首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A four month study of a man-made lake used for hydroelectric power generation in northeastern Pennsylvania USA was conducted to investigate seasonal anoxia and the effects of sulfide species being transported downstream of the power generation equipment. Water column analyses show that the system is iron-rich compared to sulfide. Total Fe(II) concentrations in the hypolimnion are typically at least twice the total sulfide levels. In situ voltammetric analyses show that free Fe(II) as [Fe(H2O)6]2+ or free H2S as H2S/HS- are either not present or at trace levels and that iron-rich sulfide complexes are present. From the in situ data and total Fe(II) and H2S measurements, we infer that these iron-rich sulfide complexes may have stoichiometries such as Fe2SH3+ (or polymeric forms of this and other stoichiometries). These iron-rich sulfide complexes appear related to dissolution of the iron-rich FeS mineral, mackinawite, because IAP calculations on data from discrete bottle samples obtained from bottom waters are similar to the pKsp of mackinawite. Soluble iron-sulfide species are stable in the absence of O2 (both in lake waters and the pipeline) and transported several miles during power generation. However, iron-sulfide complexes can react with O2 to oxidize sulfide and can also dissociate releasing volatile H2S when the waters containing them are exposed to the atmosphere downstream of the powerplant. Sediment analyses show that the lake is rich in oxidized iron solids (both crystalline and amorphous). Fe concentrations in FeS solids are low (<5 μmole/grdry wt) and the pyrite concentration ranges from about equal to the solid FeS to 30 times the solid FeS concentration. The degree of pyritization is below 0.12 indicating that pyrite formation is limited by free sulfide, which can react with the iron-rich sulfide complexes.  相似文献   

2.
Arsenite sorption on troilite (FeS) and pyrite (FeS2)   总被引:4,自引:0,他引:4  
Arsenic is a toxic metalloid whose mobility and availability are largely controlled by sorption on sulfide minerals in anoxic environments. Accordingly, we investigated reactions of As(III) with iron sulfide (FeS) and pyrite (FeS2) as a function of total arsenic concentration, suspension density, sulfide concentration, pH, and ionic strength. Arsenite partitioned strongly on both FeS and FeS2 under a range of conditions and conformed to a Langmuir isotherm at low surface coverages; a calculated site density of near 2.6 and 3.7 sites/nm2 for FeS and FeS2, respectively, was obtained. Arsenite sorbed most strongly at elevated pH (>5 to 6). Although solution data suggested the formation of surface precipitates only at elevated solution concentrations, surface precipitates were identified using X-ray absorption spectroscopy (XAS) at all coverages. Sorbed As was coordinated to both sulfur [d(As-S) = 2.35 Å] and iron [d(As-Fe) = 2.40 Å], characteristic of As coordination in arsenopyrite (FeAsS). The absorption edge of sorbed As was also shifted relative to arsenite and orpiment (As2S3), revealing As(III) reduction and a complete change in As local structure. Arsenic reduction was accompanied by oxidation of both surface S and Fe(II); the FeAsS-like surface precipitate was also susceptible to oxidation, possibly influencing the stability of As sorbed to sulfide minerals in the environment. Sulfide additions inhibit sorption despite the formation of a sulfide phase, suggesting that precipitation of arsenic sulfide is not occurring. Surface precipitation of As on FeS and FeS2 supports the observed correlation of arsenic and pyrite and other iron sulfides in anoxic sediments.  相似文献   

3.
Four cores of anoxic sediments were collected from the Seine estuary to assess the early diagenesis pathways leading to the formation of previously reactive phase. Pore waters were analyzed for dissolved iron (Fe) and manganese (Mn) and different ligands (e.g., sulfate, chloride, total inorganic carbon). The anoxic zone is present up to the first centimeter depth, in these conditions the reduction of Mn and Fe oxides and SO4 2− was verified. The sulfate reduction was well established with a subsequent carbon mineralization in the NORMAI94 core. The chemical speciation of Mn and Fe in the dissolved and solid phases was determined. For the dissolved phase, thermodynamic calculations were used to characterize and illustrate the importance of carbonate and phosphate phases as sinks for Fe and Mn. The ion activity product (IAP) of Fe and Mn species was compared to the solubility products (Ks) of these species. In the solid phase, the presence of higher concentration of calcium carbonate in the Seine sediments is an important factor controlling Mn cycle. The carbonate-bound Mn can reach more than 75% of the total concentration. This result is confirmed by the use of electron spin resonance (ESR) spectroscopy. The reduction of Fe is closely coupled to the sulfate reduction by the formation of new solid phases such as FeS and FeS2, which can be regarded as temporal sinks for sulfides. These forms were quantified in all cores as acid volatile sulfide (AVS: FeS+ free sulfide) and chromium reducible sulfide (CRS: FeS2+elemental sulfur S0).  相似文献   

