首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The power spectral density of cosmic ray fluctuations observed at ground level during the years 1966–1968 has been calculated. In order to obtain the correct shape of the spectrum, the Fast Fourier Transform method with a triangular data window was used and corrections were made for uncorrelated errors and aliasing effects. When ignoring the Earth rotation peaks, the spectral index , for a sample of polar, middle latitude and equatorial stations, is − 1.96 in the frequency range 3 × 10−7–10−4 Hz. A possible break around 10−5 Hz, if existing, would be, on the whole, barely significant as a would change from − 1.96 to − 2.10. There are indications that beyond 10−4 Hz up to 7 × 10−3 Hz the spectrum continues with − 2.  相似文献   

2.
Venera 9, 10 measurements of the nightside ionospheric profile and the night airglow were used for investigating ionosphere formation processes. The upper ionospheric layer may be formed by HeI 584 Å radiation; the lower layer by meteorite ionization. Upper limits on the electron energy flux, <4 × 108eV cm−2 s−1, the helium ion flux <107 cm−2 s−1, the nitric oxide mixing ratio, <1.5 × 10−4 and the atomic sulphur mixing ratio, <10−6, are deduced for ionospheric altitudes.  相似文献   

3.
It is shown that the dynamics of the plasmapause, the plasmasphere plasma tails, the plasma sheet and the magnetosheath boundaries of the geomagnetosphere may be investigated by means of the geostationary version of the differential phase method, by which a signal transmitted from a sounding station (a geostationary satellite) and received by a response station on the Earth may be transformed, allowing the sign of the frequency shift and of the phase lag to be changed. Information on the location, the motion of the magnetospheric plasma discontinuities and the concentration drop at their boundaries may be obtained from measurements carried out on board the geostationary satellite of the phase difference of the sounding and response signals ΔΦ, the time of its increase Δt and the phase difference change rate (fast beating frequency Δƒ = ΔΦ/2π Δt). The establishment of communication between appropriately spaced ground stations and a satellite with a quasi-polar orbit allows the midlatitude plasmapause dynamics, and those of the ionosphere trough, polar cusp boundaries and of polar cap inhomogeneities to be studied. Equipment with a stability of 10−11–10−12 is needed for the most dynamical events (for ΔΦ= 10−4 tens of rad. and for Δƒ= 10−5 tens of Hz) occurring in the radio path during storms.  相似文献   

4.
Using the 13.7 m millimeter-wave telescope at the Qinghai Station of Purple Mountain Observatory, we have made observations of 13CO, C18O, HCO+ and N2H+ molecular lines towards IRAS 02232+6138. As the excitation density of the probe molecule increases from 13CO to HCO+, the size of the cloud core associated with IRAS 02232+6138 decreases from 2.40 pc to 0.54 pc, and the virial mass of the cloud core decreases from 2.2 × 103M to 5.1 × 102M. A bipolar molecular outflow is found towards IRAS 02232+6138. Using the power function n(r) ∝ r to fit the spatial density structure of the cloud core, we obtain the power-law index  = 2.3 − 1.2; and we find that, as the probed density increases, the power function becomes more flat. The abundance ratio of 13CO to C18O is 12.4 ± 6.9, comparable with the values 11.8 ± 5.9 for dark clouds and the values 9.0–15.6 for massive cores. The abundance of N2H+ molecules is 3.5 ± 2.5 × 10−10, consistent with the value 1.0 − 5.0 × 10−10 for dark cloud cores and the value 1.2 − 12.8 × 10−10 for massive cores. The abundance of HCO+ molecules is 0.9 ± 0.5 × 10−9, close to the value 1.6 − 2.4 × 10−9 for massive cores. An increase of HCO+ abundance in the outflow region was not found. Combining with the IRAS data, the luminosity-mass ratio of the cloud core is obtained in the range 37–163(L/M). Based on the IRAS luminosity, it is estimated that a main-sequence O7.5 star is probably embedded in the IRAS 02232+6138 cloud core.  相似文献   

5.
Power spectrum estimates are computed for cosmic ray and pressure variations in the frequency range of 1.6 × 10−6 to 4.15 × 10−3 c/sec for three data sets each of 27 days length (2 min interval) recorded at Chacaltaya (Bolivia) during 1965–1966. The general trend of these spectra showy ƒ fit having exponent values from −1.5 to −1.9 for L.F. side. From the semi-diurnal peaks both in cosmic rays and pressure, the average value of pressure coefficient is found to be 0.3 per cent/mm of Hg. For the same three sets of data, a detailed analysis of cross-spectrum, coherence and phase relationship between cosmic rays and pressure is carried out in the frequency range of 1–12 c/day. Besides semi-diurnal peak, variations of 3, 4, 7 and 8 c/day are found to be common both in cosmic rays and pressure. The value of pressure coefficient and residual amplitude of cosmic rays for these particular frequencies are calculated.  相似文献   

