首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
David King 《Natural Hazards》2008,47(3):497-508
The concept of a natural hazard is a human construct. It is the interaction with human communities and settlements that defines a natural phenomenon as a natural hazard. Thus the end point of hazard mitigation and hazard vulnerability assessment must involve an attempt to reduce, or mitigate, the impact of the natural hazard on human communities. The responsibility to mitigate hazard impact falls primarily upon governments and closely connected non-government and private institutional agencies. In particular, it is most often local government that takes the responsibility for safeguarding its own communities, infrastructure and people. Hazard vulnerability of specific local communities is best assessed by the local government or council, which then faces the responsibility to translate that assessment into community education and infrastructural safeguards for hazard mitigation. This paper illustrates the process of local government engagement in hazard mitigation in Australia, through the Natural Disaster Risk Management Studies, as a first step towards natural disaster reduction.  相似文献   

2.
Mountain hazards such as landslides, floods and avalanches pose a serious threat to human lives and development and can cause considerable damage to lifelines, critical infrastructure, agricultural lands, housing, public and private infrastructure and assets. The assessment of the vulnerability of the built environment to these hazards is a topic that is growing in importance due to climate change impacts. A proper understanding of vulnerability will lead to more effective risk assessment, emergency management and to the development of mitigation and preparedness activities all of which are designed to reduce the loss of life and economic costs. In this study, we are reviewing existing methods for vulnerability assessment related to mountain hazards. By analysing the existing approaches, we identify difficulties in their implementation (data availability, time consumption) and differences between them regarding their scale, the consideration of the hazardous phenomenon and its properties, the consideration of important vulnerability indicators and the use of technology such as GIS and remote sensing. Finally, based on these observations, we identify the future needs in the field of vulnerability assessment that include the user-friendliness of the method, the selection of all the relevant indicators, the transferability of the method, the inclusion of information concerning the hazard itself, the use of technology (GIS) and the provision of products such as vulnerability maps and the consideration of the temporal pattern of vulnerability.  相似文献   

3.
Bangladesh is one of the most natural hazard-prone countries in the world with the greatest negative consequences being associated with cyclones, devastating floods, riverbank erosion, drought, earthquake, and arsenic contamination, etc. One way or other, these natural hazards engulfed every corner of Bangladesh. The main aim of this research paper is to carry out a multi-hazards risk and vulnerability assessment for the coastal Matlab municipality in Bangladesh and to recommend possible mitigation measures. To this aim, hazards are prioritized by integrating SMUG and FEMA models, and a participation process is implemented so as to involve community both in the risk assessment and in the identification of adaptation strategies. The Matlab municipality is highly vulnerable to several natural hazards such as cyclones, floods, and riverbank erosion. The SMUG is a qualitative assessment, while FEMA is a quantitative assessment of hazards. The FEMA model suggests a threshold of highest 100 points. All hazards that total more than 100 points may receive higher priority in emergency preparedness and mitigation measures. The FEMA model, because it judges each hazard individually in a numerical manner, may provide more satisfying results than the SMUG system. The spatial distributions of hazard, risk, social institutions, land use, and other resources indicate that the flood disaster is the top environmental problem of Matlab municipality. Hazard-specific probable mitigation measures are recommended with the discussion of local community. Finally, this study tries to provide insights into the way field research combining scientific assessments tools such as SMUG and FEMA could feed evidence-based decision-making processes for mitigation in vulnerable communities.  相似文献   

4.
滑坡灾害风险评价的关键理论与技术方法   总被引:3,自引:1,他引:2  
滑坡灾害风险评估主要包括滑坡敏感性分析、危险性评价和风险评估3个不同层次的内容。但是,滑坡地质灾害本身的复杂性和滑坡强度的确定、滑坡发生的时空概率估算、承灾体的易损性时空概率分析等难点问题的存在,无疑阻碍了滑坡风险定量评估的推广和应用。在系统分析国内外滑坡灾害风险评估研究成果的基础上,对滑坡灾害风险评价的技术体系进行了总结,提出了不同层次滑坡灾害的研究内容和相应的评价方法;分析了实现滑坡风险有效评价涉及到的难点问题,并结合降雨和地震诱发的滑坡灾害危险性评价国内外的实践,提出了中国未来滑坡灾害风险评价研究的主要内容和技术方法。  相似文献   

