首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water scarcity and climatic variability in the Mediterranean region have traditionally required the construction of dams to guarantee water supply for irrigation, industrial and urban uses and hydropower production. Reservoirs affect the hydrology of the river downstream, but the magnitude and persistence of these effects are still poorly unknown. Understanding the magnitude of these effects is the objective of this paper, in which we analyse the flow regimes of twelve rivers located in the NW Mediterranean region. Different temporal scales (daily, monthly and annual) are used for the analysis and also to estimate flow variables associated with flow magnitude, frequency, duration and variability. It is shown that dams alter the hydrological regime of most of the studied rivers, with special influence on monthly flows and flood magnitude and frequency. The most altered rivers (Muga and Siurana, NE Iberian Peninsula) experience a complete overturn in their flow regime with, for instance, flood reduction reaching up to 76% for the 2‐year flood event. Other rivers showed lower changes in hydrology (e.g. Orb and Têt). Annual runoff showed a pattern of decrease in all the studied rivers (regulated and non‐regulated) indicating that besides dams (i.e. reservoir evaporation), other factors likely affect water yield. A general recovery downstream from dams is also observed at all temporal scales, mainly because of the inflow from tributaries. Although dams have a clear impact on the hydrology of Mediterranean rivers, water withdrawals and diversions for irrigation and other consumptive uses also affected the hydrological patterns. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
The critical zone features that control run‐off generation, specifically at the regional watershed scale, are not well understood. Here, we addressed this knowledge gap by quantitatively and conceptually linking regional watershed‐scale run‐off regimes with critical zone structure and climate gradients across two physiographic provinces in the Southeastern United States. We characterized long‐term (~20 years) discharge and precipitation regimes for 73 watersheds with United States Geological Survey in‐stream gaging stations across the Appalachian Mountain and Piedmont physiographic provinces of North Carolina. Watersheds included in this analysis had <10% developed land and ranged in size from 14.1–4,390 km2. Thirty‐four watersheds were located in the Piedmont physiographic province, which is typically classified as a low relief landscape with deep, highly weathered soils and regolith. Thirty‐nine watersheds were located in the Appalachian Mountain physiographic province, which is typically classified as a steeper landscape with highly weathered, but shallower soils and regolith. From the United States Geological Survey daily mean run‐off time series, we calculated annual and seasonal baseflow indices (BFI), minimum, mean, and maximum daily run‐off, and Pearson's correlation coefficients between precipitation and baseflow. Our results showed that Appalachian Mountain watersheds systematically had higher minimum daily flows and BFI values. Piedmont watersheds displayed much larger deviations from mean annual BFI in response to year‐to‐year variability in precipitation. A series of linear regression models between 21 landscape metrics and annual BFIs showed non‐linear and complex terrestrial–hydrological relationships across the two provinces. From these results, we discuss how distinct features of critical zone architecture, with specific focus on soil depth and stratigraphy, may be dominating the regulation of hydrological processes and run‐off regimes across these provinces.  相似文献   

3.
This study examines the 1914–2015 runoff trends and variability for 136 rivers draining British Columbia's Coast and Insular Mountains. Rivers are partitioned into eastward and westward flowing rivers based on flow direction from the Coast Mountains. Thus, eastward and westward runoff trends and influence of topography on runoff are explored. Our findings indicate that rivers flowing eastward to the Nechako and Chilcotin plateaus contribute the lowest annual runoff compared to westward rivers where runoff is high. Low interannual runoff variability is evident in westward rivers and their alpine watersheds, whereas eastward rivers exhibit high interannual runoff variability. On Vancouver Island, some of the rivers with the highest annual runoff exhibit high interannual variability. A significant (p < .05) negative correlation exists between mean annual runoff (Rm) and latitude, gauged area, mean elevation, and its corresponding coefficient of variation. However, a significant positive correlation was found between the glacierized area of mountainous regions and Rm. The mean coefficient of variation in annual runoff is significantly negatively correlated with latitude and glacierized area, but significantly positively correlated with longitude. Annual and seasonal runoff trend analyses of each river were performed for an early (1936–2015), a middle (1966–2015), and a late (1986–2015) period using the Mann–Kendall test. Trend analyses revealed a shift towards more positive detectable (signal‐to‐noise ratio > 1) trends in annual and seasonal runoff from the middle to the late period across the study domain. Most positive detectable seasonal runoff trends in the middle period occur in spring in glacierized westward rivers located >1,200 m, whereas in the late period, they all occur in fall and are regionally coherent around Vancouver Island and south coastal BC. Rivers draining eastward exhibit more positive trends over 1986–2015 compared to westward rivers. This study provides crucial information on the hydrology of mountain watersheds across British Columbia's coast in response to Pacific Decadal Oscillation phase changes, the elevational amplification of regional climate change, and their influences on precipitation and glacier retreat.  相似文献   

4.
