首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In much of western United States destructive floods after wildfire are frequently caused by localized, short‐duration convective thunderstorms; however, little is known about post‐fire flooding from longer‐duration, low‐intensity mesoscale storms. In this study we estimate and compare peak flows from convective and mesoscale floods following the 2012 High Park Fire in the ungaged 15.5 km2 Skin Gulch basin in the northcentral Colorado Front Range. The convective storm on 6 July 2012 came just days after the wildfire was contained. Radar data indicated that the total rainfall was 20–47 mm, and the maximum rainfall intensities (upwards of 50 mm h?1) were concentrated over portions of the watershed that burned at high severity. The mesoscale storm on 9–15 September 2013 produced 220–240 mm of rain but had maximum 15‐min intensities of only 25–32 mm h?1. Peak flows for each flood were estimated using three independent techniques. Our best estimate using a 2D hydraulic model was 28 m3 s?1 km?2 for the flood following the convective storm, placing it among the largest rainfall‐runoff floods per unit area in the United States. In contrast, the flood associated with the mesoscale flood was only 6 m3 s?1 km?2, but the long‐duration flood caused extensive channel incision and widening, indicating that this storm was much more geomorphically effective. The peak flow estimates for the 2013 flood had a higher relative uncertainty and this stemmed from whether we used pre‐ or post‐flood channel topography. The results document the extent to which a high and moderate severity forest fire can greatly increase peak flows and alter channel morphology, illustrate how indirect peak flow estimates have larger errors than is generally assumed, and indicate that the magnitude of post‐fire floods and geomorphic change can be affected by the timing, magnitude, duration, and sequence of rainstorms. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
《水文科学杂志》2013,58(5):1068-1075
Abstract

The present study aims to estimate the sediment yield due to storm rainfall and runoff at the outlet of the Khanmirza watershed (395 km2) located in western Iran. The estimation was made for six storm events using the Modified Universal Soil Loss Equation (MUSLE). All the inputs required for the application of the model were determined through runoff and sediment concentration monitoring at the time of storm events, and field surveys in the study area. The applicability of the model to the study area was then evaluated by comparison of its estimates with those calculated using the measured sediment data. The results of the study demonstrated the efficiency of the MUSLE in estimating storm-associated sediment yield except one storm event in the study area with a high level of agreement and non-significant differences between mean estimated and measured values in the study storm events.  相似文献   

3.
The major goals of this study were to determine stream bed sediment erosion/deposition rates, sediment age, percent ‘new’ sediment, and suspended sediment origin during two storm events of contrasting magnitudes (11.9 mm over 5 h and 58.9 mm over 39 h) using fallout radionuclides (excess lead 210 – 210Pbxs and beryllium 7 – 7Be) and link the nature and type of sediment source contributions to potential phosphorus (P) off‐site transport. The study was conducted in cropland‐dominated and mixed land use subwatersheds in the non‐glaciated Pleasant Valley watershed (50 km2) in South Central Wisconsin. Fine sediment deposition and erosion rates on stream beds varied from 0.76 to 119.29 mg cm?2 day?1 (at sites near the watershed outlet) and 1.72 to 7.72 mg cm?2 day?1 (at sites in the headwaters), respectively, during the two storm events. The suspended sediment age ranged from 123 ± 12 to 234 ± 33 days during the smaller storm event; however, older sediment was more prevalent (p = 0.037) in the streams during the larger event with suspended sediment age ranging from 226 ± 9 to 322 ± 114 days. During the small and large storm event, percent new sediment in suspended sediment ranged from 5.3 ± 2.1 to 21.0 ± 2.9% and 5.3 ± 2.7 to 6.7 ± 5.7%, respectively. In the cropland‐dominated subwatershed, upland soils were the major source of suspended sediment, whereas in the mixed land use subwatershed, both uplands and stream banks had relatively similar contributions to suspended sediment. In‐stream (suspended and bed) sediment P levels ranged from 703 ± 193 to 963 ± 84 mg kg?1 during the two storm events. The P concentrations in suspended and bed sediment were reflective of the dominant sediment source (upland or stream bank or mixed). Overall, sediment transport dynamics showed significant variability between subwatersheds of different land use characteristics during two contrasting storm events. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