5.
Even advanced technological societies are vulnerable to natural disasters, such as the 2011 Tohoku earthquake and tsunami, and financial disasters, such as the 2008 collapse of the US housing and financial markets. Both resulted from unrecognized or underappreciated weaknesses in hazard assessment and mitigation policies. These policies relied on models that proved inadequate for reasons including inaccurate conceptualization of the problem, use of a too-short historic record, and neglect of interconnections. Japanese hazard models did not consider the possibility of multiple fault segments failing together, causing a much larger earthquake than anticipated, and neglected historical data for much larger tsunamis than planned for. Mitigation planning underestimated the vulnerability of nuclear power plants, due to a belief in nuclear safety. The US economic models did not consider the hazard that would result if many homeowners could not pay their mortgages, and assumed, based on a short history, that housing prices would keep rising faster than interest rates. They did not anticipate the vulnerability of the financial system to a drop in housing prices, due to belief that markets functioned best without government regulation. Preventing both types of disasters from recurring involves balancing the costs and benefits of mitigation policies. A crucial aspect of this balancing is that the benefits must be estimated using models with significant uncertainties to infer the probabilities of the future events, as we illustrate using a simple model for tsunami mitigation. Improving hazard models is important because overestimating or underestimating the hazard leads to too much or too little mitigation. Thus, although one type of disaster has natural causes and the other has economic causes, comparison provides insights for improving hazard assessment and mitigation policies. Instead of viewing such disasters as unpredictable and unavoidable “black swan” events, they are better viewed as “gray swans” that—although novel and outside recent experience—can be better foreseen and mitigated.  相似文献   

6.
Understanding the complexity of vulnerability to disasters, including those triggered by floods, droughts and epidemics is at the heart of disaster risk reduction. Despite its importance in disaster risk reduction, there remains a paucity of approaches that contribute to our understanding of social vulnerability that is hidden in dynamic contextual conditions. The study demonstrates an accessible means to assessing the spatial variation of social vulnerability to flood hazards and related for the context of Muzarabani district in northeast Zimbabwe. The study facilitated local identification with residents of variables contributing to social vulnerability and used the principal component analysis (PCA) technique to develop a social vulnerability index (SoVI). Using ArcMap10.2 geographic information systems (GIS) tool, the study mapped composite SoVI at the ward level. The results showed that Muzarabani district is socially vulnerable to hazards. The social vulnerability is influenced by a variety of economic, social and institutional factors that vary across the wards. Quantifying and visualising social vulnerability in Muzarabani provides useful information for decision makers to support disaster preparedness and mitigation programmes. The approach shows how spatially distributed multivariate vulnerability, as grounded in interpretations at local level, can be quantitatively derived for contexts such as those of Muzarabani. The study findings can inform disaster risk reduction communities and cognate disciplines on quantitative assessments for managing hazard vulnerability where these have hitherto not been developed.  相似文献   

7.
Drought risk assessment in the western part of Bangladesh   总被引:14,自引:8,他引:6  
Though drought is a recurrent phenomenon in Bangladesh, very little attention has been so far paid to the mitigation and preparedness of droughts. This article presents a method for spatial assessment of drought risk in Bangladesh. A conceptual framework, which emphasizes the combined role of hazard and vulnerability in defining risk, is used for the study. Standardized precipitation index method in a GIS environment is used to map the spatial extents of drought hazards in different time steps. The key social and physical factors that define drought vulnerability in the context of Bangladesh are identified and corresponding thematic maps in district level are prepared. Composite drought vulnerability map is developed through the integration of those thematic maps. The risk is computed as the product of the hazard and vulnerability. The result shows that droughts pose highest risk to the northern and northwestern districts of Bangladesh.  相似文献   

