首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
基于2010-2019年洪泽湖湖体水质逐月监测数据,筛选出影响湖体水质的主要污染物指标为总氮(TN)和总磷(TP);选取洪泽湖周边25条主要入湖河流和2条出湖河流在2019年10月2020年9月的监测数据,探讨河流外源性输入对不同湖体区域氮磷的影响及其水期变化规律.结果发现:①湖体TN、TP浓度长期居高不下,年均浓度范围分别在1.39~1.86、0.080~0.171 mg/L波动.主要入湖河流TN、TP时空平均浓度(1.92~5.70和0.114~0.181 mg/L),均高于同区域湖体(1.15~1.46和0.088~0.101 mg/L),其中北部入湖河流肖河、马化河和五河与临近湖区TN、TP浓度呈现显著正相关,是影响北部湖体TN、TP浓度的主要河流;南部入湖河流维桥河和高桥河是临近湖区非极端降雨期TN、TP的主要来源.②调水工程对湖体及入湖河流TN、TP浓度分布影响显著,调水期湖体沿调水方向TP浓度逐渐上升,TN浓度则呈现先降后升的趋势,南部入湖河流维桥河和高桥河TN浓度达到水期峰值,分别为10.69和9.90 mg/L.③极端降雨期入湖河流的TN、TP浓度显著高于其它水期,由于湖体对TN、TP的富集作用不同,TP浓度呈现中间高,四周低,而TN浓度呈现沿洪水流向逐渐降低的规律.  相似文献   

2.
为了解大莲湖湿地区域水体营养盐的时空分布特征及污染来源,本文系统汇整了2008—2022年大莲湖湿地的水质数据,于2021—2022年丰水期和枯水期针对6种不同土地利用类型进行水样采集分析,也于2021年平水期进行各指标的24 h昼夜监测分析。年际研究结果表明,2008—2022年期间大莲湖湖区总氮(TN)浓度基本处于《地表水环境质量标准》(GB3838—2002)Ⅳ~Ⅴ类水质标准,在2009年枯水期达到最大值(2.97 mg/L);湖区氨氮浓度近年来满足Ⅲ类水质标准;总磷浓度在2021年的丰水期达到最大值0.79 mg/L,超过Ⅴ类水标准限值0.4 mg/L。湖区水质较生态修复之前有所好转,但营养盐浓度依旧处于较高水平。整体趋势与淀山湖的营养盐浓度基本一致,说明上游淀山湖入湖来水可能是造成大莲湖营养盐增高的原因之一。季节性研究结果显示,水体各类指标存在一定季节性差异,枯水期略劣于丰水期。不排除入湖河流带来的污染对大莲湖湿地区域产生影响,丰枯水期鱼塘和荷花塘水体营养盐和有机物质超标现象突出,尤其是鱼塘点位TN浓度是Ⅴ类水标准限值2.0 mg/L的2~4倍。24 h昼夜监测结果发现,大部...  相似文献   

3.
瓦埠湖位于淮河中游南岸,属于淮河流域最大的湖泊.根据2011年8月-2015年12月对瓦埠湖湖区3个监测点位、入(出)湖河流4个监测断面的水质监测数据,选用内梅罗水污染指数法和单因子指数法,以总氮、总磷、铵态氮和高锰酸盐指数为评价指标对瓦埠湖湖区水体和主要入(出)湖河流水质现状进行评价,结果表明:瓦埠湖湖区总体水质状况为轻度污染、Ⅳ类水质,其主要污染源为农业面源污染和生活污染;部分入湖河流受农业氮、磷污染的影响水质较差,其中庄墓河污染情况最为严重.因此,必须加强流域的水环境综合整治工作,控制农业面源污染对流域水环境的影响.  相似文献   