An Erratum has been published for this article in Hydrological Processes 16(5) 2002, 1130–1131. Humid tropical regions are often characterized by extreme variability of fluvial processes. The Rio Terraba drains the largest river basin, covering 4767 km2, in Costa Rica. Mean annual rainfall is 3139±419sd mm and mean annual discharge is 2168±492sd mm (1971–88). Loss of forest cover, high rainfall erosivity and geomorphologic instability all have led to considerable degradation of soil and water resources at local to basin scales. Parametric and non‐parametric statistical methods were used to estimate sediment yields. In the Terraba basin, sediment yields per unit area increase from the headwaters to the basin mouth, and the trend is generally robust towards choice of methods (parametric and LOESS) used. This is in contrast to a general view that deposition typically exceeds sediment delivery with increase in basin size. The specific sediment yield increases from 112±11·4sd t km?2 year?1 (at 317·9 km2 on a major headwater tributary) to 404±141·7sd t km?2 year?1 (at 4766·7 km2) at the basin mouth (1971–92). The analyses of relationships between sediment yields and basin parameters for the Terraba sub‐basins and for a total of 29 basins all over Costa Rica indicate a strong land use effect related to intensive agriculture besides hydro‐climatology. The best explanation for the observed pattern in the Terraba basin is a combined spatial pattern of land use and rainfall erosivity. These were integrated in a soil erosion index that is related to the observed patterns of sediment yield. Estimated sediment delivery ratios increase with basin area. Intensive agriculture in lower‐lying alluvial fans exposed to highly erosive rainfall contributes a large part of the sediment load. The higher elevation regions, although steep in slope, largely remain under forest, pasture, or tree‐crops. High rainfall erosivity (>7400 MJ mm ha?1 h?1 year ?1) is associated with land uses that provide inadequate soil protection. It is also associated with steep, unstable slopes near the basin mouth. Improvements in land use and soil management in the lower‐lying regions exposed to highly erosive rainfall are recommended, and are especially important to basins in which sediment delivery ratio increases downstream with increasing basin area. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
A wildfire in May 1996 burned 4690 hectares in two watersheds forested by ponderosa pine and Douglas fir in a steep, mountainous landscape with a summer, convective thunderstorm precipitation regime. The wildfire lowered the erosion threshold in the watersheds, and consequently amplified the subsequent erosional response to shorter time interval episodic rainfall and created both erosional and depositional features in a complex pattern throughout the watersheds. The initial response during the first four years was an increase in runoff and erosion rates followed by decreases toward pre‐fire rates. The maximum unit‐area peak discharge was 24 m3 s?1 km?2 for a rainstorm in 1996 with a rain intensity of 90 mm h?1. Recovery to pre‐fire conditions seems to have occurred by 2000 because for a maximum 30‐min rainfall intensity of 50 mm h?1, the unit‐area peak discharge in 1997 was 6.6 m3 s?1 km?2, while in 2000 a similar intensity produced only 0.11 m3 s?1 km?2. Rill erosion accounted for 6 per cent, interrill erosion for 14 per cent, and drainage erosion for 80 per cent of the initial erosion in 1996. This represents about a 200‐fold increase in erosion rates on hillslopes which had a recovery or relaxation time of about three years. About 67 per cent of the initially eroded sediment is still stored in the watersheds after four years with an estimated residence time greater than 300 years. This residence time is much greater than the fire recurrence interval so erosional and depositional features may become legacies from the wildfire and may affect landscape evolution by acting as a new set of initial conditions for subsequent wildfire and flood sequences. Published in 2001 by John Wiley & Sons, Ltd.  相似文献   

6.
Abstract

This study presents an analysis of three hydrological years (2007/08, 2008/09 and 2009/10) of precipitation, runoff and sediment yield collected from a small (669.7 ha) semi-arid watershed in southeastern Spain (Lanjarón). At the watershed outlet the runoff, suspended sediment concentration, total solute concentrations and dissolved nutrients (N-NO3, N-NH4, H2PO4 and K) in streamflow were continuously monitored. The runoff was highly variable, ranging between 53.4 and 154.7 mm year?1, with an average of 97.6 mm year?1. In contrast, sediment yields were more regular, averaging 1.8 Mg ha?1 year?1. The hydrological response of the watershed depended mainly on rainfall intensity. Formerly, 32% of the watershed was forested and runoff was more regular, despite the typical Mediterranean rainfall cycle; however, due to forest area reduction to 17% and the increase in abandoned farmland area (18%) in recent decades, the runoff variability has increased. Greater amounts of solutes (32.7 Mg ha?1 year?1) were exported, so that this water is considered as poor for irrigation use. The temporal nutrient export was related to seasonal discharge fluctuations as well as daily concentrations. In addition, the nutrient concentrations of the water discharged were lower than threshold limits cited in water-quality standards for agricultural use and for potable water, with the exception of K (65.9 mg L?1), which may degrade surface waters as well as irrigated soils. Thus, hydrological and erosive processes depended on the watershed features, but also on prior conditions in combination with the characteristics of rainfall episodes.

