首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
采用卷管法进行海底管道铺设过程中,管道首先通过牵引作用上卷于卷筒进行储存。管道与卷筒发生非线性接触,可能会产生复杂的塑性变形和局部屈曲。通过全尺寸柔性管力学性能试验获得柔性管轴力—应变以及弯曲—曲率等非线性力学性能关系,将试验所得的非线性材料性能参数导入建立的两种柔性管上卷ABAQUS有限元模型(梁—实体单元模型与壳和桁架—实体单元模型),实现柔性管较大轴向抗拉刚度和较小抗弯刚度的同步模拟以及管道与卷筒的非线性接触响应特征。通过对比分析两种有限元模型数值模拟得到的管道弯矩、弯曲曲率、管道轴力、管道与卷筒的接触压强等数据,发现在管道上卷过程中管道沿副法线方向的SM3弯矩占据其弯曲变形主导地位;管道与卷筒之间的摩擦效应对于管道轴力的影响较为显著;管道与卷筒的最大接触压强主要发生在卷管过渡段区域。  相似文献   

2.
采用卷管法铺设管道时,管道和铺设设备之间的接触作用十分复杂,并且管道在弯曲过程中将会产生塑性变形并可能发生局部屈曲,导致管道失效。基于有限元模型(FEM)实时模拟卷管法安装的整个过程,研究管道与铺设设备之间的接触作用;分析管道对于环境载荷和船体运动的动态响应;获得管道的应力应变值以校核局部屈曲。研究结果表明,管道弯矩大部分来源于管道与安装设备间的接触作用,而环境载荷及船体运动对管道的弯曲应力影响较小。  相似文献   

3.
Abstract

The deep-water pipeline is the main means of transportation in offshore oil and gas development engineering. The deep-water pipeline may incur lateral global buckling due to the high temperature and pressure that are applied on the pipeline to ensure the contents’ liquidity. With the increasing operating water depth, a higher temperature and pressure are applied to the pipeline, causing large lateral deformation and a large bending moment. Due to the inhomogeneous distribution of the bending moment on the cross-section, different points on the cross-section will deform differently. This kind of deformation causes the cross-section to turn into an oval ring. The cross-section ovalization caused by global buckling was rarely analyzed in former engineering practice since the load is relatively low. With the increase in operation water depth and operation load, the ovality caused by global buckling is noticeable. This article analyzed cross-section ovalization caused by pipeline lateral global buckling with a numerical simulation method. The pipelines with different initial cross-section shapes were simulated, and the influence of several impact factors, including load, pipeline and soil factors on the ovality of the cross-section, were analyzed. The results show that the initial cross-section shape type has little effect on the pipeline ovalization pattern. The initial ovality of the pipeline with an oval ring cross-section shape has little influence on the residual ovality. Among all the factors analyzed in this paper, the pressure difference is the primary factor that should be considered in a pipeline ovalization check.  相似文献   

4.
基于ABAQUS的海底管道静水压溃压力的敏感性分析   总被引:1,自引:0,他引:1  
局部屈曲压溃是海底管道发生稳定性破坏的一种形式,随着管道的刚度相对越来越柔,厚度相对越来越薄,管道发生屈曲压溃的问题也越来越突出。运用ABAQUS有限元分析软件进行管道的非线性屈曲分析,确定不同径厚比、初始椭圆度、轴向拉力和弯矩作用下的管道静水压溃压力,以分析静水压溃压力对这些因素的敏感性。  相似文献   

5.
王慧平  李昕  周晶 《海洋工程》2014,32(5):50-56
初始几何缺陷被认为是影响管道极限承载力和稳定性的重要因素,但是大部分的管道力学特性研究都没有考虑初始缺陷的影响。基于管道几何尺寸测量机,获得管道的壁厚和直径沿轴向以及环向的分布规律。据此建立了四个三维实体有限元模型,分别为完好管道模型、只考虑直径缺陷的管道模型、只考虑壁厚缺陷的管道模型以及考虑所有缺陷的管道模型。分析了初始缺陷对管道的极限内压承载力、极限轴力承载力和极限弯矩承载力的影响。结果表明,直径缺陷对管道的极限内压承载力影响较大;壁厚缺陷对管道在复杂荷载作用下的极限弯矩承载力影响较大。  相似文献   