4.
2012-2018年巢湖水质变化趋势分析和蓝藻防控建议   总被引:4,自引:3,他引:1  
巢湖自1990s中期至2012年间水质明显改善,但是近年来水质改善效果变缓,2018年蓝藻水华面积显著增加,为有效评估巢湖水体环境的变化,通过对20122018年巢湖17个点位的逐月调查数据分析阐述了近年来巢湖水质和藻情的变化特征,并在流域空间尺度上分析了巢湖流域水污染治理的进展和不足,为后续治理方向的调整和确定提供支撑.20122018年湖区调查数据显示:巢湖湖体总磷和总氮浓度显著升高,铵态氮浓度显著下降,水华蓝藻总量显著升高.在空间上,各污染指标水平呈现由西向东呈逐渐降低的趋势,但是各指标在不同湖区随时间的变化趋势差异明显,西部湖区的总磷、总氮和水华蓝藻指标近年来略有下降或持平,中部和东部湖区则显著升高,所以巢湖湖体总氮和总磷浓度的升高主要源于中、东部湖区的升高,这也是这两个湖区水华蓝藻变动的主要驱动因素.主要入湖河口数据显示:西部4条主要入湖污染河流(南淝河、十五里河、塘西河和派河)水质明显改善,但仍处于较高污染水平,中东部入湖河流(兆河、双桥河和柘皋河)总磷浓度明显升高,是中东部湖区水体营养盐升高的主要原因.中东部河流入湖污染的增加加剧了该区域湖体的富营养化水平,尤其是总磷浓度明显提升,导致中东部湖区夏季水华蓝藻的优势种从鱼腥藻种类演替为微囊藻种类.夏季微囊藻的大量繁殖,使得2018年巢湖中东部湖区部分月份水华面积异常增高.因此,巢湖流域的治理应该在持续强化流域西部合肥市污染治理的同时,增加对流域中部和东部治理的关注和投入.  相似文献   

5.
2012—2018年洪泽湖水质时空变化与原因分析   总被引:1,自引:0,他引:1  
洪泽湖是南水北调东线工程的重要枢纽.为评估水环境长期变化,于2012-2018年开展逐月水质监测.结合水文气象与淮河水质水量数据,分析洪泽湖水质长期变化趋势及空间分异的驱动因素,结果显示:2012-2018年,洪泽湖总氮、总磷多年平均浓度为1.74和0.081 mg/L,分别为Ⅴ类水和Ⅳ类水,透明度均值为0.48 m,下降趋势不显著,而高锰酸盐指数、叶绿素a多年平均浓度分别为4.13和0.008 mg/L,呈显著下降趋势.在空间分布上,过水区总氮、总磷浓度显著高于成子湖、溧河洼;高锰酸盐指数、叶绿素a浓度则相对较低,透明度则是成子湖较高,溧河洼和过水区相近.3个湖区的叶绿素a浓度下降明显,但过水区的高锰酸盐指数呈上升趋势.洪泽湖与淮河水质相关性分析结果显示,洪泽湖总氮、总磷浓度与淮河水质呈强相关性,特别是过水区各个水质指标与淮河水质均有显著的相关性,而成子湖、溧河洼水质与淮河水质相关性较弱.广义可加模型(GAM)显示,过水区的总氮、总磷浓度等参数与淮河营养盐、高锰酸盐指数及悬浮物浓度变化的关系显著,成子湖和溧河洼的水质指标影响因素差异较大,成子湖、过水区的叶绿素a浓度与高锰酸盐指数相关性较强,而溧河洼的叶绿素a浓度与降水、透明度关系显著.相关性和GAM模型表明淮河对于洪泽湖,尤其是对过水区的水质影响极为明显,是洪泽湖维持较高营养水平和水质空间分异的重要原因.尽管不同湖区叶绿素a浓度下降趋势表明洪泽湖营养状态有所降低,但其氮、磷浓度仍维持在较高水平,存在富营养化风险.应持续关注淮河入湖水质变化,削减污染物输入,压缩湖泊围网、圈圩养殖规模,通过加强水污染防治和水域空间管控保障洪泽湖水环境安全.  相似文献   

6.
2007年以来环太湖22条主要河流水质变化及其对太湖的影响   总被引:11,自引:7,他引:4  
易娟  徐枫  高怡  向龙  毛新伟 《湖泊科学》2016,28(6):1167-1174
随着现代经济的迅速发展,太湖流域污染问题日益严重.为了解太湖湖区以及入湖河流的水质变化趋势,分析两者之间的关系,本文选取太湖湖区以及环太湖22条主要入湖河流2007-2014年水质监测资料,按行政区划分析22条主要入湖河流的氨氮、高锰酸盐指数、总磷和总氮浓度变化趋势以及其与太湖水质关系.结果显示,江苏省境内河流2007年以来污染物浓度普遍高于浙江省,但主要入湖河流总体上呈好转趋势,并且河流各指标的浓度变化与太湖的水质变化密切相关,验证了河道污染物输入作为太湖主要的污染物外源,直接影响太湖水质的变化,指出对入湖河流污染物的控制是缓解和治理太湖污染输入的重要途径.  相似文献   