There is increasing interest in the magnitude of the flow of freshwater to the Arctic Ocean due to its impacts on the biogeophysical and socio‐economic systems in the north and its influence on global climate. This study examines freshwater flow based on a dataset of 72 rivers that either directly or indirectly contribute flow to the Arctic Ocean or reflect the hydrologic regime of areas contributing flow to the Arctic Ocean. Annual streamflow for the 72 rivers is categorized as to the nature and location of the contribution to the Arctic Ocean, and composite series of annual flows are determined for each category for the period 1975 to 2015. A trend analysis is then conducted for the annual discharge series assembled for each category. The results reveal a general increase in freshwater flow to the Arctic Ocean with this increase being more prominent from the Eurasian rivers than from the North American rivers. A comparison with trends obtained from an earlier study ending in 2000 indicates similar trend response from the Eurasian rivers, but dramatic differences from some of the North American rivers. A total annual discharge increase of 8.7 km3/y/y is found, with an annual discharge increase of 5.8 km3/y/y observed for the rivers directly flowing to the Arctic Ocean. The influence of annual or seasonal climate oscillation indices on annual discharge series is also assessed. Several river categories are found to have significant correlations with the Arctic Oscillation, the North Atlantic Oscillation, or the Pacific Decadal Oscillation. However, no significant association with climate indices is found for the river categories leading to the largest freshwater contribution to the Arctic Ocean.  相似文献   

5.
Recently, researchers have recognized the significant role of small mountainous river systems in the transport of carbon from terrestrial environments to the ocean, and the scale of such studies have ranged from channel bed units to continents. In temperate zones, these mountain river systems commonly drain catchments that are largely forested. However, the magnitude of carbon export from rivers draining old‐growth redwood forests has not been evaluated to date. Old‐growth redwood stands support some of the largest quantities of biomass in the world, up to 350 000 Mg of stem biomass km‐2 and soil organic carbon can reach 46 800 Mg km‐2. In north coastal California, suspended sediment samples were collected at three gaging stations for two to four years on streams draining old‐growth redwood forests. Carbon content, determined through loss‐on‐ignition tests, was strongly correlated with turbidity, and continuous turbidity records from the gaging stations were used to estimate annual carbon exports of 1 · 6 to 4 · 2 Mg km‐2 yr‐1. These values, representing 13 to 33% of the suspended sediment load, are some of the highest percentages reported in the global literature. The fraction of organic carbon as part of the suspended sediment load decreased with discharge, but reached an asymptote of 5 to 10% at flows 10 to 20 times the mean annual flows. Although larger rivers in this region exhibit high sediment yields (up to 3600 Mg km‐2 yr‐1), mainly attributed to high rates of uplift, mass movement, and timber harvest, the small pristine streams in this study have sediment yields of only 8 to 100 Mg km‐2 yr‐1. Because the current extent of old‐growth redwood stands is less than 5% of its pre‐European‐settlement distribution, the present organic carbon signature in suspended sediment loads in this region is likely different from that in the early 20th century. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

6.