6.
Radio noise observations at frequencies of 0·700 Mc and 2·200 Mc were made at altitudes between 3000 and 11,000 km from a Blue Scout Jr. high-altitude rocket probe on 30 July 1963. A steady background flux of (7·5−3+6) × 10−19 W m−2)(c/s)−1 at 0·700 Mc and (1·8+1.0−0.5 × 10−19 W m−2 (c/s)−1 at 2·200 Mc was observed. Assuming a galactic origin of the observed fluxes at both frequencies, the averaged sky brightnesses are b(0·700 Mc) = (6−3+5) × 10−20 W m−2 (c/s)−1 sr−1b(2·200 Mc) = (1.4+1.0−0.5 × 10−20 W m−2 (c/s)−1 sr−1 The observed brightness at 2·200 Mc is in reasonable agreement with the results of other observers. The apparent brightness at 0·700 Mc is, however, greater than was expected from previous observations. An alternative source of the 0·700 Mc flux in the terrestrial exosphere, as well as characteristics of several noise bursts observed during the flight, is briefly discussed.  相似文献   

7.
Simultaneous observations by the ESA satellite COS-B show that the 2–12 keV X-rays and 150–5000 MeV gamma-rays of Cyg X-3 are negatively correlated. A clear gamma-ray image of Cyg X-3 can be obtained between June 1977 and June 1980, when the X-ray emission was low, to yield a flux of P(E > 100MeV) ~ 1 × 10−6cm−2s−1.  相似文献   

8.
Recent rocket observations of the N2 V-K (Vegard-Kaplan) system in the aurora have been reinterpreted using an atmospheric model based on mass spectrometer measurements in an aurora of similar intensity at the same time of year. In contrast to the original interpretation, we find that population by cascade from the C3Πu and B3Πg states in the A3Σu+v=0,1 levels, as calculated using recently measured electron excitation cross sections, accurately accounts for the observed relative emission rates (IV-K/12PG0.0). In addition there is no need to change the production rate of A 3 Σ u+ molecules relative to that of C3Πuv=0 as a function of altitude in order to fit the profile of the deactivation probability to the atmospheric model. Quenching of A 3 Σ u+ molecules at high altitudes is dominated by atomic oxygen. The rate constants for the v=0 and v=1 levels are 8 × 10−11 cm3 sec−1 and 1.7 × 10−10 cm3 sec−1 respectively, as determined using the model atmosphere mentioned above. Recent observations with a helium cooled mass spectrometer suggest that conventional mass spectrometer measurements tend to underestimate the atomic oxygen relative concentration. The rate coefficients may therefore be too large by as much as a factor of 3. Below 130 Km we find that it is possible to account for the deactivation in bright auroras by invoking large nitric oxide concentrations, similar to those recently observed mass spectrometrically and using a rate constant of 8 × 10−11 cm3 sec−1 for both the v=1 levels. This rate constant is very nearly the same as that measured in the laboratory (7 × 10−11 cm3 sec−1). Molecular oxygen appears not to play a significant role in deactivating the lower A 3 Σ u+ levels.  相似文献   

9.
《Astroparticle Physics》2002,17(4):1083-475
Using data from the HEGRA air shower array, taken in the period from April 1998 to March 2000, upper limits on the ratio Iγ/ICR of the diffuse photon flux Iγ to the hadronic cosmic ray flux ICR are determined for the energy region 20–100 TeV. The analysis uses a gamma–hadron discrimination which is based on differences in the development of photon- and hadron-induced air showers after the shower maximum. A method which is sensitive only to the non-isotropic component of the diffuse photon flux yields an upper limit of Iγ/ICR (at 54 TeV) <2.0×10−3 (at the 90% confidence level) for a sky region near the inner galaxy (20°< galactic longitude <60° and |galactic latitude |<5°). A method which is sensitive to both the isotropic and the non-isotropic component yields global upper limits of Iγ/ICR (at 31 TeV) <1.2×10−2 and Iγ/ICR (at 53 TeV) <1.4×10−2 (at the 90% confidence level).  相似文献   

10.
The orbit of Intercosmos 13 rocket (1975-22B) has been determined at 103 epochs between 30 April 1975 and 10 April 1980 from almost 7000 observations. One hundred and three values of inclination have been determined and corrections incoporated for the effects due to zonal harmonic, lunisolar and tesseral harmonic perturbations, precession, and solid Earth tides. The modified data have been analysed to yield values of the atmospheric rotation rate, Λ rev day−1, viz. Λ = 0.94 ± 0.10 at an average height of 322 ± 6 km and Λ = 1.27 ± 0.02 at 288 km. Analysis of the inclination near 14th-order resonance has indicated lumped harmonic values 109 1.01.4 = − 76.13 ± 12.47, 109 1,014 = − 29.89 ± 32.64, 109 −1.214 = − 63.11 ± 15.44 109 −1.214 = − 32.52 ± 26.96, for inclination 82.952°.  相似文献   