4.
Despite the common belief that AuI complexes with hydrogen sulfide ligands (H2S/HS) are the major carriers of gold in natural hydrothermal fluids, their identity, structure and stability are still subjects of debate. Here we present the first in situ measurement, using X-ray absorption fine structure (XAFS) spectroscopy, of the stability and structure of aqueous AuI–S complexes at temperatures and pressures (T–P) typical of natural sulfur-rich ore-forming fluids. The solubility of native gold and the local atomic structure around the dissolved metal in S–NaOH–Na2SO4–H2SO4 aqueous solutions were characterized at temperatures 200–450 °C and pressures 300–600 bar using an X-ray cell that allows simultaneous measurement of the absolute concentration of the absorbing atom (Au) and its local atomic environment in the fluid phase. Structural and solubility data obtained from XAFS spectra, combined with quantum-chemical calculations of species geometries, show that gold bis(hydrogensulfide) Au(HS)2 is the dominant Au species in neutral-to-basic solutions (5.5  pH  8.5; H2O–S–NaOH) over a wide range of sulfur concentrations (0.2 < ΣS < 3.6 mol/kg), in agreement with previous solubility studies. Our results provide the first direct determination of this species structure, in which two sulfur atoms are in a linear geometry around AuI at an average distance of 2.29 ± 0.01 Å. At acidic conditions (1.5  pH  5.0; H2O–S–Na2SO4–H2SO4), the Au atomic environment determined by XAFS is similar to that in neutral solutions. These findings, together with measured high Au solubilities, are inconsistent with the predominance of the gold hydrogensulfide Au(HS)0 complex suggested by recent solubility studies. Our spectroscopic data and quantum-chemical calculations imply the formation of species composed of linear S–Au–S moieties, like the neutral [H2S–Au–SH] complex. This species may account for the elevated Au solubilities in acidic fluids and vapors with H2S concentrations higher than 0.1–0.2 mol/kg. However, because of the complex sulfur speciation in acidic solutions that involves sulfite, thiosulfate and polysulfide species, the formation of AuI complexes with these ligands (e.g., AuHS(SO2)0, Au(HS2O3)2, Au(HSn)2) cannot be ruled out. The existence of such species may significantly enhance Au transport by high T–P acidic ore-forming fluids and vapors, responsible for the formation of a major part of the gold resources on Earth.  相似文献   

5.
Groundwater and sediment samples (∼ 1 m depth) at sites representative of different groundwater pathways were collected to determine the aqueous speciation of sulfur and the fractionation of sulfur isotopes in aqueous and solid phases. In addition, selected sediment samples at 5 depths (from oxic to anoxic layers) were collected to investigate the processes controlling sulfur biogeochemistry in sedimentary layers. Pyrite was the dominant sulfur-bearing phase in the capillary fringe and groundwater zones where anoxic conditions are found. Low concentrations of pyrite (< 5.9 g kg− 1) coupled with high concentrations of dissolved sulfide (4.81 to 134.7 mg L− 1) and low concentrations of dissolved Fe (generally < 1 mg L− 1) and reducible solid-phase Fe indicate that availability of reactive Fe limits pyrite formation. The relative uniformity of down-core isotopic trends for sulfur-bearing mineral phases in the sedimentary layers suggests that sulfate reduction does not result in significant sulfate depletion in the sediment. Sulfate availability in the deeper sediments may be enhanced by convective vertical mixing between upper and lower sedimentary layers due to evaporative concentration. The large isotope fractionation between dissolved sulfate and sedimentary sulfides at Owens Lake provides evidence for initial fractionation from bacterial sulfate reduction and additional fractionation generated by sulfide oxidation followed by disproportionation of intermediate oxidation state sulfur compounds. The high salinity in the Owens Lake brines may be a factor controlling sulfate reduction and disproportionation in hypersaline conditions and results in relatively constant values for isotope fractionation between dissolved sulfate and total reduced sulfur.  相似文献   