Two large neighbouring watersheds, the Bowron (3420 km2) and Willow (2860 km2) situated in the central interior of British Columbia, Canada, were used to compare their hydrological responses to forest harvesting in snow‐dominant environment. Both watersheds had experienced significant, comparative forest harvesting level. The long‐term hydrometric and timber harvesting data (>50 years of records) were analysed using time series analysis to examine the hydrological impacts of forest harvesting. The hydrological variables including mean, peak and low flows over annual and seasonal scales (spring snowmelt, summer rain and winter base flow) were tested separately. Results showed that forest harvesting in the Willow watershed significantly increased annual and spring mean flows as well as annual and spring peak flows, whereas it caused an insignificant change on those hydrological variables in the Bowron watershed. The contrasted differences in hydrological responses are due to the differences in topography, spatial heterogeneity, forest harvesting characteristics and climate between two watersheds. The relative uniform topography and climate in the Willow watershed may promote hydrological synchronization effects, whereas larger variation in elevations, together with forest harvesting that occurred at lower elevations, may cause hydrological de‐synchronization effect in the Bowron watershed. The contrasted results demonstrate that the effects of forest harvesting on hydrology in large watersheds are likely watershed specific, and any attempt to generalize hydrological responses to forest harvesting must be carried out with caution. A landscape ecological perspective is critically needed for future forest hydrology studies, particularly for large watersheds. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
This study analyses large wood (LW) storage and the associated effects on channel morphology and flow hydraulics in three third‐order mountain basins (drainage area 9–12 km2) covered in old‐growth Nothofagus forests, ranging from the temperate warm Chilean Andean Cordillera to the sub‐Antarctic Tierra del Fuego (Argentina). Amount, characteristics and dimensions of large wood (>10 cm diameter, >1 m long) were recorded, as well as their effects on stream morphology, hydraulics and sediment storage. Results show that major differences in LW abundance exist even between adjacent basins, as a result of different disturbance histories and basin dissection. Massive LW volumes (i.e. >1000 m3 ha?1) can be reached in basins disturbed by fires followed by mass movements and debris flows. Potential energy dissipation resulting from wood dams is about a quarter of the total elevation drop in two streams, with a gross sediment volume stored behind wood dams of around 1000 m3 km?1, which appears to be of the same order as the annual sediment yield. Finally, the presence of wood dams may increase flow resistance by up to one order of magnitude. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
High‐frequency water discharge and suspended sediment concentration (SSC) databases were collected for 3 years on four contrasted watersheds: the Asse and the Bléone (two Mediterranean rainfall regime watersheds) and the Romanche and the Ferrand (two rainfall–snowmelt regime watersheds). SSCs were calculated from turbidity recordings (1‐h time step), converted into SSC values. The rating curve was calculated by means of simultaneous SSC measurement taken by water sampling and turbidity recording. Violent storms during springtime and autumn were responsible for suspended sediment transport on the Asse and the Bléone rivers. On the Ferrand and the Romanche, a large share of suspended sediment transport was also caused by local storms, but 30% of annual fluxes results from snowmelt or icemelt which occurred from April to October. On each watershed, SSC up to 50 g l?1 were observed. Annual specific fluxes ranged from 450 to 800 t km?2 year?1 and 40–80% of annual suspended sediment fluxes occurred within 2% of the time. These general indicators clearly demonstrate the intensity of suspended sediment transport on these types of watersheds. Suspended sediment fluxes proved to be highly variable at the annual scale (inter‐annual variability of specific fluxes) as well as at the event scale (through a hysteresis loop in the SSC/Q relationship) on these watersheds. In both cases, water discharge and precipitations were the main processes involved in suspended sediment production and transport. The temporal and spatial variability of hydro‐meteorological processes on the watershed provides a better understanding of suspended sediment dynamics. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