11.
The diffused gamma halo around our Galaxy recently discovered by EGRET could be produced by annihilations of heavy relic neutrinos N (of fourth generation), whose mass is within a narrow range (MZ/2<mN<MZ). Neutrino annihilation in the halo may lead to either ultrarelativistic electron pairs whose Inverse Compton Scattering on infrared and optical galactic photons could be the source of observed GeV gamma rays, or prompt 100 MeV–1 GeV photons (due to neutral pion secondaries) born by reactions. The consequent gamma flux (10−7–10−6 cm−2 s−1 sr−1) is well comparable to the EGRET observed one, and it is also compatible with the narrow window of neutrino mass 45 GeV <mN<50 GeV, recently required to explain the underground DAMA signals.The presence of heavy neutrinos of fourth generation do not contribute much to solve the dark matter problem of the Universe, but may be easily detectable by outcoming LEP II data.  相似文献   

12.
A numerical analysis of cyclotron instabilities is carried out by computing the dispersion relation for a three component cold plasma-beam system. Rates of growth and damping for various values of the stream density are calculated from the dispersion relation. The rates of growth and damping increase monotonically as the number density of the proton stream increases. It is found that the frequencies at the rates of maximum growth and the damping decrease slightly to lower frequencies and a sharp peak at these frequencies becomes blunt. The minimum e-folding times of an ion cyclotron wave for (a) σs = 10−4, σi = 10−2 and (b) σs = 10−1, σi = 10−2 are about 3·84 and 0·16 sec respectively in the vicinity of the equatorial plane at 6 Re, where σs and σi are the ratios of the beam density Ns and the helium ion (H6+) density Ni to the total positive ions in the plasma-beam system.  相似文献   

13.
Using 1658 normal points of the McDonald lunar ranging data in the period 1971.6–1979.0, I calculated the Earth's rotation curve, and found an offset of −330 × 10−10 for UT1 – UTC. The difference between the UT1 values given by the lunar data and BIH is 3.6 ms. This difference and the standard error of single determinations increase with increasing interval length used in the data reduction. This is shown to be due to the neglect of the secular term in UT1-UTC. It appears that an interval length of 2 days is suitable when calculating the Earth's rotation.  相似文献   

14.
N. Hiotelis   《New Astronomy》2002,7(8):531-539
We present density profiles, that are solutions of the spherical Jeans equation, derived under the following two assumptions: (i) the coarse grained phase-density follows a power-law of radius, ρ/σ3r, and (ii) the velocity anisotropy parameter is given by the relation βa(r)=β1+2β2 (r/r*)/[1+(r/r*)2] where β1, β2 are parameters and r* equals twice the virial radius, rvir, of the system. These assumptions are well motivated by the results of N-body simulations. Density profiles have increasing logarithmic slopes γ, defined by γ=−d ln ρ/d ln r. The values of γ at r=10−2.5rvir, a distance where the systems could be resolved by large N-body simulations, lie in the range 1.0–1.6. These inner values of γ increase for increasing β1 and for increasing concentration of the system. On the other hand, slopes at r=rvir lie in the range 2.42–3.82. A model density profile that fits well the results at radial distances between 10−3rvir and rvir and connects kinematic and structural characteristics of spherical systems is described.  相似文献   

15.
A model of planetary neutral and ion-exospheres in the solar wind is formulated for weak or lunar like solar-wind interaction with a planet. The neutral exosphere model allows for density and temperature variations and for rotation at the exobase. The ion-exosphere is produced by ionization of the neutral exosphere in the solar wind and its density distribution is obtained by solving the continuity equation in the drift approximation. Applying to Mercury a surface temperature distribution inferred from infra-red data and a vanishing bound neutral flux at the base, He and He+ density distributions are found. When the He atmosphere of Mercury is due entirely to the surface bombardment by solar wind He++, the resulting He+ density is found to vary from 1.5 × 10−1 to 10−3 cm−3 over the range 1.5–5 planetocentric radii on the dayside. These densities are found to be detectable by typical solar-wind plasma instruments. The possible effects of cyclotron-resonant scattering by interplanetary magnetic field fluctuations are examined and shown to be negligible. An electromagnetic plasma instability, triggered by the birth of ions in the exosphere, is shown to be important for the thermalization of the energy mode transverse to the interplanetary magnetic field, allowing more ions to be detected by solar-wind ion probes.  相似文献   