6.
The biogeochemistry of iron sulfide minerals in the water column of the Cariaco Basin was investigated in November 2007 (non-upwelling season) and May 2008 (upwelling season) as part of the on-going CARIACO (CArbon Retention In A Colored Ocean) time series project. The concentrations of particulate sulfur species, specifically acid volatile sulfur (AVS), greigite, pyrite, and particulate elemental sulfur, were determined at high resolution near the O2/H2S interface. In November 2007, AVS was low throughout the water column, with the highest concentration at the depth where sulfide was first detected (260 m) and with a second peak at 500 m. Greigite, pyrite, and particulate elemental sulfur showed distinct concentration maxima near the interface. In May 2008, AVS was not detected in the water column. Maxima for greigite, pyrite, and particulate elemental sulfur were again observed near the interface. We also studied the iron sulfide flux using sediment trap materials collected at the Cariaco station. Pyrite comprised 0.2-0.4% of the total particulate flux in the anoxic water column, with a flux of 0.5-1.6 mg S m−2 d−1.Consistent with the water column concentration profiles for iron sulfide minerals, the sulfur isotope composition of particulate sulfur found in deep anoxic traps was similar to that of dissolved sulfide near the O2/H2S interface. We conclude that pyrite is formed mainly within the redoxcline where sulfur cycling imparts a distinct isotopic signature compared to dissolved sulfide in the deep anoxic water. This conclusion is consistent with our previous study of sulfur species and chemoautotrophic production, which suggests that reaction of sulfide with reactive iron is an important pathway for sulfide oxidation and sulfur intermediate formation near the interface. Pyrite and elemental sulfur distributions favor a pathway of pyrite formation via the reaction of FeS with polysulfides or particulate elemental sulfur near the interface. A comparison of thermodynamic predictions with actual concentration profiles for iron sulfides leads us to argue that microbes may mediate this precipitation.  相似文献   

7.
A complete analysis of a sulfide rich water from a sedimentary area has been achieved. The formation of metastable sulfur species (polysulfide ions, colloidal sulfur and thiosulfate) is very important. The relative concentrations of the sulfur species is controlled by bacterial processes (Desulfovibrio and Thiobacteriaceae). Electrochemical measurements and results of the analyses are in agreement. A possible repartition of polysulfide ions is S2?6 ≈- S2?5 >S2?4. This repartition, although out of equilibrium, is characteristic of the processes leading to the formation of the metastable sulfur species.The water is in equilibrium with amorphous FeS formation. When sulfide, polysulfide and thiosulfate complexing of trace metals Cu, Cd and Pb is taken into account, an agreement is reached between their concentrations in water and their concentrations in the FeS precipitate.  相似文献   

8.
The interaction of water and sulfide minerals yields dissolved species which can be utilized to trace back the presence of sulfide minerals and associated minerals. Computer modeling and laboratory and field results show that the most characteristic dissolved species are hydrogen sulfide (H2S, HS), polysulfide ions (Sn2−) and thiosulfate (S2O32−), derived from the hydrolysis of sulfide minerals. Typical concentration ranges are: 10−5 – 10−7 mole/l for hydrogen sulfide, 10−6 – 10−9 mole/l for polysulfides and 10−5 – 10−8 mole/l for thiosulfate. The chemical reactivity of these species at contact with air makes them difficult to assess unless determined immediately after sampling.These sulfur species can be determined rapidly and accurately in field conditions by simultaneous titration with mercuric chloride employing an Ag/Ag2S electrode for the determination of the end points.The application to ore exploration is exemplified by the results of the research on roll-type uranium deposits in the southwest of France.  相似文献   