6.
With the increasing development and utilization of offshore oil and gas resources, global buckling failures of pipelines subjected to high temperature and high pressure are becoming increasingly important. For unburied or semi-buried submarine pipelines, lateral global buckling represents the main form of global buckling. The pipe–soil interaction determines the deformation and stress distribution of buckling pipelines. In this paper, the nonlinear pipe–soil interaction model is introduced into the analysis of pipeline lateral global buckling, a coupling method of PSI elements and the modified RIKS algorithm is proposed to study the lateral global buckling of a pipeline, and the buckling characteristics of submarine pipeline with a single arch symmetric initial imperfection under different pipe–soil interaction models are studied. Research shows that, compared with the ideal elastic–plastic pipe–soil interaction model, when the DNV-RP-F109 model is adopted to simulate the lateral pipe–soil interactions in the lateral global buckling of a pipeline, the buckling amplitude increases, however, the critical buckling force and the initial buckling temperature difference decreases. In the DNV-RP-F109 pipe–soil interaction model, the maximum soil resistance, the residual soil resistance, and the displacement to reach the maximum soil resistance have significant effects on the analysis results of pipeline global buckling.  相似文献   

7.
It is well known that the design of submarine pipelines relies on accurate test results for the local buckling collapse of pipes subjected to bending loading. The present paper analyses apparently anomalous values of axial tensile and compressive strains from recent test results in comparison to the values that would be expected on the basis of simple bending theory. This could have important consequences for the efficacy of the design factors derived using these results. The cause of the differences between the strain values obtained in the tests and those expected on the basis of simple bending theory are explained using finite element modelling. The differences result from the type of collars and supports commonly used in bending tests, the effects of which persist for a greater length along the test pipe than has hitherto been assumed. In general, it is pointed out that the application of the simplified engineering theory of bending can be erroneous when ovalisation is imposed or, on the contrary, the boundary conditions of the section are restrained from ovalising deformations. The influence of the D/t ratio is also analysed.The results contribute to the understanding of a crucial limit state for the design of onshore and offshore pipelines.  相似文献   

8.
温度应力下海底管线的整体屈曲是海底管线设计中的关键问题之一,不埋或半埋的海底管线较易发生水平向整体屈曲。海底管线会因为制造的缺陷或铺设的原因而具有初始变形,即初始侧向变形。研究了初始侧向变形对海底管线整体屈曲的影响,应用小变形理论建立了单拱侧向变形和反对称双拱侧向变形管线发生低阶模态水平向整体屈曲的理论分析方法,结合工程实例分析了初始侧向变形形态、侧向变形幅值以及地基土体强度特性对管线水平向整体屈曲的影响。结果表明,初始侧向变形的存在使管线更易发生整体屈曲;而反对称双拱侧向变形比单拱侧向变形更易引起管线整体屈曲;随初始侧向变形幅值的增加管线发生整体屈曲所需要的温差降低,且整体屈曲变形形态有所改变管土间摩擦系数的增加会提高管线发生整体屈曲的温差,从而提高管线抵抗整体屈曲变形的能力。  相似文献   

9.
Dynamic and quasi-static models for analysis of a pipe lay spread are presented in the paper. Depending on the type of a pipe, spooling it on a big drum (reel) may cause plastic deformations. When the pipe is reeled out at sea, again it undergoes plastic deformations. In order to model such a nonlinear behaviour, a model, which includes both elasto-plastic material characteristics and large deformations, is required. Discretisation of the pipe is performed by means of the Rigid Finite Element Method (RFEM), which allows us to study static and dynamic problems, taking into account required properties of the model. Different sea conditions are simulated and analysed. It is shown how operational conditions can limit the ability of laying operation by a dedicated vessel, due to an unstable system response. The second part of the paper presents an upgrade of a passive reel drive by application of an active drive. In the model used for control applications, the pipe is modelled by a neural network. This allows us to perform a real-time calculations. In this fast-response calculation model, nonlinear aspects of the system are taken into account. The improvements in a pipe laying vessel performance are presented by some results of numerical simulations. The conclusions are also formulated.  相似文献   

10.
Submarine pipelines are the primary component of an offshore oil transportation system. Under operating conditions, a pipeline is subjected to high temperatures and pressures to improve oil mobility. As a result, additional stress accumulates in pipeline sections, which causes global buckling. For an exposed deep-water pipeline, lateral buckling is the major form of this global buckling. Large lateral displacement causes a very high bending moment which may lead to a local buckling failure in the pipe cross-section. This paper proposes a lateral global buckling failure envelope for deep-water HT/HP pipelines using a numerical simulation analysis. It analyzes the factors influencing the envelope, including the thickness t, diameter D, soil resistance coefficient μ, calculating length Lf, imperfection length L and imperfection amplitude V. Equations to calculate the failure envelope are established to make future post-buckling pipeline failure assessment more convenient. The results show that (1) the limit pressure difference pmax (the failure pressure difference for a post-buckling pipeline when it suffers no difference in temperature) is usually below the burst pressure difference pb (which is the largest pressure difference a pipeline can bear and is determined from the strength and sectional dimensions of the pipeline) and is approximately 0.62–0.75 times the value of pb and (2) thickness t has little influence on the normalized envelopes, but affects pmax. The diameter D, soil resistance coefficient μ, and calculating length Lf influence the maximum failure temperature difference Tmax (the failure temperature difference for a pipeline suffering no pressure difference). The diameter D also significantly affects the form of the normalized envelope.  相似文献   