7.
环太湖江苏段入湖河道污染物通量与湖区水质的响应关系   总被引:1,自引:1,他引:0  
基于2008-2018年环太湖江苏段入湖河道污染物通量及湖区水质数据,从时空变化及相关关系两个方面探讨了入湖污染物通量与湖区水质的响应关系,并分析了污染物进入湖体影响水质的主要因子.结果表明:太湖污染减排已见成效,氨氮、总氮、高锰酸盐指数和化学需氧量入湖污染物通量整体呈下降趋势,年均下降率分别为8.0%、2.0%、1.6%和2.2%,湖体氨氮和总氮时间格局响应较好,年均下降率分别为2.1%和2.3%.湖体氨氮、总氮、总磷、高锰酸盐指数和化学需氧量与入湖污染物通量整体由西北部、西部湖区向东南部、东部湖区递减,空间格局上响应基本一致.全湖区年尺度总氮、氨氮浓度与入湖河道污染物通量分别呈显著正相关、极显著正相关关系;影响湖区总氮、氨氮的主要因子为入湖河道的总氮、氨氮浓度,其次为入湖河道浓度与原湖区水质差值,因此亟需加强入湖河道水质浓度的控制.  相似文献   

8.
为评估黄盖湖富营养状况和变化趋势并诊断主要成因,以2015~2021年环境监测站点水质数据和2021年秋季的4次全湖加密监测数据为基础,采用综合营养状态指数(TLI(Σ))评价了黄盖湖富营养化程度及变化趋势,使用污染指数法评价了黄盖湖表层沉积物污染程度,基于沉积物与水体间氮磷的相关关系和入湖河流水质状况,初步推断了黄盖湖富营养化的主要原因。结果表明,2015 2021年黄盖湖TLI(Σ)依次为44.14、45.91、42.39、49.79、49.01、49.62和52.77,呈逐年升高的趋势,由中营养状态转变为轻度富营养状态,夏、秋季富营养化程度高于冬、春季;TLI(SD)、TLI(TN)和TLI(TP)贡献率分别为28%、18%和16%,营养盐浓度增加和透明度降低是黄盖湖水体富营养化的主要驱动因子。沉积物TP和TN平均含量分别为791和2691 mg/kg,为重度污染,有较高的释放风险。表层沉积物与表层水体之间TN相关性较弱,TP相关性较强,但受风速、水深等因素影响较大,湖面风速较高时浅水区域表层沉积物中P更容易释放至上覆水。入湖河流的外源输入以及风浪作用下沉积物再悬浮导致的营养盐浓...  相似文献   

9.
鄱阳湖不同湖区营养盐状态及藻类种群对比   总被引:4,自引:1,他引:3  
在平水期、丰水期和枯水期对鄱阳湖典型天然碟形湖、人控湖汊和主湖区进行了水质、藻类和蓝藻毒素等对比调查,结果表明鄱阳湖各个湖区的水质与藻类种群等差异较大,蓝藻毒素浓度和底泥中铁含量的分布具有一定关联性.在各水文季节蓝藻均为人控湖汊藻类的主要优势种之一.平水期鄱阳湖藻类生物量(叶绿素a浓度)与水体的pH呈正相关关系,与采样点的水深呈负相关关系,碟形湖区水体营养盐浓度和藻类细胞密度均较其他湖区水体低.丰水期各湖区的水质差异相对较小,碟形湖藻类细胞密度仍低于其他湖区,但蓝藻已成为各湖区的优势种,该时期藻类生物量与水体总磷浓度及浊度呈正相关关系.枯水季鄱阳湖各水体藻类生物量与水体总氮浓度、铵态氮浓度及电导率呈正相关关系,碟形湖与主湖区发生了完全分离,水体流动性差,暴发蓝藻水华的风险较高.高温丰枯季节鄱阳湖水体蓝藻毒素浓度与底泥铁含量呈现一定的相关分布关系,底泥铁含量高的地方,其水体蓝藻毒素浓度通常比较高,应警惕鄱阳湖流域富铁红壤流失带来的湖区蓝藻水华风险加剧后果.上述研究结果将为鄱阳湖水环境的预警和污染控制提供科学指导.  相似文献   