8.
Iran is one of the most seismically active countries of the world located on the Alpine-Himalayan earthquake belt. More than 180,000 people were killed due to earthquakes in Iran during the last five decades. Considering the fact that most Iranians live in masonry and non-engineered houses, having a comprehensive program for decreasing the vulnerability of society holds considerable importance. For this reason, loss estimation should be done before an earthquake strikes to prepare proper information for designing and selection of emergency plans and the retrofitting strategies prior to occurrence of earthquake. The loss estimation process consists of two principal steps of hazard analysis and vulnerability assessment. After identifying the earthquake hazard, the first step is to evaluate the vulnerability of residential buildings and lifelines and also the social and economic impacts of the earthquake scenarios. Among these, residential buildings have specific importance, because their destruction will disturb the daily life and result in casualties. Consequently, the vulnerability assessment of the buildings in Iran is important to identify the weak points in the built environment structure. The aim of this research is to prepare vulnerability curves for the residential buildings of Iran to provide a proper base for estimating probable damage features by future earthquakes. The estimation may contribute fundamentally for better seismic performance of Iranian societies. After a brief review of the vulnerability assessment methods in Iran and other countries, through the use of the European Macroseismic method, a model for evaluating the vulnerability of the Iranian buildings is proposed. This method allows the vulnerability assessment for numerous sets of buildings by defining the vulnerability curves for each building type based on the damage observations of previous earthquakes. For defining the vulnerability curves, a building typology classification is presented in this article, which is representative of Iranian building characteristics. The hazard is described in terms of the macroseismic intensity and the EMS-98 damage grades have been considered for classifying the physical damage to the buildings. The calculated vulnerability indexes and vulnerability curves show that for engineered houses there is not any notable difference between the vulnerability of Iranian and Risk-UE building types. For the non-engineered houses, the vulnerability index of brick and steel structures is less than the corresponding values of the other unreinforced masonry buildings of Iran. The vulnerability index of unreinforced and masonry buildings of Iran are larger than the values of the similar types in Risk-UE and so the Iranian buildings are more vulnerable in this regard.  相似文献   

9.
This paper presents the results of a research aiming natural and technological hazard, and risk assessment and mapping in Web-based holistic geographic environment, and the implementation of the Sendai Framework for Disaster Risk Reduction 2015–2030 in Armenia. A common spatial multi-criteria evaluation method was used for natural and technological hazard, risk and population vulnerability assessments. The virtual geographic environment developed by the authors during the previous period of investigations was upgraded and used for the implementation of this research. It involves the following components: 1. geodatabase, 2. modeling and simulation, 3. interface for digital mapping, 4. metadata, 5. Web–based network service for collaboration. Moreover, the country specific natural and technological hazard, risk and population vulnerability assessment methods were developed, implemented, and appropriate digital maps were created.  相似文献   

10.
This article contributes to the development and application of two latest-generation methods of seismic risk analysis in urban areas. The first method, namely vulnerability index method (VIM), considers five non-null damage states, defines the action in terms of macroseismic intensity and the seismic quality of the building by means of a vulnerability index. The estimated damage degree is measured by semi-empirical functions. The second method, namely capacity spectrum based method (CSBM), considers four no damage states, defines the seismic action in terms of response spectra and the building vulnerability by means of its capacity spectrum. In order to apply both methods to Barcelona (Spain) and compare the results, a deterministic and a probabilistic hazard scenario with soil effects are used. The deterministic one corresponds to a historic earthquake, while the probabilistic seismic ground motion has a probability of exceedence of 10% in 50 years. Detailed information on the building design has been obtained along years by collecting, arranging, improving, and completing the database of the dwellings of the city. A Geographic Information System (GIS) has been customized allowing storing, analysing, and displaying this large amount of spatial and tabular data of dwellings. The obtained results are highly consistent with the historical and modern evolution of the populated area and show the validity and strength of both methods. Although Barcelona has a low to moderate seismic hazard, its expected seismic risk is significant because of the high vulnerability of its buildings. Cities such as Barcelona, located in a low to moderate seismic hazard region, are usually not aware of the seismic risk. The detailed risk maps obtained offer a great opportunity to guide the decision making in the field of seismic risk prevention and mitigation in Barcelona, and for emergency planning in the city.  相似文献   