11.
不埋海底管道在高温高压作用下,易发生水平向整体屈曲。实际工程中,常通过在管道路由上设置整体屈曲触发装置,实现对水平向整体屈曲的有效控制,其中以枕木法的成功应用最为多见。本文分析了枕木法的主要影响因素并验证了采用枕木法会出现管道屈曲段应力集中的现象,对比了枕木法、分布浮力法和枕木-浮力耦合法对管道整体屈曲变形规律的影响,采用数值模拟方法系统研究了枕木及浮力参数对管道水平向屈曲和后屈曲的影响规律。研究表明,在枕木两侧设置浮力段的人工触发装置可有效触发管道整体屈曲,同时促使管道虚拟锚固点间轴力的释放,降低了管道中屈曲段的应力,相较枕木法,枕木-浮力耦合法可将管道中的最大应力降低23%。  相似文献   

12.
初始几何缺陷对UOE焊管屈曲压溃影响研究   总被引:1,自引:1,他引:0  
UOE焊管经过一系列成型工艺可以得到高质量的成型结果,但管道截面仍存在一定初始几何缺陷,这将对管道性能产生明显影响。通过试验测定X65钢在循环载荷下的力学性能,并利用有限元分析软件对UOE焊管成型全过程进行模拟,分析主要成型参数对管道屈曲压溃压力的影响。分别采用有限元模拟和试验测量方法确定管道截面初始几何缺陷分布情况,并采用余弦函数形式拟合几何缺陷。结果表明,扩径阶段芯轴数目将对缺陷形式产生影响,且实际厚壁UOE管道几何缺陷形式更接近梨形而非椭圆形。评估厚壁UOE管道性能时,近似认为截面形式为椭圆形可能发生过于保守的问题。  相似文献   

13.
武行  赵海盛  李昕 《海洋工程》2021,39(3):72-82
在深海环境中,海底管线不仅承受较高外压,还会因为海水及运输介质的常年侵蚀而形成腐蚀缺陷,而腐蚀缺陷往往会导致管道的外压承载力下降。基于壳体稳定性理论,建立了含有非对称局部壁厚减薄管道在外压作用下的屈曲压力理论公式。公式具有广泛的适用性,当内、外局部壁厚减薄深度相等时,可用于计算含有对称局部壁厚减薄管道屈曲压力,而当内部或外部缺陷深度为零时,便可用于计算只含外部或者内部腐蚀缺陷的管道屈曲压力。通过有限元分析验证了该公式的正确性,结果表明公式可以准确预测不同缺陷位置及尺寸时管道的屈曲压力。详细研究了局部壁厚减薄缺陷位置、长度和深度等参数对屈曲压力的影响。研究表明,局部腐蚀对管道的屈曲压力产生重要影响,尤其当腐蚀角度和深度较大时,在腐蚀形成初期就会造成管道的承载力急剧下降,并且管道的屈曲压力与缺陷的径向位置有关,腐蚀缺陷位于管道外侧时的屈曲压力明显大于其位于管道内侧时的屈曲压力。  相似文献   

14.
Offshore pipelines operating under high pressure and temperature are subjected to upheaval buckling. Pipeline behaviour in upheaval buckling depends on a number of factors including the shape of pipeline imperfection, installation stresses, loading types, seabed sediment behaviour and the flexural stiffness of the pipe. Current method of predicting upheaval buckling is based on simplified shapes of pipeline imperfection developed for idealized seabed conditions. To account for the effect of internal pressure, the pressure load is represented using an equivalent temperature. However, the applicability of these idealizations on the prediction of upheaval buckling has not been well-investigated. In this paper, the three-dimensional finite element modelling technique is used to investigate the applicability of idealized shapes and their effects on the upheaval buckling of pipeline for a seabed condition at offshore Newfoundland in Canada. The finite element model is then used to conduct a parametric study to investigate the effects of installation stress, loading types, seabed parameters and the flexural stiffness of the pipe. Finally, a design chart is developed to determine the optimum height of seabed features to manage pipeline stability against upheaval buckling under different temperature and pressure loadings.  相似文献   