We examine the low flow records for six urbanized watersheds in the Maryland Piedmont region and develop regression equations to predict annual minimum low flow events. The effects of both future climate (based on precipitation and temperature projections from two climate models: Hadley and the Canadian Climate Centre (CCC)) and land use change are incorporated to illustrate possible future trends in low flows. A regression modelling approach is pursued to predict the minimum annual 7‐day low flow estimates for the proposed future scenarios. A regional regression model was calibrated with between 10 and 50 years of daily precipitation, daily average temperature, annual imperviousness, and the daily observed flow time‐series across six watersheds. Future simulations based on a 55 km2 urbanizing watershed just north of Washington, DC, were performed. When land use and climate change were employed singly, the former predicted no trends in low flows and the latter predicted significant increasing trends under Hadley and no trends under CCC. When employed jointly, however, low flows were predicted to decrease significantly under CCC, whereas Hadley predicted no significant trends in low flows. Antecedent precipitation was the most influential predictor on low flows, followed by urbanization. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Three large rivers have their headwaters in the Patagonian Ice Fields (PIFs) in the Andes Mountains, the largest mid-latitude ice masses on Earth: Santa Cruz, Baker and Pascua. They are the last large free flowing rivers in Patagonia, but plans are advanced for building dams for hydroelectric power generation. The three PIF rivers, with a discharge dominated by ice melt, share a common, unique hydrograph compared to that of the other eight large rivers in the region: a distinct seasonal cycle, and an extremely stable discharge, with much lower variability than other rivers. In this study we present the first extensive survey of habitats and benthic macroinvertebrates in the least studied system, the Santa Cruz River. We assess how much of the natural capital provided and sustained by benthic invertebrates are expected to be lost by flooding and discuss how dams would affect riverine habitat and biota. In the Santa Cruz River, we conducted an intensive field survey during September 2010; a total of 52 sites located at regular 6 km intervals were sampled along the 310 river-km for macroinvertebrates and seventeen habitat variables. Although some habitat structure is apparent at the local scale, the Santa Cruz River could be described as very homogeneous. Macroinvertebrate density and the richness (38 genera) found in the Santa Cruz River resulted to be one of the lowest in comparison with 42 other Patagonian rivers. Albeit weak, the structure of the macroinvertebrates assemblages was successfully described by a reduced set of variables. The reduced flow variation and the lack of bed scouring flows have a direct and negative effect on the heterogeneity of riverbeds and banks. The high turbidity of the Santa Cruz River may also contribute to shorter food webs, by affecting autotrophic production, general trophic structure, and overall macroinvertebrate productivity and diversity. Dams will obliterate 51% of the lotic environment, including the most productive sections of the river according to our macroinvertebrate data. Since Santa Cruz River has a naturally homogeneous flow cycle, dams may provide more variable flows and more diverse habitat. Our data provide critically valuable baseline information to understand the effects of dams on the unique set of glacial driven large rivers of Patagonia.  相似文献   

11.
Tropical river basins are experiencing major hydrological alterations as a result of climate variability and deforestation. These drivers of flow changes are often difficult to isolate in large basins based on either observations or experiments; however, combining these methods with numerical models can help identify the contribution of climate and deforestation to hydrological alterations. This paper presents a study carried out in the Tapaj?s River (Brazil), a 477,000 km2 basin in South‐eastern Amazonia, in which we analysed the role of annual land cover change on daily river flows. Analysis of observed spatial and temporal trends in rainfall, forest cover, and river flow metrics for 1976 to 2008 indicates a significant shortening of the wet season and reduction in river flows through most of the basin despite no significant trend in annual precipitation. Coincident with seasonal trends over the past 4 decades, over 35% of the original forest (140,000 out of 400,000 km2) was cleared. In order to determine the effects of land clearing and rainfall variability to trends in river flows, we conducted hindcast simulations with ED2 + R, a terrestrial biosphere model incorporating fine scale ecosystem heterogeneity arising from annual land‐use change and linked to a flow routing scheme. The simulations indicated basin‐wide increases in dry season flows caused by land cover transitions beginning in the early 1990s when forest cover dropped to 80% of its original extent. Simulations of historical potential vegetation in the absence of land cover transitions indicate that reduction in rainfall during the dry season (mean of ?9 mm per month) would have had an opposite and larger magnitude effect than deforestation (maximum of +4 mm/month), leading to the overall net negative trend in river flows. In light of the expected increase in future climate variability and water infrastructure development in the Amazon and other tropical basins, this study presents an approach for analysing how multiple drivers of change are altering regional hydrology and water resources management.  相似文献   

12.