11.
Standardization of vulnerability maps   总被引:3,自引:0,他引:3  
Groundwater vulnerability assessment schemes are used for the estimation of potential groundwater contamination at different scales and on different administrative levels. However, the term vulnerability is not standardized and the available methods are not able to give a unique assessment of vulnerability creating thus uncertainty in the interpretation and in further application concerning decision creation processes. To judge the information of vulnerability maps certainly and to value the general trends of vulnerability assessment of different methods, four different vulnerability methods of the parametric system group have been applied on a karst area in southwestern Germany to perform a comparative assessment and correlation of these vulnerability assessment methods, namely DRASTIC, PI, EPIK, and GLA. It is shown that by means of simple statistical considerations the first highly different vulnerability maps could be made more coherent after reclassification. The reclassified vulnerability assessments show a more consistent vulnerability distribution pattern and provide the possibility of area-wide validation of the maps as the chosen vulnerability classification is theoretically connected to the mean transit time of percolation water and is largely independent of the applied vulnerability assessment method.  相似文献   

12.
塌岸灾害风险与塌岸灾害特点及人类社会经济活动密切相关,其风险评价涉及诸多因素.将信息量法应用于塌岸灾害风险预测库,建立了相关的信息量模型及评价指标;以重庆万州区和平广场地段为例,在三峡水库蓄水条件下,分别对塌岸灾害的危险性、易损性、风险性进行了综合预测研究.研究结果表明,塌岸评价指标选取合理,塌岸高危险性的单元与不良地质现象、库岸侵蚀和库岸类型密切相关;塌岸灾害易损性与人类社会经济活动及不良地质现象相关;塌岸高风险区主要集中在塌岸高危险性及高易损性单元,或受人口、建筑物分布影响的塌岸中等危险性的单元.  相似文献   

13.
由于潮滩组成要素不稳定、地理区位特殊以及人为因素的制约,导致潮滩极易受外在和内在因素的影响,发生自然系统脆弱性(包括固有脆弱性和特殊脆弱性)。在总结国内外关于潮滩脆弱性评估方法(诸如综合指数法、层次分析法等综合评估方法以及主成分分析法、高程面积法等单一影响评价法)基础上,根据潮滩脆弱性评估的选择原则,构建了潮滩脆弱性评估指标体系,以期为沿海地区的可持续发展提供理论和技术支撑。  相似文献   

14.
Determination of the priorities for improvement of vulnerable urban fabrics based on a comprehensive assessment is among the main desires of local governments in earthquake-prone countries like Iran. However, in most countries, the comprehensive and absolute estimation of seismic risk is not possible due to shortages of the required data. In this paper, a new method is proposed for estimation of the risk through combination of hazard, vulnerability and response capacity indicators. Also, new evaluation methods based on relative scheme are presented for simple quantification of indicators in urban areas suffering from limited or insufficient database. For this purpose, important vulnerability parameters at urban areas are classified into physical, human life and socioeconomic groups. New hazard factors are also defined to evaluate the risk through combination of each vulnerability indicator and its directly related hazard factor. In addition, the capacity of response activities is accounted for in the model using planning, resource, accessibility and evacuation capacity indicators. The post-earthquake reduction of response capacity is also measured by means of reduction factors. Then, total relative seismic risk index is defined and calculated at each urban division (or zone) by weighted combination of the mentioned risk and response capacity indicators. This index represents the state of the risk in each zone in comparison with the others. The proposed method is applied to assess the earthquake risk at 22 municipal districts of Tehran. The results show that physical, human life and overall risk indices in district 15 of the city are considerably greater than the others. Meanwhile, in socioeconomic aspects, district 6 has the highest risk. Also, the analysis of the results demonstrates the major contribution of the response capacity term to determine the mitigation priorities. Finally, the results are compared with JICA (2000), using the same data, to show the efficiency of the proposed model. It is shown that the introduced method can significantly improve the results of the risk estimation and mitigation priorities.  相似文献   