10.
娄保锋  周正  苏海  卓海华 《湖泊科学》2023,35(3):897-908
本文研究2018—2020年鄱阳湖水质及营养水平关键指标——叶绿素a、总磷、总氮浓度时空特征,采用分位值法与压力-响应关系法等研究氮磷基准和适宜的控制标准。结果表明,2018—2020年鄱阳湖水质以Ⅳ类为主,超标污染物为总磷和总氮。近3年鄱阳湖处于“中偏富”营养水平,叶绿素a浓度均值为7.6μg/L,总磷浓度均值为0.070 mg/L,总氮浓度均值为1.30 mg/L。所有水域在年内皆会出现富营养时段;年内各月份皆有水域处于富营养水平。总磷、总氮浓度枯水期高于丰水期;8月总磷浓度最低,8—9月总氮浓度最低。叶绿素a浓度较高的季节为秋季,尤以9月最高,9月全湖叶绿素a浓度均值和中位值分别为16和12μg/L,皆超中-富营养界限值10μg/L,原因在于9月“五河”退水与仍处汛期的长江干流顶托导致流速减缓。叶绿素a浓度较高的水域为入湖河流尾闾水域、浅水湖湾、碟形湖(如南湖村、金溪咀、南矶山、蚌湖等)。鄱阳湖平均N/P比为52,相对于藻类繁殖需求而言,氮、磷皆处于过量状态,总磷宜作为首要控制因子,总氮控制亦应考虑。鄱阳湖总磷基准范围为0.029~0.054 mg/L,总氮基准范围为0.50~0...  相似文献   

11.
为进一步揭示阳澄湖入湖河道的污染物来源,提出相应的治理对策,以2017—2021年阳澄湖入湖河道水质监测数据为基础进行分析讨论。依据入湖水量选取10条主要入湖河道进行分析,其中位于阳澄湖东岸的白曲港在七浦塘拓浚工程建成之前主导流向为出湖,工程建成后,通过Pearson相关分析证实了其流向与七浦塘引水时的水力关系,因此白曲港被选为主要入湖河道。采用距平系数法、系统聚类法和物元分析法将阳澄湖主要入湖河道分为3个类别:第1类别包括白荡、蠡塘河、北河泾、永昌泾4条河道,第2类别包括渭泾塘、界泾和施家斗港3条河道,第3类别包括南消泾、七浦塘和白曲港3条河道。使用因子分析法进行因子分析,第1类别河道的因子为高锰酸盐指数(CODMn)、氨氮(NH3-N)、溶解氧(DO)和总磷(TP),第2类别河道的污染因子为NH3-N、总氮(TN)、pH、TP和DO,第3类别河道的污染因子为pH、TP、TN和DO。通过对上游河道水质情况分析、文件研究以及实地调查等方式得出第1类别河道区域的污染源主要为工业污染源和生活污染源,第2类别河道区域污染源主要为工业污染源与种植业污染源,第3类别河道污染源主要为陆地水产养殖污...  相似文献   

12.
2009年环太湖入出湖河流水量及污染负荷通量   总被引:23,自引:8,他引:15  
通过对2009年环太湖水文巡测及同步水质监测数据整理,得到2009年环太湖河流入出湖水量以及污染负荷,并将之与前期文献资料数据进行对比.结果表明,2009年环太湖河道入出湖水量分别为88.40×108 m3、93.27×108m3.入湖水量超过5×108m3的依次为陈东港、大浦港、梁溪河、太滆运河、望虞河.出湖水量最大...  相似文献   

13.
滆湖氮、磷平衡研究   总被引:16,自引:1,他引:15  
通过1992 ̄1993年千岛湖水质、底质、生物和污染源调查,对其水环境质量和污染物输入作了综合评价。结果表明,千岛湖水质状况良好;但局部水域水质污染逐年加重,湖泊已属中营养状态。非点源输入量占入湖污染总量的95%,其中50%来自上游安徽来水。建立了对流扩散模型并进行水质预测,提出了千岛湖水环境保护对策。  相似文献   

14.
秦佩瑛  陈荷生 《湖泊科学》1998,10(S1):67-74
The water pollution situation of Taihu Lake, general conditions of the main inflow rivers to Taihu Lake, the compiling principles, the harnessing measures for polluted water and major inflow rivers to the lake, and the total quantity control plan were analyzed.  相似文献   