15.
A study of the elastic-plastic collapse behaviour of long, cylindrical tubes subjected to combined bending and pressure load is presented.Besides the plastic properties of the tube material, the non-linearities accounted for in the analysis cover the Brazier effect and the influence of geometrical imperfections. The imperfections considered are given either by initial ovalization of the tube cross-section or in terms of initial, short-wave axial buckles. Related to ocean pipe laying, i.e. for thick-walled tubes under combined bending and external pressure load, initial ovalization proves to be by far the more severe type of imperfection.  相似文献   

16.
王雷  韩清国 《海岸工程》2000,19(1):12-19
在滩海油田首次进行海底注水管道的铺设、受其结构等因素的影响,其施工工艺及技术性远比海底输出管道更复杂,难度更大。本文介绍了滩海油田海底注水管道的施工工艺,并对接口内防腐技术,底拖法海管拖运技术、海上接口技术及立管吊装技术做了详细的阐述。  相似文献   

17.
Buckle propagation in pipelines with non-uniform thickness   总被引:1,自引:0,他引:1  
Finite element solutions for the steady-state buckle propagation pressure in a pipeline with non-uniform thickness are given. The results are useful in finding buckle propagation pressures in corroded pipelines. It has been found that when corrosion is equal to or less than 10% of the original pipeline thickness, the pipeline collapses in an overall shell buckling mode; otherwise, the pipeline experiences local buckling. The propagation pressure decreases with both the thickness and angular extent of the reduced section, but the rate of decrease with thickness reduction is almost independent of the angular extent of corrosion when it is greater than 90°.  相似文献   

18.
卷管式铺管法在海管铺设中的应用愈发广泛,在铺设作业中管道会发生几何非线性变形,导致出现复杂的力学性能变化。针对管道在上卷、退卷过程中的屈服变化过程,通过弹塑性理论进行分析,推导出管道退卷后残余轴向应力的解析解;随后利用有限元软件ABAQUS建立模型实例,对比解析解与有限元模型,两者的计算结果基本吻合。基于上述有限元模型,研究上卷时的张力和退卷时的后张力对椭圆度、截面轴向应力和剪切应力的影响,并进行敏感性分析。模拟结果表明张力和后张力变化会影响管道截面的变形程度,退卷后截面上残余的轴向应力远高于剪切应力,并且通过敏感性分析,得到了残余椭圆度、残余应力随张力和后张力变化的规律。研究可为卷管铺设过程中张力和后张力的选择提供参考和借鉴。  相似文献   

19.
Modelling of flow around a near-bed pipeline with a spoiler   总被引:1,自引:0,他引:1  
L. Cheng  L. W. Chew 《Ocean Engineering》2003,30(13):1595-1611
Flow around a pipeline with and without a spoiler near a smooth wall is simulated by solving the Navier–Stokes equations. Finite-difference formulation with a second-order upwind scheme in a curvilinear coordinate system is employed. The influences of the spoiler on hydrodynamic forces, pressure distribution, vortex shedding frequency, velocity profile under the pipe, as well as shear stress on the wall are investigated. The attachment of a spoiler significantly increases drag, root-mean-square (RMS) lift, flow through the gap between the pipe and the wall and shear stress on the seabed around the pipe. The spoiler also generates a non-zero mean downward force on the pipeline, which may enhance the self-burial of the pipeline.  相似文献   

20.
Offshore oil and gas exploration are gradually heading toward the deep sea and even the ultra-deep sea. According, the working temperature and pressure intensity of subsea oil and gas pipelines have increased by a considerable degree. This situation is accompanied by the global buckling problem in deep sea pipelines, which has become increasingly common. Meanwhile, ordinary single-layer pipelines cannot last for a long time under harsh deep-sea working conditions. Thus, multilayer pipelines, such as the pipe-in-pipe (PIP) structure and bundled pipelines, have gradually become top choices. However, the global buckling mechanisms of these multilayer pipelines are more complicated than those of single-layer pipelines. The sleeper–snake lay pipeline, which is an active control method for global buckling, was used in this study. The change and development laws of global buckling in a PIP structure at different wavelengths and amplitudes were determined through an experimental study. A dynamic solution method that considers artificial damping was adopted to establish finite element global buckling models of a PIP structure with initial imperfections. The effects of various factors, such as pipeline laying shape, sleeper–pipe function, and seabed–pipe function, on global buckling were analyzed. By the result of finite element method analysis, the initial imperfection, and sleeper–pipeline friction were determined to be the key factors that influenced critical pipeline buckling force. Accordingly, a reference for the design of PIP structures is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号