Citation Durán, Z.V.H., Francia, M.J.R., Garcia, T.I., Rodríguez, P.C.R., Martínez, R.A., and Cuadros, T.S., 2012. Runoff and sediment yield from a small watershed in southeastern Spain (Lanjarón): implications for water quality. Hydrological Sciences Journal, 57 (8), 1610–1625.  相似文献   

7.
Abstract

River basin lag time (LAG), defined as the elapsed time between the occurrence of the centroids of the effective rainfall intensity pattern and the storm runoff hydrograph, is an important factor in determining the time to peak and the peak value of the instantaneous unit hydrograph, IUH. In the procedure of predicting a sedimentgraph (suspended sediment load as a function of time), the equivalent parameter is the lag time for the sedimentgraph (LAGs ), which is defined as the elapsed time between the occurrence of the centroids of sediment production during a storm event and the observed sedimentgraph at the gauging station. Results of analyses of rainfall, runoff and suspended sediment concentration event data collected from five small Carpathian basins in Poland and from a 2.31-ha agricultural basin, in central Illinois, USA have shown that LAGs was, in the majority of cases, smaller than LAG, and that a significant linear relationship exists between LAGs and LAG.  相似文献   

8.
The principle that formative events, punctuated by periods of evolution, recovery or temporary periods of steady‐state conditions, control the development of the step–pool morphology, has been applied to the evolution of the Rio Cordon stream bed. The Rio Cordon is a small catchment (5 km2) within the Dolomites wherein hydraulic parameters of floods and the coarse bedload are recorded. Detailed field surveys of the step–pool structures carried out before and after the September 1994 and October 1998 floods have served to illustrate the control on step–pool changes by these floods. Floods were grouped into two categories. The first includes ‘ordinary’ events which are characterized by peak discharges with a return time of one to five years (1·8–5·15 m3 s?1) and by an hourly bedload rate not exceeding 20 m3 h?1. The second refers to ‘exceptional’ events with a return time of 30–50 years. A flood of this latter type occurred on 14 September 1994, with a peak discharge of 10·4 m3 s?1 and average hourly bedload rate of 324 m3 h?1. Step–pool features were characterized primarily by a steepness parameter c = (H/Ls)/S. The evolution of the steepness parameter was measured in the field from 1992 to 1998. The results indicate that maximum resistance conditions are gradually reached at the end of a series of ordinary flood events. During this period, bed armouring dominate the sediment transport response. However, following an extraordinary flood and unlimited sediment supply conditions, the steepness factor can suddenly decrease as a result of sediment trapped in the pools and a lengthening of step spacing. The analogy of step spacing with antidune wavelength and the main destruction and transformation mechanism of the steps are also discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
In July 2013, a wildfire severely affected the western part of the island of Mallorca (Spain). During the first three post‐fire hydrological years, when the window of disturbance tends to be more open, the hydrological and sediment delivery processes and dynamics were assessed in a representative catchment intensively shaped by terracing that covered 37% of its surface area. A nested approach was applied with two gauging stations (covering 1.2 km2 and 4.8 km2) built in September 2013 that took continuous measurements of rainfall, water and sediment yield. Average suspended sediment concentration (1503 mg L?1) and the maximum peak (33 618 mg L?1) were two orders of magnitude higher than those obtained in non‐burned terraced catchments of Mallorca. This factor may be related to changes in soils and the massive incorporation of ash into the suspended sediment flux during the most extreme post‐fire event; 50 mm of rainfall in 15 min, reaching an erosivity of 2886 MJ mm ha?1 h?1. Moreover, hysteretic counter‐clockwise loops were predominant (60%), probably related to the increased sensitivity of the landscape after wildfire perturbation. Though the study period was average in terms of total annual precipitation (even higher in intensities), minimal runoff (2%) and low sediment yield (6.3 t km?2 y?1) illustrated how the intrinsic characteristics of the catchment, i.e. calcareous soils, terraces and the application of post‐fire measures, limited the hydrosedimentary response despite the wildfire impact. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