16.
First generation stars are the oldest stars that were formed in post-big bang, primitive gas, containing no elements heavier than carbon, with ages greater than 14 Gyr and having undergone no evolution so far. Observations over a long time have confirmed that, up to now, no stars with zero metallicity ([Fe/H]) or with [Fe/H]≤ −6 have been found in the Galaxy. To explain this absence, we shall make a theoretical calculation of the probability of detecting first generation stars using Tsuiimoto et al.'s model of chemical evolution of the galactic halo and assuming an initial mass function of the Miller-Scalo form. We use all the observational data on the halo stars to constrain the parameters. Our result is that, if the mass of the cloud that formed the stars is 106–107 M, then the probability of detecting first generation stars is 6.14×10−4–6.14×10−5.  相似文献   

17.
It is found that the mass loss rate derived from S25/S12 is generally greater than that from the OH flux. This suggests an increasing loss rate with time. It is found that the gas-to-dust ratio decreases during the evolution Of OH/IR stars. An empirical relation between the gas-to-dust ratio and the dust mass loss rate is derived, leading to a formula for calculating the total mass loss rate directly from the IRAS 60 μm flux. OH/IR stars with silicate emission have a larger range of mass loss ratio, from 10−7 to 10−5 M/yr; those with silicate absorption, a smaller range between 10−5 and 10−4 M/yr. So a large increase in the mass loss rate takes place during the emission phase.  相似文献   

18.
Continuous observations of the amplitude and spectrum of naturally occurring radiation in the band 2–40 kc/s have been made during the period June to December 1958 near Sydney, Australia. A large number of isolated noise bursts lasting for some hours were detected. The intensity ranged from 6 × l0−19 to 6×10-17W m−2 (c/s)−1 at 4·6 kc/s. Three main types of bursts were identified and classified on a basis of their spectra which usually extended from 3 to 5 kc/s, 4 to 8 kc/s and 2 to 30 kc/s, respectively. Major bursts, which were always of the latter two types, were clearly associated with strong auroral and magnetic activity and some showed a reproducible sequence of amplitude variation lasting about 36 hours. On three occasions, a detailed correspondence between the intensity of the noise and of simultaneously occurring red oxygen airglow was observed. Theories of the origin of the noise are discussed.  相似文献   

19.
Any early Universe phase transition occurring after inflation has the potential to populate the Universe with relic magnetic monopoles. Observations of galactic magnetic fields, as well as observations matched with models for extragalactic magnetic fields, lead to the conclusion that monopoles of mass 1015 GeV are accelerated in these fields to relativistic velocities. We explore the possible signatures of a cosmic flux of relativistic monopoles impinging on the Earth. The electromagnetically induced signatures of monopoles are reliable. The hadronically induced signatures are highly model-dependent. Among our findings are (i) the electromagnetic energy losses of monopoles continuously initiate a protracted shower of small intensity; (ii) monopoles may traverse the Earth’s diameter, making them a probe of the Earth’s interior structure; (iii) in addition to the direct monopole Cherenkov signal presently employed, a very attractive search strategy for monopoles is detection of their coherent radio-Cherenkov signal produced by the charge-excess in the e+–e shower––in fact, Cherenkov-detectors have the potential to discover a monopole flux (or limit it) several orders of magnitude below the theoretical Parker limit of 10−15 cm−2 s−1 sr−1; (iv) it is conceivable (but not compelling) that bound states of colored monopoles may be the primary particles initiating the air showers observed above the GZK cutoff.  相似文献   

20.
We discuss the capability of ‘100 GeV’ class imaging atmospheric Cherenkov telescope (IACT) arrays as future powerful instruments of ground-based gamma-ray astronomy. It is assumed that the array is gathered from individually triggered quadrangular 4-IACT ‘cells’ with a linear size of about 100 m. The multi-cell concept allows coverage of large detection areas economically, and at the same time the effective exploitation of the stereoscopic approach of determination of the shower parameters using information obtained by several IACTs simultaneously. Determination of arrival directions of γ-ray primaries on an event-by-event basis with accuracy δθ ≤ 0.1° combined with high suppression efficiency (at both the hardware and software levels) of the background hadronic showers by a factor of ≈ 103, and large, up to 1 km2 collection areas, can provide minimum detectable energy fluxes of ≥ 100 GeV γ-rays from point sources down to 10−13 erg/cm2 s which is about 3 orders of magnitude lower than the current sensitivities achieved by the satellite-borne detectors at MeV and GeV energies. High sensitivities of multi-IACT arrays would partially compensate the limited efficiency of the technique for all-sky surveys, as well as allow study of moderately extended (≤ 1°) γ-ray sources. IACT arrays with minimum detectable fluence of ≥ 100 GeV γ-rays Sγ < 10−8 erg/cm2 are well suited for effective exploration of highly sporadic nonthermal phenomena from different classes of astrophysical objects on time-scales from ≤ 1 s to several minutes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号