而获取预警点不同风险等级的临界雨量阈值。结果表明:FloodArea模型能够较好地呈现出此次典型山洪的暴发过程,通过对不同地势预警点临界雨量阈值的对比,最终选取地势较低,位于河流汇口地带、风险等级较高的上两九义校作为南江河上游流域山洪风险预警点。  相似文献   

6.
Flash flood disaster is a prominent issue threatening public safety and social development throughout the world, especially in mountainous regions. Rainfall threshold is a widely accepted alternative to hydrological forecasting for flash flood warning due to the short response time and limited observations of flash flood events. However, determination of rainfall threshold is still very complicated due to multiple impact factors, particular for antecedent soil moisture and rainfall patterns. In this study, hydrological simulation approach (i.e., China Flash Flood-Hydrological Modeling System: CNFF-HMS) was adopted to capture the flash flood processes. Multiple scenarios were further designed with consideration of antecedent soil moisture and rainfall temporal patterns to determine the possible assemble of rainfall thresholds by driving the CNFF-HMS. Moreover, their effects on rainfall thresholds were investigated. Three mountainous catchments (Zhong, Balisi and Yu villages) in southern China were selected for case study. Results showed that the model performance of CNFF-HMS was very satisfactory for flash flood simulations in all these catchments, especially for multimodal flood events. Specifically, the relative errors of runoff and peak flow were within?±?20%, the error of time to peak flow was within?±?2 h and the Nash–Sutcliffe efficiency was greater than 0.90 for over 90% of the flash flood events. The rainfall thresholds varied between 93 and 334 mm at Zhong village, between 77 and 246 mm at Balisi village and between 111 and 420 mm at Yu village. Both antecedent soil moistures and rainfall temporal pattern significantly affected the variations of rainfall threshold. Rainfall threshold decreased by 8–38 and 0–42% as soil saturation increased from 0.20 to 0.50 and from 0.20 to 0.80, respectively. The effect of rainfall threshold was the minimum for the decreasing hyetograph (advanced pattern) and the maximum for the increasing hyetograph (delayed pattern), while it was similar for the design hyetograph and triangular hyetograph (intermediate patterns). Moreover, rainfall thresholds with short time spans were more suitable for early flood warning, especially in small rural catchments with humid climatic characteristics. This study was expected to provide insights into flash flood disaster forecasting and early warning in mountainous regions, and scientific references for the implementation of flash flood disaster prevention in China.  相似文献   

7.
王雪梅  翟晓燕  郭良 《水文》2023,43(4):45-52
流域暴雨山洪过程时空异质性强,准确评估雨洪变化特性和洪水危险性对山洪灾害防治具有重要意义。以7个降雨特征指标和6个洪水特征指标刻画流域场次雨洪特性,采用中国山洪水文模型和洪水频率指标相结合,模拟和评估口前流域洪水过程及其危险性。结果表明:场次洪水洪峰模数、洪峰时间偏度、高脉冲历时占比、涨落洪速率与降雨总量、平均雨量、最大雨强、雨峰位置系数、基尼系数等降雨特征指标显著相关,三场致灾洪水过程的降雨均呈现量级大、强度大、历时短、暴雨中心偏中下游的特点;率定期和验证期的平均径流深相对误差均在9%以内,平均洪峰流量相对误差均在11%以内,平均峰现时间误差均在1.7 h以内,平均Nash-Sutcliffe系数为0.80和0.76;各场次洪水有0.0%~93.3%的河段流量达到一般危险及以上等级,三场致灾洪水过程的危险性等级最高,分别有80.0%、35.0%和1.7%的小流域河段流量达到高危险及以上等级。研究可为山区小流域暴雨洪水危险性评估、灾害响应和复盘等提供技术支撑。  相似文献   