Previous studies have identified unpaved roads as the primary source of erosion on St John in the US Virgin Islands, but these studies estimated road erosion rates only as annual averages based primarily on road rill measurements. The goal of this project was to quantify the effect of unpaved roads on runoff and sediment production on St John, and to better understand the key controlling factors. To this end runoff and sediment yields were measured from July 1996 to March 1997 from three plots on naturally vegetated hillslopes, four plots on unpaved road surfaces and two cutslope plots. Sediment yields were also measured from seven road segments with contributing areas ranging from 90 to 700 m2. With respect to the vegetated plots, only the two largest storm events generated runoff and there was no measurable sediment yield. Runoff from the road surface plots generally occurred when storm precipitation exceeded 6 mm. Sediment yields from the four road surface plots ranged from 0·9 to 15 kg m−2 a−1, and sediment concentrations were typically 20–80 kg m−3. Differences in runoff between the two cutslope plots were consistent with the difference in upslope contributing area. A sprinkler experiment confirmed that cross‐slope roads intercept shallow subsurface stormflow and convert this into surface runoff. At the road segment scale the estimated sediment yields were 0·1 to 7·4 kg m−2 a−1. Road surface runoff was best predicted by storm precipitation, while sediment yields for at least three of the four road surface plots were significantly correlated with storm rainfall, storm intensity and storm runoff. Sediment yields at the road segment scale were best predicted by road surface area, and sediment yields per unit area were most strongly correlated with road segment slope. The one road segment subjected to heavy traffic and more frequent regrading produced more than twice as much sediment per unit area than comparable segments with no truck traffic. Particle‐size analyses indicate a preferential erosion of fine particles from the road surface and a rapid surface coarsening of new roads. Published in 2001 by John Wiley & Sons, Ltd.  相似文献   

11.
Upland erosion and the resulting reservoir siltation is a serious issue in the Isábena catchment (445 km2 Central Spanish Pyrenees). During a three‐month period, water and sediment fluxes have been monitored at the catchment outlet (Capella), two adjacent subcatchments (Villacarli, 41 km2; Cabecera, 145 km2) and the elementary badland catchment Torrelaribera (8 ha). This paper presents the results of the monitoring, a method for the calculation of a sedigraph from intermittent measurements and the derived sediment yields at the monitored locations. The observed suspended sediment concentrations (SSCs) demonstrate the role of badlands as sediment sources: SSCs of up to 280 g l?1 were encountered for Villacarli, which includes large badland areas. SSCs at the Cabecera catchment, with great areas of woodland, barely exceeded 30 g l?1. SSCs directly at the sediment source (Torrelaribera) were comparable to those at Villacarli, suggesting a close connection within this subcatchment. At Capella, SSCs of up to 99 g l?1 were observed. For all sites, SSC displayed only a loose correlation with discharge, inhibiting the application of a simple sediment rating curve. Instead, ancillary variables acting as driving forces or proxies for the processes (rainfall energy, cumulative discharge, rising/falling limb data) were included in a quantile regression forest model to explain the variability in SSC. The variables with most predictive power vary between the sites, suggesting the predominance of different processes. The subsequent flood‐based calculation of sediment yields attests high specific sediment yields for Torrelaribera and Villacarli (6277 and 1971 t km?2) and medium to high yields for Cabecera and Capella (139 and 410 t km?2) during the observation period. In all catchments, most of the sediment was exported during intense storms of late summer. Later flood events yield successively less sediment. Relating upland sediment production to yield at the outlet suggests considerable effects of sediment storage within the river channel. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
The Qinghai–Tibet Plateau has a vast area of approximately 70×104 km2 of alpine meadow under the impacts of soil freezing and thawing, thereby inducing intensive water erosion. Quantifying the rainfall erosion process of partially thawed soil provides the basis for model simulation of soil erosion on cold-region hillslopes. In this study, we conducted a laboratory experiment on rainfall-induced erosion of partially thawed soil slope under four slope gradients (5, 10, 15, and 20°), three rainfall intensities (30, 60, and 90 mm h−1), and three thawed soil depths (1, 2, and 10 cm). The results indicated that shallow thawed soil depth aggravated soil erosion of partially thawed soil slopes under low hydrodynamic conditions (rainfall intensity of 30 mm h−1 and slope gradient ≤ 15°), whereas it inhibited erosion under high hydrodynamic conditions (rainfall intensity ≥ 60 mm h−1 or slope gradient > 15°). Soil erosion was controlled by the thawed soil depth and runoff hydrodynamic conditions. When the sediment supply was sufficient, the shallow thawed soil depth had a higher erosion potential and a larger sediment concentration. On the contrary, when the sediment supply was insufficient, the shallow thawed soil depth resulted in lower sediment erosion and a smaller sediment concentration. The hydrodynamic runoff conditions determined whether the sediment supply was sufficient. We propose a model to predict sediment delivery under different slope gradients, rainfall intensities, and thawed soil depths. The model, with a Nash–Sutcliffe efficiency of 0.95, accurately predicted the sediment delivery under different conditions, which was helpful for quantification of the complex feedback of sediment delivery to the factors influencing rainfall erosion of partially thawed soil. This study provides valuable insights into the rainfall erosion mechanism of partially thawed soil slopes in the Qinghai–Tibet Plateau and provides a basis for further studies on soil erosion under different hydrodynamic conditions.  相似文献   

13.