9.
The isotopic composition of Fe was determined in water, Fe-oxides and sulfides from the Tinto and Odiel Basins (South West Spain). As a consequence of sulfide oxidation in mine tailings both rivers are acidic (1.45 < pH < 3.85) and display high concentrations of dissolved Fe (up to 420 mmol l− 1) and sulphates (up to 1190 mmol l− 1).The δ56Fe of pyrite-rich samples from the Rio Tinto and from the Tharsis mine ranged from − 0.56 ± 0.08‰ to + 0.25 ± 0.1‰. δ56Fe values for Fe-oxides precipitates that currently form in the riverbed varied from − 1.98 ± 0.10‰ to 1.57 ± 0.08‰. Comparatively narrower ranges of values (− 0.18 ± 0.08‰ and + 0.21 ± 0.14‰) were observed in their fossil analogues from the Pliocene–Pleistocene and in samples from the Gossan (the oxidized layer that formed through exposure to oxygen of the massive sulfide deposits) (− 0.36 ± 0.12‰ to 0.82 ± 0.07‰). In water, δ56Fe values ranged from − 1.76 ± 0.10‰ to + 0.43 ± 0.05‰.At the source of the Tinto River, fractionation between aqueous Fe(III) and pyrite from the tailings was less than would be expected from a simple pyrite oxidation process. Similarly, the isotopic composition of Gossan oxides and that of pyrite was different from what would be expected from pyrite oxidation. In rivers, the precipitation of Fe-oxides (mainly jarosite and schwertmannite and lesser amounts of goethite) from water containing mainly (more than 99%) Fe(III) with concentrations up to 372 mmol l− 1 causes variable fractionation between the solid and the aqueous phase (− 0.98‰ < Δ56Fesolid–water < 2.25‰). The significant magnitude of the positive fractionation factor observed in several Fe(III) dominated water may be related to the precipitation of Fe(III) sulphates containing phases.  相似文献   

10.
Voltammetric methods using direct insertion of a gold-amalgam microelectrode with a sensitive, computercontrolled voltammeter detected soluble iron(II) sulfide, [FeS]aq, in the porewaters of anoxic, sulfidic, fine-grained sediments from the Loughor Estuary, Wales. The voltammetric results are reproducible. Studies of cores stored in sealed, refrigerated containers for up to 21 d reveal no measurable oxidation. [FeS]aq forms in this estuarine environment as a result of the dissolution of amorphous FeS, and appears to be involved in the formation of pyrite. [FeS]aq makes no significant contribution to the total sulfide and iron contents of the sediment but could constitute an important component of the dissolved Fe(II) and S(−II) contents of the porewater. Mass balance calculations show pyrite forms in this system by the addition of sulfur to FeS rather than by the loss of iron from FeS. The overall process appears to involve [FeS]aq as an intermediary. Although the porewaters of the Loughor Estuary sediments are iron-rich relative to seawater, the iron sulfide-forming process is iron-limited rather than sulfide-limited. Reactive iron is bound to sulfide rapidly in the sediment. After the reactive iron is bound to sulfide, additional sulfide produced is fixed as pyrite.  相似文献   

11.
《Chemical Geology》2007,236(3-4):217-227
The association of arsenate, As(V), and arsenite, As(III), with disordered mackinawite, FeS, was studied in sulfide-limited (Fe:S = 1:1) and excess-sulfide (Fe:S = 1:2) batch experiments. In the absence of arsenic, the sulfide-limited experiments produce disordered mackinawite while the excess-sulfide experiments yield pyrite with trace amounts of mackinawite. With increasing initially added As(V) concentrations the transformation of FeS to mackinawite and pyrite is retarded. At S:As = 1:1 and 2:1, elemental sulfur and green rust are the end products. As(V) oxidizes S(-II) in FeS and (or) in solution to S(0), and Fe(II) in the solid phase to Fe(III). Increasing initially added As(III) concentrations inhibit the transformation of FeS to mackinawite and pyrite and no oxidation products of FeS or sulfide, other than pyrite, were observed. At low arsenic concentrations, sorption onto the FeS surface may be the reaction controlling the uptake of arsenic into the solid phase. Inhibition of iron(II) sulfide transformations due to arsenic sorption suggests that the sorption sites are crucial not only as sorption sites, but also in iron(II) sulfide transformation mechanisms.  相似文献   

12.
A laboratory-based assessment of copper remobilization from Cu-rich mine tailings exposed to anoxic, sulfide rich waters was performed. The results from incubation experiments, conducted over a 20 day period, were compared to thermodynamic modelling calculations of copper speciation in sulfidic waters. The tailings materials were observed to react rapidly with added sulfide, consuming 159 μmol HS g−1 (dry wt) within a 24 h period. The consumption of sulfide was attributed to a two stage process involving the reduction of Fe-hydroxy phases by sulfide followed by reaction with available Fe2+ and Cu2+ resulting in the formation Fe- and Cu-sulfide phases. During incubation experiments, the dissolved copper concentrations in the absence of sulfide were approximately 0.31 μmol l−1, whereas in the presence of sulfide (0.5–5 mM) concentrations were typically 0.24 μmol l−1. The experiments did not indicate enhanced solubility owing to the formation of soluble copper sulfide species. The predictions (based on the most recent thermodynamic data for aqueous Cu-sulfide and Cu-polysulfide species) did not accurately explain the laboratory observations. Model predictions were greatly influenced by the assumptions made about the oxidation state of copper under anoxic conditions and the solid sulfide phase controlling copper solubility. The study emphasizes the limitations of modelling copper speciation in sulfidic waters and the need for laboratory or field verification of predictions.  相似文献   