8.
Comparison of TRMM-based flood indices for Gaziantep,Turkey   总被引:1,自引:0,他引:1  
Floods are the most common natural disasters threatening the welfare of humanity. Gaziantep, a city located in a semi-arid region of Turkey, is occasionally flooded, and in May 2014, a flood not only caused property damage, but also resulted in the death of a lady who became trapped in flood waters. The fatality and property damage of flash floods arise from the limited response time for remediation. Despite improvements in numerical weather predictions, forecasting flash floods is not easy. Due to its frequent observations, Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) real-time (RT) 3B42RT data are tested for Gaziantep flood predictions in this study. During TRMM era, six floods occurred in Gaziantep. Three-hourly 3B42RT data covering the 2000- to 2014-year period indicated high rain rates during months in which floods were observed. Also daily variation of rainfall was well represented. High-intensity rain (HIR), cumulative distribution functions (CDF) and Gaziantep Flood Index (GAFI) indices are developed for flood characterization. HIR, calculated as 10 mm/h, detected October and December of 2010 floods. CDFs with 99, 98.5, 95 and 91.3% indicated 4 floods occurred in August 2005, June 2007, October 2010 and December 2010, respectively. GAFI was able to detect 4 out of 6 occurrences (August 2005, June 2007, October 2010 and December 2010) as values ranging from 1 to 2.63 are selected for monthly precipitation. In the missed occurrence, 3B42RT did not indicate any rainfall. Although only rain rates are used in flood characterization, the results are promising, and the simplicity of the methodology favors its usage. Also, methodology can easily be implemented to TRMM following missions such as Global Precipitation Measurement Mission.  相似文献   

9.
Flash floods are one of the major natural hazards occurring in small streams with a negative effect on the country as well as on human lives. Heavy rainfall occurred on July 20, 2014 and July 21, 2014 and caused severe surface water flooding and a flash flood in the Malá Fatra National Park (Slovakia). The most affected was Vrátna Valley with the Varínka stream. This study presents a reconstruction and post-event analysis of a flash flood on small ungauged basin located in this protected area of Slovakia. The reconstruction included hydraulic terrain measurements on estimating the flood’s culmination and documenting the flood’s development. The measurements were taken at three cross sections of the Varínka stream. This paper is focused mainly on post-event analysis of the Varínka stream in two profiles: Strá?a (gauged profile) and Tiesňavy (ungauged cross section). Subsequently, the extremeness of the flash flood was preliminary evaluated. Results of the post-event analysis showed that the July 2014 flood was not the highest flood in this area despite its catastrophic consequences. By studying historical materials, we came to the conclusion that in the past (e.g. in 1848 or 1939) some devastating floods in this area had occurred, which had disastrous consequences for the population. The second part of the study is focused on comparing this flash flood with three major floods which have occurred in Slovak territory since 1998. The first flood occurred on the 20th of July, 1998 on the Malá Svinka stream, and the two others are floods which occurred on the 7th of June, 2011 in the Small Carpathian Mountains: on the Gidra stream in Píla village and on the Parná stream in Horné Ore?any village. Such comparison of flash floods from different geographical regions and different rainfall events can provide comprehensive information about their regimes, threats and disastrous effects.  相似文献   

10.
This paper deals with the presentation of a flood warning system (GFWS) developed for the specific characteristics of the Guadalhorce basin (3,200 km2, SE of Spain), which is poorly gauged and often affected by flash and plain floods. Its complementarity with the European flood alert system (EFAS) has also been studied. At a lower resolution, EFAS is able to provide a flood forecast several days in advance. The GFWS is adapted to the use of distributed rainfall maps (such as radar rainfall estimates), and discharge forecasts are computed using a distributed rainfall–runoff model. Due to the lack of flow measurements, the model parameters calibrated on a small watershed have been transferred in most of the basin area. The system is oriented to provide distributed warnings and fulfills the requirements of ungauged basins. This work reports on the performance of the system on two recent rainfall events that caused several inundations. These results show how the GFWS performed well and was able to forecast the location and timing of flooding. It demonstrates that despite its limitations, a simple rainfall–runoff model and a relatively simple calibration could be useful for event risk management. Moreover, with low resolution and long anticipation, EFAS appears as a good complement tool to improve flood forecasting and compensate for the short lead times of the GFWS.  相似文献   