15.
In order to develop efficient strategies for risk mitigation and emergency management, planners require the assessment of both the expected hazard (frequency and magnitude) and the vulnerability of exposed elements. This paper presents a GIS-based methodology to produce qualitative to semi-qualitative thematic risk assessments for tephra fallout around explosive volcanoes, designed to operate with datasets of variable precision and resolution depending on data availability. Due to the constant increase in population density around volcanoes and to the wide dispersal of tephra from volcanic plumes, a large range of threats, such as roof collapses, damage to crops, blockage of vital lifelines and health problems, concern even remote communities. To address these issues, we have assessed the vulnerability and the risk levels for five themes relevant to tephra fallout: (1) social, (2) economic, (3) environmental, (4) physical and (5) territorial. Risk and vulnerability indices for each theme are averaged to the fourth level of administrative unit (parroquia, parish). In a companion paper, Biass and Bonadonna (this volume) present a probabilistic hazard assessment for tephra fallout at Cotopaxi volcano (Ecuador) using the advection-diffusion model TEPHRA2, which is based on field investigations and a global eruption database (Global Volcanism Program, GVP). The scope of this paper is to present a new approach to risk assessment specifically designed for tephra fallout, based on a comprehensive hazard assessment of Cotopaxi volcano. Our results show that an eruption of moderate magnitude (i.e. VEI 4) would result in the possible collapse of ??9,000 houses in the two parishes located close to the volcano. Our study also reveals a high risk on agriculture, closely linked to the economic sector, and a possible accessibility problem in case of an eruption of any size, as tephra is likely to affect the only major road running from Quito to Latacunga (Panamerican Highway). As a result, this method fits into the ongoing effort to better characterize and evaluate volcanic risk, and more specifically the risk associated with tephra fallout. Although this methodology relies on some assumptions, it can serve as a rapid and efficient starting point for further investigations of the risk level around explosive volcanoes.  相似文献   

16.
A practical issue is present in sustaining and rehabilitating the ecologically vulnerable post-mining area in which the environmental condition varies spatially and therefore influenced by multiple factors. This paper attempts to integrate the ecological vulnerability assessment and rehabilitation treatment to assist land managers in revealing vulnerable features along with developing treatments of vulnerability mitigation. Using a post-mining site in a mountainous area in western China as study area, an indicator system and framework for assessing and reducing vulnerability were developed based on a vulnerability analysis. Geo-informatics, such as satellite image processing and spatial analysis, were employed to perform the assessment and planning. It was found that higher exposure and sensitivity are the main causes of increased vulnerability in a seriously disturbed post-mining area. Rehabilitation treatments were arranged spatially and structurally based on the framework of vulnerability mitigation. A pre-evaluation of the effectiveness shows this type of rehabilitation has a convergence effect that clusters and lowers the ecological vulnerability index (EVI). The average value of EVI will be reduced by 15.02% if the minimum standards of rehabilitation can be completed. Altogether, an integration of rehabilitation treatments and the quantification of vulnerability in a spatially explicit manner are critical for planners to gain more insight into ecological vulnerability in post-mining area, which provides guidance to simplify rehabilitation planning with respect to vulnerability mitigation.  相似文献   