13.
Spatial variation in salinity, pH, redox potential, and in the concentrations of dissolved Mn, Fe2+ and sulphides in pore water were investigated in a mangrove system in the state of São Paulo (Brazil). Total organic C (TOC), S, Fe and Mn were analyzed in the solid phase, along with acid volatile sulphide (AVS), density of roots and percentage of sand. Five zones, situated along the length of a 180 m transect were considered in the study. Four of these were colonized by different species of vascular plants (Spartina, Laguncularia, Avicennia and Rhizophora) and were denominated soils; the other was not colonized by vegetation, and was denominated sediment. The results indicated important differences between the physicochemical conditions of the pore water in the vegetated zones and the sediment. In the former, two geochemical environments were identified, based on soil depths. The upper 20 cm contained the largest quantity of roots, and the conditions were oxic (Eh > 350 mV) or suboxic (Eh: 100–350 mV), acidic, and with high concentrations of Fe and Mn in the pore water. Below this depth, the soil became anoxic, the concentration of sulphides (HS) increased significantly and the concentrations of dissolved Fe and Mn decreased significantly. The total S and the AVS fraction increased with depth, while TOC concentrations decreased, indicating that the decreases in Fe and Mn were due to the precipitation of metal sulphides. However, clear differences among the vegetated zones were not observed. The sediment was always anoxic, but with low concentrations of sulphide in the interstitial water, and was neutral or slightly alkaline. As in the soils, the concentrations of sulphides and total S increased significantly with depth, indicating that the conditions favoured the synthesis and stability of metal sulphides.  相似文献   

14.
Pyrite (FeS2) and iron monosulfide (FeS) play a central role in the sulfur and iron cycles of marine sediments. They may be buried in the sediment or oxidized by O2 after transport by bioturbation to the sediment surface. FeS2 and FeS may also be oxidized within the anoxic sediment in which NO3, Fe(III) oxides, or MnO2 are available as potential electron acceptors. In chemical experiments, FeS2 and FeS were oxidized by MnO2 but not with NO3 or amorphous Fe(III) oxide (Schippers and Jørgensen, 2001). Here we also show that in experiments with anoxic sediment slurries, a dissolution of tracer-marked 55FeS2 occurred with MnO2 but not with NO3 or amorphous Fe(III) oxide as electron acceptor. To study a thermodynamically possible anaerobic microbial FeS2 and FeS oxidation with NO3 or amorphous Fe(III) oxide as electron acceptor, more than 300 assays were inoculated with material from several marine sediments and incubated at different temperatures for > 1 yr. Bacteria could not be enriched with FeS2 as substrate or with FeS and amorphous Fe(III) oxide. With FeS and NO3, 14 enrichments were obtained. One of these enrichments was further cultivated anaerobically with Fe2+ and S0 as substrates and NO3 as electron acceptor, in the presence of 55FeS2, to test for co-oxidation of FeS2, but an anaerobic microbial dissolution of 55FeS2 could not been detected. FeS2 and FeS were not oxidized by amorphous Fe(III) oxide in the presence of Fe-complexing organic compounds in a carbonate-buffered solution at pH 8. Despite many different experiments, an anaerobic microbial dissolution of FeS2 could not be detected; thus, we conclude that this process does not have a significant role in marine sediments. FeS can be oxidized microbially with NO3 as electron acceptor. O2 and MnO2, but not NO3 or amorphous Fe(III) oxide, are chemical oxidants for both FeS2 and FeS.  相似文献   