11.
Flash-flood events resulting from paroxystic meteorological events concentrated in time and space are insufficiently documented as they produce destructive effects. They are hardly measurable and present single features that are not transposable to another event. In the South of France, the flash flood of November 1999 gives a perfect illustration of these characteristics. The physical complexity of the process and consequently the volume and the variety of the data to take into account are incompatible with the real time constraint allocated to the forecasters confronted to the occurrence of such phenomena. So, we have to make choices to afford acceptable simplifications to the complete mechanical model. MARINE (‘Modélisation de l'Anticipation du Ruissellement et des Inondations pour des évéNements Extrêmes’) is the operational and robust tool we developed for flash-flood forecasting. This model complies with the criterions of real-time simulation. It is a physically based distributed model composed of two parts: first the flood runoff process simulation in the upstream part of the basin modelled from a rainfall–runoff approach, then the flood propagation in the main rivers described by the Saint-Venant equations. It integrates remote sensed data – Digital Elevation Model, land-use map, hydrographic network for the observations from satellites and the rainfall evolution from meteorological radar. The main goal of MARINE is to supply real time pertinent information to the forecasters. Results obtained on the Orbieu River (Aude, France) show that this model is able to supply pertinent flood hydrograph with a sufficient precision for the forecasting service to take the appropriate safety decisions. Furthermore, MARINE has already been tested in the French National Flood Forecasting Service of Haute-Garonne in real conditions. To cite this article: V. Estupina Borrell et al., C. R. Geoscience 337 (2005).  相似文献   

12.
Analysis of flash flood disaster characteristics in China from 2011 to 2015   总被引:1,自引:0,他引:1  
Flash floods are one of the most disastrous natural hazards and cause serious loss of life and economic damage every year. Flooding frequently affects many regions in China, including periodically catastrophic events. An extensive compilation of the available data has been conducted across various hydroclimatological regions to analyze the spatiotemporal characteristics of flash floods in China. This inventory includes over 782 documented events and is the first step toward establishing an atlas of extreme flash flood occurrences in China. This paper first presents the data compilation strategy, details of the database contents, and the typical examples of first-hand analysis results. The subsequent analysis indicates that the most extreme flash floods originate mainly from small catchments over complex terrains and results in dominantly small- and medium-sized flooding events in terms of scales; however, these events, abrupt and seasonally recurrent in nature, account for a large proportion of the overall flooding-related disasters, especially disproportionately affecting elderly and youth populations. Finally, this study also recommends several immediate measures could be implemented to mitigate high impacts of deadly flash floods, although it still requires long-term significant efforts to protect human life and property in a country like China.  相似文献   

13.
Flood area mapping is an integral part of disaster management operation which gets value when the details about inundated region has been made available in real time mode as well as when the much required temporal information is shared to the disaster mitigation authorities at right time. The challenges of such real time flood area mapping operations can be met by spaceborn Synthetic Aperture Radar (SAR) technology which is capable of capturing the critical information of large and hard-to-reach territories during all weather and all time situations. Mapping the flood related information of SAR images require much attention as the pixels associated with the inundated regions exhibit similar reflectance with major part of the pixels associated with high altitude region, shadow, runway and broad road networks. Such challenges have been addressed by worldwide researchers with the help of image processing functions. Many such SAR image based flood area mapping models take the advantages of various image classification approaches as well as in integrating multiple image processing functions mainly to differentiate the inundated pixels from other pixels which exhibits similar reflectance by which the mapping accuracy is enhanced. This paper is dedicated, in understanding and documenting various such significant SAR image based flood area mapping models by highlighting its strengths. Significant SAR image bases flood area mapping models from 1990’s to 2015 has been discussed. The respective references can be used by young researchers who are interested and willing to work in SAR image based flood area mapping techniques.  相似文献   