The Mackenzie River, Canada's longest and largest river system, provides the greatest Western Hemisphere discharge to the Arctic Ocean. Recent reports of declining flows have prompted concern because (1) this influences Arctic Ocean salinity, stratification and polar ice; (2) a major tributary, the Peace River, has large hydroelectric projects, and further dams are proposed; and (3) the system includes the extensive and biodiverse Peace–Athabasca, Slave and Mackenzie deltas. To assess hydrological trends over the past century that could reflect climate change, we analysed historic patterns of river discharges. We expanded the data series by infilling for short gaps, calculating annual discharges from early summer‐only records (typical r2 > 0.9), coordinating data from sequential hydrometric gauges (requiring r2 > 0.8) and advancing the data to 2013. For trend detection, Pearson correlation provided similar outcomes to non‐parametric Kendall's τ and Spearman's ρ tests. There was no overall pattern for annual flows of the most southerly Athabasca River (1913–2013), while the adjacent, regulated Peace River displayed increasing flows (1916–2013, p < 0.05). These rivers combine to form the Slave River, which did not display an overall trend (1917–2013). The more northerly, free‐flowing Liard River is the largest tributary and displayed increasing annual flows (1944–2013, p < 0.01, ~3.5% per decade) because of increasing winter, spring, and summer flows, and annual maximum and minimum flows also increased. Following from the tributary contributions, the Mackenzie River flows gradually increased (Fort Simpson 1939–2013, p < 0.05, ~1.5% per decade), but the interannual patterns for the Liard and other rivers were correlated with the Pacific Decadal Oscillation, complicating the pattern. This conclusion of increasing river flows to the Arctic Ocean contrasts with some prior reports, based on shorter time series. The observed flow increase is consistent with increasing discharges of the large Eurasian Arctic drainages, suggesting a common northern response to climate change. Analyses of historic trends are strengthened with lengthening records, and with the Pacific Decadal Oscillation influence, we recommend century‐long records for northern rivers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Recently, effects of lakes and reservoirs on river nutrient export have been incorporated into landscape biogeochemical models. Because annual export varies with precipitation, there is a need to examine the biogeochemical role of lakes and reservoirs over time frames that incorporate interannual variability in precipitation. We examined long‐term (~20 years) time series of river export (annual mass yield, Y, and flow‐weighted mean annual concentration, C) for total nitrogen (TN), total phosphorus (TP), and total suspended sediment (TSS) from 54 catchments in Wisconsin, USA. Catchments were classified as small agricultural, large agricultural, and forested by use of a cluster analysis, and these varied in lentic coverage (percentage of catchment lake or reservoir water that was connected to river network). Mean annual export and interannual variability (CV) of export (for both Y and C) were higher in agricultural catchments relative to forested catchments for TP, TN, and TSS. In both agricultural and forested settings, mean and maximum annual TN yields were lower in the presence of lakes and reservoirs, suggesting lentic denitrification or N burial. There was also evidence of long‐term lentic TP and TSS retention, especially when viewed in terms of maximum annual yield, suggesting sedimentation during high loading years. Lentic catchments had lower interannual variability in export. For TP and TSS, interannual variability in mass yield was often >50% higher than interannual variability in water yield, whereas TN variability more closely followed water (discharge) variability. Our results indicate that long‐term mass export through rivers depends on interacting terrestrial, aquatic, and meteorological factors in which the presence of lakes and reservoirs can reduce the magnitude of export, stabilize interannual variability in export, as well as introduce export time lags. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Beavers can profoundly alter riparian environments, most conspicuously by creating dams and wetlands. Eurasian beaver (Castor fiber) populations are increasing and it has been suggested they could play a role in the provision of multiple ecosystem services, including natural flood management. Research at different scales, in contrasting ecosystems is required to establish to what extent beavers can impact on flood regimes. Therefore, this study determines whether flow regimes and flow responses to storm events were altered following the building of beaver dams and whether a flow attenuation effect could be significantly attributed to beaver activity. Four sites were monitored where beavers have been reintroduced in England. Continuous monitoring of hydrology, before and after beaver impacts, was undertaken on streams where beavers built sequences of dams. Stream orders ranged from 2nd to 4th, in both agricultural and forest-dominated catchments. Analysis of >1000 storm events, across four sites showed an overall trend of reduced total stormflow, increased peak rainfall to peak flow lag times and reduced peak flows, all suggesting flow attenuation, following beaver impacts. Additionally, reduced high flow to low flow ratios indicated that flow regimes were overall becoming less “flashy” following beaver reintroduction. Statistical analysis, showed the effect of beaver to be statistically significant in reducing peak flows with estimated overall reductions in peak flows from −0.359 to −0.065 m3 s−1 across sites. Analysis showed spatial and temporal variability in the hydrological response to beaver between sites, depending on the level of impact and seasonality. Critically, the effect of beavers in reducing peak flows persists for the largest storms monitored, showing that even in wet conditions, beaver dams can attenuate average flood flows by up to ca. 60%. This research indicates that beavers could play a role in delivering natural flood management.  相似文献   

15.