15.
The biogeochemistry of sedimentary sulfur was investigated on the continental shelf off central Chile at water depths between 24 and 88 m under partial influence of an oxygen minimum zone. Dissolved and solid iron and sulfur species, including the sulfur intermediates sulfite, thiosulfate, and elemental sulfur, were analyzed at high resolution in the top 20 cm. All stations were characterized by high rates of sulfate reduction, but only the sediments within the Bay of Concepción contained dissolved sulfide. Due to advection and/or in-situ reoxidation of sulfide, dissolved sulfate was close to bottom water values. Whereas the concentrations of sulfite and thiosulfate were mostly in the submicromolar range, elemental sulfur was by far the dominant sulfur intermediate. Although the large nitrate- and sulfur-storing bacteria Thioploca were abundant, the major part of S0 was located extracellularly. The distribution of sulfur species and dissolved iron suggests the reaction of sulfide with FeOOH as an important pathway for sulfide oxidation and sulfur intermediate formation. This is in agreement with the sulfur isotope composition of co-existing elemental sulfur and iron monosulfides. In the Bay of Concepción, sulfur isotope data suggest that pyrite formation proceeds via the reaction of FeS with polysulfides or H2S. At the shelf stations, on the other hand, pyrite was significantly depleted in 34S relative to its potential precursors FeS and S0. Isotope mass balance considerations suggest further that pyritization at depth includes light sulfide, potentially originating from bacterial sulfur disproportionation. The δ34S-values of pyrite down to −38‰ vs. V-CDT are among the lightest found in organic-rich marine sediments. Seasonal variations in the sulfur isotope composition of dissolved sulfate indicated a dynamic non-steady-state sulfur cycle in the surface sediments. The 18O content of porewater sulfate increased with depth at all sites compared to the bottom water composition due to intracellular isotope exchange reactions during microbial sulfur transformations.  相似文献   

16.
Organic sulfur in marine sediment is 34S enriched relative to the co-existing pyrite. This phenomenon is still enigmatic. Timing of the sulfur incorporation, immobilization and different sulfur species involved are part of the explanations. The reduced sulfur species incorporation into organic matter (OM) is generally assumed to have negligible δ34S fractionation. This assumption has never been confirmed by laboratory experimental data. The present study measures the δ34S changes resulting from reduced sulfur species (sulfides and polysulfide anions) incorporation into organic model compounds in an aquatic and low temperature (25 °C) system that simulates diagenetic marine environment. In addition, we also investigate the δ34S fractionation and the isotope chemical mixing in the formation of polysulfide anions produced from elemental sulfur and sulfide anions. The results showed total isotope mixing between the two species in the formation of polysulfides. Acidification of the polysulfides solution caused δ34S fractionation between the released elemental sulfur and H2S. The incorporation of polysulfides and sulfides into carbonyl groups, caused 34S enrichment relative to the starting polysulfides and sulfide of 4–5‰. The 34S enrichment of the sulfurized carbonyl groups showed a minimal effect by temperature (0–70 °C) and is not affected by salinity, polysulfides composition, reaction time or solubility in water. The incorporation of polysulfides and sulfides into brominated organic compounds was negligibly 34S enriched. The chemical mechanisms controlling the polysulfides incorporation into OM depend mostly on the functional groups and determine the 34S enrichment of the sulfurized OM. The results presented in this study can explain part of the difference between pyrite δ34S and sulfurized OM δ34S in natural marine sediments.  相似文献   

17.
The balance between physicochemical processes, influencing vertical and temporal distributions of metal compounds in one relatively isolated anoxic environment, constitutes the objective of the present work. Ion activity product (IAP) was calculated for manganese and iron sulfides, in order to define the metal sulfide forms that control Fe and Mn solubility in the bottom waters of anoxic lagoons. Iron solubility depended on amorphous FeS formation, while manganese sulfides were a minor component in a solid solution lowering its solid-phase activity. A theoretical physicochemical model was developed for the iron speciation, based on experimental pH and redox potential data. A very good match was achieved for the measured and the theoretical total dissolved iron, at all depths. The dominance of oxidant iron species Fe(OH) 3 ? in the surface waters and their sequence by FeSH+ and FeSaq in the deeper layers brings out the influence of physicochemical parameters (dissolved oxygen, sulfide, pH and Eh) in vertical distribution of dissolved metal species, in anoxic/hypoxic basins. Based on these findings, we can conclude that the distribution of manganese and iron is of special interest, not only because these are the indicators of redox conditions but also for the role of their oxidized/reduced forms in the formation of the biogeochemical structure of redox zone.  相似文献   