15.
夏季滇池和入滇河流氮、磷污染特征   总被引:6,自引:1,他引:5  
为探讨滇池入湖河流水体营养盐空间分布特征及其对滇池水体富营养化的影响,2014年7月采集了入滇4类典型河流(城市纳污型河流、城乡结合型河流、农田型河流、村镇型河流)及滇池水样,分析其氮、磷浓度.结果表明:4条入湖河流总氮(TN)、总磷(TP)、硝态氮和氨氮污染均较严重;河流水体中TN、TP平均浓度大小为:农田型河流(大河)村镇型河流(柴河)城乡结合型河流(宝象河)城市纳污型河流(盘龙江),其中农田型河流(大河)水体TN、TP污染最为严重;在夏季,4条入湖河流水体中TN、TP浓度从上游向下游增加趋势比较明显,表明氮、磷沿河流不断富集;氮磷比分析表明,夏季河流输入氮、磷营养盐有利于藻类的生长,并且滇池浮游植物生长主要受TN浓度限制;夏季滇池南部入湖河流水体的TN、TP浓度高于北部入湖河流,该特征与滇池水体中TN、TP污染分布状况相反,推测滇池北部富营养化的主要影响因素是内源释放.因此,在今后的滇池水体富营养化研究中,应对滇池内源释放进行深入研究.  相似文献   

16.
2010-2017年太湖总磷浓度变化趋势分析及成因探讨   总被引:4,自引:0,他引:4  
近年来,太湖流域各省市政府加大治理力度,流域水体水质取得明显好转,氨氮浓度和总氮浓度呈大幅度下降趋势,然而太湖水体总磷浓度呈上升趋势.为探讨太湖总磷浓度升高的原因,采用太湖流域管理局2010年以来的水质水量实测数据、遥感监测数据等,分别从太湖入湖河流污染负荷量、水生植被和蓝藻与总磷浓度的关系3个方面进行相关性分析.结果表明,入湖河流总磷浓度高于太湖水体总磷浓度,且磷不易出湖,逐年总磷净入湖量持续累积与太湖总磷浓度有明显的正相关性,入湖污染负荷量大是太湖总磷浓度居高不下的根本原因;水生植被可吸收湖泊沉积物中的营养盐,并抑制底泥再悬浮从而降低内源性营养盐的释放,东太湖水生植被的大量减少,一方面减少了沉水植物对磷元素的吸收,另一方面增加了风浪对底泥的扰动再悬浮,造成磷元素释放,是造成湖水总磷浓度升高的重要因素;近年来太湖蓝藻密度呈上升趋势,受其影响,总磷浓度也有上升,蓝藻水华加快湖体磷循环,藻类密度增加也是太湖总磷浓度升高的影响因素之一.  相似文献   

17.
太湖流域"零点"行动的环境效果分析   总被引:24,自引:11,他引:13  
太湖流域点源污染治理的“零点”行动对减轻太湖及流域水质的污染具有积极的作用。削减COD量占入湖COD总量的19.1%,1998年主要入湖河道COD监测浓度年平均值比1997年平均值下降26.7%,1998年太湖湖水COD年平均浓度比1997年的平均浓度下降了21.2%,这在一定的程度上遏制了太湖水质恶化的趋势。但若从根本上改善太湖水质,尚需结合流域地区内其它污染治理措施,形成综合治理。  相似文献   

18.
定量解析污染源对水质影响的贡献是水环境精细化管理的重要基础。目前多通过水质和土地利用类型的关系以解析水体污染源的研究,忽略了空间尺度的差异性,引发景观配置不合理的后果。为此,本研究依据考虑空间尺度效应的污染源解析方法,基于异龙湖流域3条主要入湖河流的入湖口监测断面对雨季和旱季的水质数据进行研究。同时利用绝对主成分—多元线性回归模型(APCS-MLR)和bioenv分析揭示河道不同尺度缓冲区的土地利用变化对水质的影响并解析河流主要污染源。研究结果表明:(1)异龙湖主要入湖河流水质表现出季节性差异,旱季期间3条主要入湖河流的浊度、化学需氧量(CODCr)、氨氮(NH3-N)、总磷(TP)和总氮(TN)浓度平均值相比于雨季减幅分别为39.53%、39.93%、94.48%、38.29%和1.72%。其中,入湖河流水体中的TN在旱季和雨季的超标率分别为58%和74%,成为首要污染物;(2)在旱季,20 m缓冲区尺度内河流水质受耕地和裸地占比影响较大,随着空间尺度的扩大,至50~300 m缓冲区尺度时建设用地、林地及水体占比对水质的影响增加;在雨季,C...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号