The low and high flow characteristic of the Blue Nile River (BNR) basin is presented. The study discusses low and high flow, flow duration curve (FDC) and trend analysis of the BNR and its major tributaries. Different probability density functions were fitted to better describe the low and high flows of the BNR and major tributaries in the basin. Wavelet analysis was used in understanding the variance and frequency‐time localization and detection of dominant oscillations in rainfall and flow. FDCs were developed, and low flow (below 50% exceedance) and high flow (over 75% exceedance) of the curves were analysed and compared. The Gravity Recovery and Climate Experiment (GRACE) satellite‐based maps of monthly changes in gravity converted to water equivalents from 2003 to 2006 for February, May and September showed an increase in the moisture influx in the BNR basin for the month of September, and loss of moisture in February and May. It was also shown that 2004 and 2005 were drier with less moisture influx compared to 2003 and 2006. On the basis of the Kolmogorov‐Smirnov, Anderson‐Darling and Chi‐square tests, Gen. Pareto, Frechet 3P, Log‐normal, Log‐logistics, Fatigue Life and Phased Bi‐Weibull distributions best describe the low and high flows within the BNR basin. This will be beneficial in developing flow hydrographs for similar ungauged watersheds within the BNR basin. The below 50% and above 75% exceedance on the FDC for five major rivers in addition to the BNR showed different characteristics depending on size, land cover, topography and other factors. The low flow frequency analysis of the BNR at Bahir Dar showed 0·55 m3/s as the monthly low flow with recurrence interval of 10 years. The wavelet analysis of the rainfall (at Bahir Dar and basin‐wide) and flows at three selected stations shows inter‐ and intra‐annual variability of rainfall and flows at various scales. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Hydrological regimes strongly influence the biotic diversity of river ecosystems by structuring physical habitat within river channels and on floodplains. Modification of hydrological regimes by dam construction can have important consequences for river ecosystems. This study examines the impacts of the construction of two dams, the Gezhouba Dam and the Three Gorges Dam, on the hydrological regime of the Yangtze River in China. Analysis of hydrological change before and after dam construction is investigated by evaluating changes in the medians and ranges of variability of 33 hydrological parameters. Results show that the hydrological impact of the Gezhouba Dam is relatively small, affecting mainly the medians and variability of low flows, the rate of rise, and the number of hydrological reversals. The closure of the Three Gorges Dam has substantially altered the downstream flow regime, affecting the seasonal distribution of flows, the variability of flows, the magnitude of minimum flows, low‐flow pulses, the rate of rise, and hydrological reversals. These changes in flow regime have greatly influenced the aquatic biodiversity and fish community structure within the Yangtze River. In particular, populations of migratory fish have been negatively impacted. The results help to identify the magnitudes of hydrological alteration associated with the construction of dams on this important large river and also provide useful information to guide strategies aimed at restoration of the river's ecosystems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
To maintain a reasonable sediment regulation system in the middle reaches of the Yellow River, it is critical to determine the variation in sediment deposition behind check‐dams for different soil erosion conditions. Sediment samples were collected by using a drilling machine in the Fangta watershed of the loess hilly–gully region and the Manhonggou watershed of the weathered sandstone hilly–gully (pisha) region. On the basis of the check‐dam capacity curves, the soil bulk densities and the couplet thickness in these two small watersheds, the sediment yields were deduced at the watershed scale. The annual average sediment deposition rate in the Manhonggou watershed (702.0 mm/(km2·a)) from 1976 to 2009 was much higher than that in the Fangta watershed (171.6 mm/(km2·a)) from 1975 to 2013. The soil particle size distributions in these two small watersheds were generally centred on the silt and sand fractions, which were 42.4% and 50.7% in the Fangta watershed and 60.6% and 32.9% in the Manhonggou watershed, respectively. The annual sediment deposition yield exhibited a decreasing trend; the transition years were 1991 in the Fangta watershed and 1996 in the Manhonggou watershed (P < 0.05). In contrast, the annual average sediment deposition yield was much higher in the Manhonggou watershed (14011.1 t/(km2·a)) than in the Fangta watershed (3149.6 t/(km2·a)). In addition, the rainfalls that induced sediment deposition at the check‐dams were greater than 30 mm in the Fangta watershed and 20 mm in the Manhonggou watershed. The rainfall was not the main reason for the difference in the sediment yield between the two small watersheds. The conversion of farmland to forestland or grassland was the main reason for the decrease in the soil erosion in the Fangta watershed, while the weathered sandstone and bare land were the main factors driving the high sediment yield in the Manhonggou watershed. Knowledge of the sediment deposition process of check‐dams and the variation in the catchment sediment yield under different soil erosion conditions can serve as a basis for the implementation of improved soil erosion and sediment control strategies, particularly in semi‐arid hilly–gully regions. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

18.