To maintain a reasonable sediment regulation system in the middle reaches of the Yellow River, it is critical to determine the variation in sediment deposition behind check‐dams for different soil erosion conditions. Sediment samples were collected by using a drilling machine in the Fangta watershed of the loess hilly–gully region and the Manhonggou watershed of the weathered sandstone hilly–gully (pisha) region. On the basis of the check‐dam capacity curves, the soil bulk densities and the couplet thickness in these two small watersheds, the sediment yields were deduced at the watershed scale. The annual average sediment deposition rate in the Manhonggou watershed (702.0 mm/(km2·a)) from 1976 to 2009 was much higher than that in the Fangta watershed (171.6 mm/(km2·a)) from 1975 to 2013. The soil particle size distributions in these two small watersheds were generally centred on the silt and sand fractions, which were 42.4% and 50.7% in the Fangta watershed and 60.6% and 32.9% in the Manhonggou watershed, respectively. The annual sediment deposition yield exhibited a decreasing trend; the transition years were 1991 in the Fangta watershed and 1996 in the Manhonggou watershed (P < 0.05). In contrast, the annual average sediment deposition yield was much higher in the Manhonggou watershed (14011.1 t/(km2·a)) than in the Fangta watershed (3149.6 t/(km2·a)). In addition, the rainfalls that induced sediment deposition at the check‐dams were greater than 30 mm in the Fangta watershed and 20 mm in the Manhonggou watershed. The rainfall was not the main reason for the difference in the sediment yield between the two small watersheds. The conversion of farmland to forestland or grassland was the main reason for the decrease in the soil erosion in the Fangta watershed, while the weathered sandstone and bare land were the main factors driving the high sediment yield in the Manhonggou watershed. Knowledge of the sediment deposition process of check‐dams and the variation in the catchment sediment yield under different soil erosion conditions can serve as a basis for the implementation of improved soil erosion and sediment control strategies, particularly in semi‐arid hilly–gully regions. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

14.
Extreme floods often follow wildfire in mountainous watersheds. However, a quantitative relation between the runoff response and burn severity at the watershed scale has not been established. Runoff response was measured as the runoff coefficient C, which is equal to the peak discharge per unit drainage area divided by the average maximum 30 min rainfall intensity during each rain storm. The magnitude of the burn severity was expressed as the change in the normalized burn ratio. A new burn severity variable, hydraulic functional connectivity Φ was developed and incorporates both the magnitude of the burn severity and the spatial sequence of the burn severity along hillslope flow paths. The runoff response and the burn severity were measured in seven subwatersheds (0·24 to 0·85 km2) in the upper part of Rendija Canyon burned by the 2000 Cerro Grande Fire near Los Alamos, New Mexico, USA. A rainfall–discharge relation was determined for four of the subwatersheds with nearly the same burn severity. The peak discharge per unit drainage area was a linear function of the maximum 30 min rainfall intensity I30. This function predicted a rainfall intensity threshold of 8·5 mm h?1 below which no runoff was generated. The runoff coefficient was a linear function of the mean hydraulic functional connectivity of the subwatersheds. Moreover, the variability of the mean hydraulic functional connectivity was related to the variability of the mean runoff coefficient, and this relation provides physical insight into why the runoff response from the same subwatershed can vary for different rainstorms with the same rainfall intensity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Distributed watershed models are beneficial tools for the assessment of management practices on runoff and water‐induced erosion. This paper evaluates, by application to an experimental watershed, two promising distributed watershed‐scale sediment models in detail: the Kinematic Runoff and Erosion (KINEROS‐2) model and the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model. The physics behind each model are to some extent similar, though they have different watershed conceptualizations. KINEROS‐2 was calibrated using three rainfall events and validated over four separate rainfall events. Parameters estimated by this calibration process were adapted to GSSHA. With these parameters, GSSHA generated larger and retarded flow hydrographs. A 30% reduction in both plane and channel roughness in GSSHA along with the assumption of Green‐Ampt conductivity KG‐A = Ks, where Ks is the saturated conductivity, resulted in almost identical hydrographs. Sediment parameters not common in both models were calibrated independently of KINEROS‐2. A comparative discussion of simulation results is presented. Even though GSSHA's flow component slightly overperformed KINEROS‐2, the latter outperformed GSSHA in simulations for sediment transport. In spite of the fact that KINEROS‐2 is not geared toward continuous‐time simulations, simulations performed with both models over a 1 month period generated comparable results. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