18.
Over a period of a year, Hg0-reactive, total reduced sulfur species (RSST), as well as a non-volatile fraction that cannot be gas-stripped at pH ∼2 (RSSNV), have been measured by voltammetry in a stratified, saline lake. In the hypolimnion, RSST is dominated by unusually high (up to 5 mM) dissolved divalent sulfur (S−II), present as H2S + HS and as inorganic polysulfides (HxSnx−2). Less abundant RSSNV is attributed to dissolved zero-valent sulfur (S0) in inorganic polysulfides. Assuming negligible contribution of organic S0 species in the hypolimnion, the equilibrium distribution of polysulfide ions is calculated; S52− is found to predominate. In the epilimnion, all RSST consists of RSSNV within analytical uncertainty. Through spring and summer, RSST and RSSNV display little vertical or seasonal variation, but they increase dramatically when stratification breaks down in autumn. Based on decay rate, RSS during mixing events is attributed to dissolved S8 from oxidation of sulfide and decomposition of inorganic polysulfides. This hypothesis quantitatively predicts precipitation of elemental sulfur in a year when colloidal sulfur was observed and predicts no precipitation in a year when it was not observed. Except during mixing events, the entire water column is undersaturated with respect to both rhombic sulfur and biologic sulfur, and the limited variations of RSS exclude hydrophobic and volatile aqueous S8 as a major species. During such periods, RSS (typically 8 nM) may be associated with organic carbon, perhaps as adsorbed S8 or as covalently bound polysulfanes or polysulfides. The hypolimnion is viewed as a zero-valent sulfur reactor that creates S0-containing, dissolved organic macromolecules during stable stratification periods. Some are sufficiently degradation-resistant and hydrophilic to be dispersed throughout the lake during mixing events, subsequently giving rise to ∼10−8 M RSS in the oxic water column. Voltammetrically determined RSS in oxic natural waters has often been described as “sulfide” or “metal complexed sulfide”, implying an oxidation state of S−II; we argue that RSS in oxic Rogoznica Lake waters is mainly S0.  相似文献   

19.
Keilite (Fe>0.5,Mg<0.5)S, the iron-dominant cubic analog of niningerite, (Mg>0.5,Fe<0.5)S, occurs in enstatite chondrites [Shimizu, M., Yoshida, H., Mandarino, J.A., 2002. The new mineral species keilite, (Fe,Mg)S, the iron-dominant analog of niningerite. Can. Mineral. 40, 1687–1692]. I find that keilite occurs only in enstatite chondrite impact-melt rocks and impact-melt breccias. Based on the phase relations in the system MgS–MnS–CaS–FeS [Skinner, B.J., Luce, F.D., 1971. Solid solutions of the type (Ca,Mg,Mn,Fe)S and their use as geothermometers for the enstatite chondrites. Am. Mineral. 56, 1269–1296], I conclude that keilite formed from niningerite or alabandite (Mn>0.5,Fe<0.5)S by reaction with troilite (FeS) at elevated temperatures of well above 500 °C (the lowest equilibration temperature of keilite), but it is likely that the maximum temperatures during melting experienced by keilite-bearing impact-melt rocks and impact-melt breccias were considerably higher, perhaps >1500 °C, as indicted by the occurrence of euhedral enstatite that formed from a melt [McCoy, T.J., Dickinson, T.L., Lofgren, G.E., 1999. Partial melting of the Indarch (EH4) meteorite: a textural, chemical, and phase relations view of melting and melt migration. Meteorit. Planet. Sci. 34, 735–746]. Based on the classifications of the keilite-bearing meteorites as impact-melt rocks and impact-melt breccias and my own textural observations, I conclude that this elevated temperature was reached as a result of impact and not internal heating and melting, followed by fast cooling, thus, quenching in keilite. Enstatite chondrite impact-melt rocks and impact-melt breccias that do not contain keilite may have been more deeply buried after impact and, hence, cooled slowly and were annealed so that FeS exsolved from keilite, concomitant with the formation of niningerite, alabandite or various (Mn,Mg,Fe) mixed sulfides.  相似文献   

20.
Contents of inorganic reduced forms of sulfur were determined in the oxygen-bearing waters of saline-soda Lake Doroninskoe. The vertical and annual distributions of individual species and total reduced sulfur have been studied. It was found that oxic zone ubiquitously contains reduced sulfur with contents: HS 0.002–3.86 mg/l, S0 0.002–0.129 mg/l, S0; 4+ 0.014–9.19 mg/l. Oxygen concentrations varied from 0 to 6.8 mg/l. These sulfur compounds show unsystematic vertical distribution, which during transitional season is controlled by intensity of bacterial processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号