Rivers in the Mediterranean region often exhibit an intermittent character. An understanding and classification of the flow regimes of these rivers is needed, as flow patterns control both physicochemical and biological processes. This paper reports an attempt to classify flow regimes in Mediterranean rivers based on hydrological variables extracted from discharge time series. Long‐term discharge records from 60 rivers within the Mediterranean region were analysed in order to classify the streams into different flow regime groups. Hydrological indices (HIs) were derived for each stream and principal component analysis (PCA) and then applied to these indices to identify subsets of HIs describing the major sources of variations, while simultaneously minimizing redundancy. PCA was performed for two groups of streams (perennial and temporary) and for all streams combined. The results show that whereas perennial streams are mainly described by high‐flow indices, temporary streams are described by duration, variability and predictability indices. Agglomerative cluster analysis based on HIs identified six groups of rivers classified according to differences in intermittency and variability. A methodology allowing such a classification for ungauged catchments was also tested. Broad‐scale catchment characteristics based on digital elevation, climate, soil and land use data were derived for each long‐term station where these data were available. By using stepwise multiple regression analysis, statistically significant relationships were fitted, linking the three selected hydrological variables (mean annual number of zero‐flow days, predictability and flashiness) to the catchment characteristics. The method provides a means of simplifying the complexity of river systems and is thus useful for river basin management. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
This study presents the data collected within the framework of an Observatory of Research in Environment on the Amazonian Basin—the ORE HYBAM. It relates to the dissolved and solid loads of the two main rivers of French Guiana, the Maroni and Oyapock rivers, running on the Guiana Shield and draining respectively 64 230 and 24 630 km2. The low coefficient of variation of the average annual flows of the two rivers indicates an inter‐annual hydrological stability probably related to the immediate vicinity of the Atlantic Ocean. The sedimentary load is mainly composed of quartz and kaolinite. The total suspended solid (TSS) concentrations are among the world's lowest values; they range from 1 to 130 mg l−1 during the hydrological cycle, with averages of 22 and 12 mg l−1, for the Maroni and Oyapock rivers, respectively. The seasonal variability of these values is significantly higher than that of hydrologic flows, but without simple relationship with the discharge. Water chemical composition of the two rivers indicates a very weak mineralization, very similar to that found in the Amazonian rivers running on the Brazilian and Guianese shields, and in the Congo River and its tributaries in the Central African Shield. Seasonal variations are observed in both basins; they correspond to higher concentrations during low water stage (from October to February) and to more diluted water during the flood, from April to July. A signature enriched in Cl is present at the Saut Maripa station on the Oyapock River indicating a more marked influence of the trade winds in this basin. The computation of atmospheric contributions to ions budget indicated a weak contribution for Ca2+ and Mg2+, which originates mainly from water‐rock interactions in both stations, while more than half of Na+ is derived from atmospheric inputs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Bankfull discharge was identified in some 30 gravel-bed rivers representing in total c. 40 gauging stations. The catchment sizes cary from 4km2 to nearly 2700km2. Bankfull discharge value increases with basin size. In the case of gravel-bed rivers developed on an impermeable substratum, the following equation emerges: Qb=0·087 A1·044. Bankfull discharge recurrence interval was determined by fitting maximum annual floods (Ta) into Gumbel's distribution and then using the partial duration series (Tp) in this same distribution. Recurrence interval is below 0·7 years (Tp) for small pebble-bed rivers developed on an impermeable substratum; it reaches 1·1 to 1·5 years when the catchment size of these rivers exceeds 250km2. Rivers incised in the soft schists of the Famenne show larger channel capacity at bankfull stage, a small width/depth ratio and thus higher recurrence intervals (1·4–5·3 years with Ta and 1–4·4 years with Tp). Baseflow-dominated gravel-bed streams and sandy or silty rivers experience less frequent bankfull discharges, with a recurrence interval higher than 2 or even 3 years (Tp). © 1997 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号