In debris‐flow‐prone channels, normal fluvial sediment transport occurs (nearly exclusively in suspended mode) between episodic debris‐flow events. Observations of suspended sediment transport through a winter season in a steepland gully in logged terrain revealed two event types. When flows exceeded a threshold of 270 l s−1, events yielded significant quantities of sediment and suspended sediment concentration increased with flow. Smaller events were strongly ‘supply limited’; sediment concentration decreased as flow increased. Overall, there is no consistent correlation between runoff and sediment yield. Within the season, three subseasons were identified (demarcated by periods of freezing weather) within which a pattern of fine sediment replenishment and evacuation occurred. Finally, a signature of fine sediment mobilization and exhaustion was observed within individual events. Fine sediment transport occurred in discrete pulses within storm periods, most of the yield occurring within 5 to 15% of storm runoff duration, so that it is unlikely that scheduled sampling programs would identify significant transport. Significant events are, however, generally forecastable on the basis of regional heavy rainfall warnings, providing a basis for targeted observations. Radiative snowmelt events and rain‐on‐snow remain difficult to forecast, since the projection of temperatures from the nearest regular weather station yields variable results. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
This study examines runoff and sediment generation rates within the road prism on unsealed road segments in the Cuttagee Creek catchment near Bermagui in New South Wales, Australia. A large (600 m2) rainfall simulator was used to measure runoff and sediment yields from each of the potential sediment and runoff sources and pathways. These included the road surface, table‐drain, upslope contributing area and cutslope face, and the entire road segment as measured at the drain outlet. Experiments were conducted on two major types of road (ridge‐top and cut‐and‐fill) of varying traffic usage and maintenance standard for two 30‐minute simulations of increasing rainfall intensity. From the range of possible sources within the road prism, the road surface produced the dominant source of excess runoff and sediment at each site with limited contributions from the table‐drain, cutslope face or contributing hillslope. Sediment generation varied significantly with road usage and traffic intensity. Road usage was strongly related to the amount of loose available sediment as measured prior to the experiments. Table‐drains acted primarily as sediment traps during the low rainfall event but changes in sediment concentration within the drains were observed as runoff volumes increased during the higher rainfall event of 110 mm h?1, releasing sediment previously stored in litter and organic dams. The experiments demonstrate the potential roles of various features of the road prism in the generation and movement of sediment and water. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
In wind‐driven rains, wind velocity and direction are expected to affect not only energy input of rains but also shallow ?ow hydraulics by changing roughness induced by raindrop impacts with an angle on ?ow and the unidirectional splashes in the wind direction. A wind‐tunnel study under wind‐driven rains was conducted to determine the effects of horizontal wind velocity and direction on sediment transport by the raindrop‐impacted shallow ?ow. Windless rains and the rains driven by horizontal wind velocities of 6 m s?1, 10 m s?1, and 14 m s?1 were applied to three agricultural soils packed into a 20 by 55 cm soil pan placed on both windward and leeward slopes of 7 per cent, 15 per cent, and 20 per cent. During each rainfall application, sediment and runoff samples were collected at 5‐min intervals at the bottom edge of the soil pan with wide‐mouth bottles and were determined gravimetrically. Based on the interrill erosion mechanics, kinetic energy ?ux (Ern) as a rainfall parameter and product of unit discharge and slope in the form of qbSco as a ?ow parameter were used to explain the interactions between impact and ?ow parameters and sediment transport (qs). The differential sediment transport rates occurred depending on the variation in raindrop trajectory and rain intensity with the wind velocity and direction. Flux of rain energy computed by combining the effects of wind on the