14.
Flood is the worst weather-related hazard in Taiwan because of steep terrain and storm. The tropical storm often results in disastrous flash flood. To provide reliable forecast of water stages in rivers is indispensable for proper actions in the emergency response during flood. The river hydraulic model based on dynamic wave theory using an implicit finite-difference method is developed with river roughness updating for flash flood forecast. The artificial neural network (ANN) is employed to update the roughness of rivers in accordance with the observed river stages at each time-step of the flood routing process. Several typhoon events at Tamsui River are utilized to evaluate the accuracy of flood forecasting. The results present the adaptive n-values of roughness for river hydraulic model that can provide a better flow state for subsequent forecasting at significant locations and longitudinal profiles along rivers.  相似文献   

15.
The level of damage of flood events does not solely depend on exposure to flood waters. Vulnerabilities due to various socio-economic factors such as population at risk, public awareness, and presence of early warning systems, etc. should also be taken into account. Federal and state agencies, watershed management coalitions, insurance companies, need reliable decision support system to evaluate flood risk, to plan and design flood damage assessment and mitigation systems. In current practice, flood damage evaluations are generally carried out based on results obtained from one dimensional (1D) numerical simulations. In some cases, however, 1D simulation is not able to accurately capture the dynamics of the flood events. The present study describes a decision support system, which is based on 2D flood simulation results obtained with CCHE2D-FLOOD. The 2D computational results are complemented with information from various resources, such as census block layer, detailed survey data, and remote sensing images, to estimate loss of life and direct damages (meso or micro scale) to property under uncertainty. Flood damage calculations consider damages to residential, commercial, and industrial buildings in urban areas, and damages to crops in rural areas. The decision support system takes advantage of fast raster layer operations in a GIS platform to generate flood hazard maps based on various user-defined criteria. Monte Carlo method based on an event tree analysis is introduced to account for uncertainties in various parameters. A case study illustrates the uses of the proposed decision support system. The results show that the proposed decision support system allows stake holders to have a better appreciation of the consequences of the flood. It can also be used for planning, design, and evaluation of future flood mitigation measures.  相似文献   

16.
Mediterranean flash flood transfer through karstic area   总被引:1,自引:0,他引:1  
Karstic aquifers influence flash floods propagation in Mediterranean countries. Near Montpellier, Southern France, discharge data are recorded on the Coulazou River upstream and downstream of the Aumelas Causse. Two gauging stations are used to describe the hydrodynamics of this binary karstic system. The first station characterizes the non-karstic catchment area. The second one is representative of the karstic part of the watershed. Records since April 2004 are used to understand how the river interacts with a karstic aquifer. Hydrograph analysis of three flash flood events is described. Corresponding discharge time series recorded at the two gauging stations are used to describe the modification of the hydrographs by auto- and crosscorrelations analyses. Finally, linear system analyses are used to provide the transfer functions of this binary karstic system according to the three flood events characteristics (initial conditions, volume, spatial distribution of rainfall, etc.). Theses functions summarize the hydrodynamic behaviour of the system: their shapes are indicative of the dynamics of the storage, the release and the contribution to surface waters.
Vincent Bailly-ComteEmail:
  相似文献   