velocity, frequency, and angle of raindrop impact reasonably explained the characteristics of wind‐driven rains and acceptably accounted for the differences in sediment delivery rates to the shallow ?ow transport (R2 ≥ 0·78). Further analysis of the Pearson correlation coef?cients between Ern and qSo and qs also showed that wind velocity and direction signi?cantly affected the hydraulics of the shallow ?ow. Ern had a smaller correlation coef?cient with the qs in windward slopes where not only reverse splashes but also reverse lateral raindrop stress with respect to the shallow ?ow direction occurred. However, Ern was as much effective as qSo in the sediment transport in the leeward slopes where advance splashes and advance lateral raindrop stress on the ?ow occurred. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
Sediment yield can be a sensitive indicator of catchment dynamics and environmental change. For a glacierized catchment in the High Arctic, we compiled and analyzed diverse sediment transfer data, spanning a wide range of temporal scales, to quantify catchment yields and explore landscape response to past and ongoing hydroclimatic variability. The dataset integrates rates of lake sedimentation from correlated varve records and repeated annual and seasonal sediment traps, augmented by multi‐year lake and fluvial monitoring. Consistent spatial patterns of deposition enabled reconstruction of catchment yields from varve‐ and trap‐based fluxes. We used hydroclimatic data and multivariate modeling to examine annual controls of sediment delivery over almost a century, and to examine shorter‐term controls of sediment transfer during peak glacier melt. Particle‐size analyses, especially for annual sediment traps, were used to further infer sediment transfer mechanisms and timing. Through the Medieval Warm Period and Little Ice Age, there were no apparent multi‐century trends in lake sedimentation rates, which were over three times greater than those during the mid‐Holocene when glaciers were diminished. Twentieth‐century sedimentation rates were greater than those of previous millennia, with a mid‐century step increase in mean yield from 240 to 425 Mg km?2 yr?1. Annual yields through the twentieth century showed significant positive relations with spring/summer temperature, rainfall, and peak discharge conditions. This finding is significant for the future of sediment transfer at Linnévatnet, and perhaps more broadly in the Arctic, where continued increases in temperature and rainfall are projected. For 2004–2010, annual yields ranged from 294 to 1330 Mg km?2 yr?1. Sediment trap volumes and particle‐size variations indicate that recent annual yields were largely dominated by spring to early summer transfer of relatively coarse‐grained sediment. Fluvial monitoring showed daily to hourly sediment transfer to be related to current and prior discharge, diurnal hysteresis, air temperature, and precipitation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
Post‐wildfire runoff was investigated by combining field measurements and modelling of infiltration into fire‐affected soils to predict time‐to‐start of runoff and peak runoff rate at the plot scale (1 m2). Time series of soil‐water content, rainfall and runoff were measured on a hillslope burned by the 2010 Fourmile Canyon Fire west of Boulder, Colorado during cyclonic and convective rainstorms in the spring and summer of 2011. Some of the field measurements and measured soil physical properties were used to calibrate a one‐dimensional post‐wildfire numerical model, which was then used as a ‘virtual instrument’ to provide estimates of the saturated hydraulic conductivity and high‐resolution (1 mm) estimates of the soil‐water profile and water fluxes within the unsaturated zone. Field and model estimates of the wetting‐front depth indicated that post‐wildfire infiltration was on average confined to shallow depths less than 30 mm. Model estimates of the effective saturated hydraulic conductivity, Ks, near the soil surface ranged from 0.1 to 5.2 mm h?1. Because of the relatively small values of Ks, the time‐to‐start of runoff (measured from the start of rainfall), tp, was found to depend only on the initial soil‐water saturation deficit (predicted by the model) and a measured characteristic of the rainfall profile (referred to as the average rainfall acceleration, equal to the initial rate of change in rainfall intensity). An analytical model was developed from the combined results and explained 92–97% of the variance of tp, and the numerical infiltration model explained 74–91% of the variance of the peak runoff rates. These results are from one burned site, but they strongly suggest that tp in fire‐affected soils (which often have low values of Ks) is probably controlled more by the storm profile and the initial soil‐water saturation deficit than by soil hydraulic properties. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号