17.
There has been a yearly increase in precipitation in Taiwan, consistent with trends seen across the world. In the summer and fall, typhoons or tropical cyclones with torrential rainfall frequently occur as a result of Taiwan’s subtropical climate. Flash floods may cause a levee-break and/or the overtopping of banks at narrow neck locations in a river system, which may in turn produce inundation in urban areas. Therefore, a model that predicts flash floods is of vital importance for river management. The present study is based on a flash flood routing model, which incorporates levee-break and overbank functions to calculate the discharge hydrographs in the complicated Danshuei River system of northern Taiwan. The numerical model was calibrated and verified against observed water stages using three typhoon events. The results indicate reasonable agreement between the model simulations and the observed data. The model was then used to calculate the levee-break and overbank flow hydrographs due to Typhoon Talim (2005) and Typhoon Nari (2001), respectively. The simulated results indicate that several parameters significantly affect the flow hydrograph during a levee-break and should be carefully monitored when levee-break events occur in the river system. The simulated water stages at several stations are consistent with observed data from Typhoon Nari. The simulated overbank flow results quantitatively agree with reported information. The data also confirm that most of the overbank events occurred at the upper reaches of the Keelung River, consistent with the low levee height protection.  相似文献   

18.
The probability of the occurrence of urban flash floods has increased appreciably in recent years. Scientists have published various articles related to the estimation of the vulnerability of people and vehicles in urban areas resulting from flash floods. However, most published works are based on research performed using numerical models and laboratory experiments. This paper presents a novel approach that combines the implementation of image velocimetry technique (large-scale particle image velocimetry—LSPIV) using a flash flood video recorded by the public locally and the estimation of the vulnerability of people and vehicles to high water velocities in urban areas. A numerical one‐dimensional hydrodynamic model has also been used in this approach for water velocity characterization. The results presented in this paper correspond to a flash flood resulting on November 29, 2012, in the city of Asunción in Paraguay. During this flash flood, people and vehicles were observed being carried away because of high water velocities. Various sequences of the recorded flash flood video were characterized using LSPIV. The results obtained in this work validate the existing vulnerability criterion based on the effect of the flash flood and resulting high water velocities on people and vehicles.  相似文献   

19.
Basin morphometric parameters play an important role in hydrological processes, as they largely control a catchment’s hydrologic response. Their analysis becomes even more significant when studying runoff reaction to intense rainfall, especially in the case of ungauged, flash flood prone basins. Unit hydrographs are one of the useful tools for estimating runoff when instrumental data are inadequate. In this work, instantaneous unit hydrographs based on the time-area method have been compiled along the drainage networks of two small rural catchments in Greece, situated approximately 25 km northeast of its capital, Athens. The two catchments drained by ephemeral torrents, namely Rapentosa and Charadros, have been subject to flash flooding during the last decades, which caused extensive damages at the local small towns of Marathon and Vranas. Hydrograph compilation in numerous locations along the catchments’ drainage networks directly reflected the runoff conditions across each basin against a given rainfall. This gave a holistic assessment of their hydrologic response, allowing the detection of areas where peak flow rates were elevated and therefore, there was higher flood potential. The resulting flood hazard zonation showed good correlation with locations of damages induced by past flood events, indicating that the method can successfully predict flood hazard spatial distribution. The whole methodology was based on geographic information software due to its excellent capabilities on storing and processing spatial data.  相似文献   

20.

Blackouts aggravate the situation during an extreme river-flood event by affecting residents and visitors of an urban area. But also rescue services, fire brigades and basic urban infrastructure such as hospitals have to operate under suboptimal conditions. This paper aims to demonstrate how affected people, critical infrastructure, such as electricity, roads and civil protection infrastructure are intertwined during a flood event, and how this can be analysed in a spatially explicit way. The city of Cologne (Germany) is used as a case study since it is river-flood prone and thousands of people had been affected in the floods in 1993 and 1995. Components of vulnerability and resilience assessments are selected with a focus of analysing exposure to floods, and five steps of analysis are demonstrated using a geographic information system. Data derived by airborne and spaceborne earth observation to capture flood extent and demographic data are combined with place-based information about location and distance of objects. The results illustrate that even fire brigade stations, hospitals and refugee shelters are within the flood scenario area. Methodologically, the paper shows how criticality of infrastructure can be analysed and how static vulnerability assessments can be improved by adding routing calculations. Fire brigades can use this information to improve planning on how to access hospitals and shelters under flooded road conditions.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号