17.
Mountain hazards: reducing vulnerability by adapted building design   总被引:4,自引:0,他引:4  
Despite the long tradition of technical mitigation on a catchment scale in European mountain regions, losses due to mountain hazards are still considerably high in number and monetary loss. Therefore, the concept of technical mitigation had been supplemented by land-use planning and, more recently, local structural protection. Local structural protection includes measures directly implemented at or adjacent to endangered objects, and has proven to be particularly cost-effective with respect to integral risk management strategies. However, the effect of local structural protection in reducing the vulnerability of elements at risk, and the associated consequences with respect to a reduction of structural vulnerability have not been quantified so far. Moreover, there is a particular gap in quantifying the expenditures necessary for local structural protection measures. Therefore, a prototype of residential building adapted to mountain hazards is presented in this study. This prototype is equipped with various constructional elements to resist the incurring impact forces, i.e., of fluvial sediment transport and of snow avalanches. According to possible design loads emerging from these hazard processes, the constructive design necessary is presented, and the amount of additional costs required for such an adaptation is presented. By comparing these costs with quantitative loss data it is shown that adapted building design is particularly effective to reduce the consequences of low-magnitude, high-frequency events in mountain regions.  相似文献   

18.
Vulnerability studies have evolved significantly in recent decades. Although not overly theoretical compared with some other fields of science, some important conceptual progress has been made. At the practical level, vulnerability indicators have been used either at a generic level or for particular hazard contexts. However, these indicators are often predictably too narrow in their coverage of aspects of vulnerability. An important need remains to produce more conceptually informed vulnerability indicators or parameters and more satisfactory operational tools to assess weaknesses and resilience in coping with natural risks. In this paper, we present the methodology developed in the context of a recently concluded EU funded project, ENSURE (Enhancing resilience of communities and territories facing natural and na-tech hazards). The resulting vulnerability and resilience assessment framework tool adopts a systemic approach embedding and integrating as much as possible the multifaceted and articulated nature of concepts such as vulnerability and resilience. The tool guides evaluators towards a comprehensive and context-related understanding of strengths and fragilities of a given territory and community with respect to natural extremes. In this paper, both the framework tool and its application to Sondrio in Italy, which is exposed to flash floods, are presented and discussed. The merits and demerits of the new tool are discussed, and the results of the application to Sondrio indicate where data are currently missing, suggesting the kind of data, which will need to be gathered in future to achieve more complete assessments. The results also suggest vulnerability reduction policies and actions and further ways of revising the existing framework tool in the future.  相似文献   

19.
Adaptation to climate change in agricultural settings depends on understanding farmers’ perceptions of the nature of climate change, their agency in adapting and the efficacy of adaptive measures themselves. Such knowledge can improve mitigation and adaptation strategies. This study addresses the limited understanding of how farmers appraise their private adaptive measures and influential factors. It uses data from structured interviews with 598 rice farmers in the Mekong Delta, Vietnam. Based on protection motivation theory, farmers’ assessments of private adaptive measures were measured by perceived self-efficacy, perceived adaptation efficacy and perceived adaptation cost. Multiple regressions were used to understand significant factors affecting those assessments. Some demographic and socio-economic factors, belief in climate change, information and objective resources were found to influence farmers’ adaptation assessments. It is shown that the sources and quality of information are particularly important. The improvement of both the accessibility and usefulness of local services (e.g. irrigation, agricultural extension, credit and health care) is deemed a necessity for successful adaptation strategies in the Mekong Delta. The paper also shows the application of PMT in measuring farmers’ appraisals of private adaptive measures to climate change, thereby opening this area for further research.  相似文献   

20.
以受山洪灾害影响突出的云南文山城区为研究区,从承灾体属性特征和社会承灾能力二个方面探讨了城市山洪灾害易损性分析的方法;利用高分辨率遥感卫星影像为数据源完成城市土地覆盖类型解译,在此基础上应用GIS定量分析城市山洪灾害易损性。对承灾体属性特征定量分析结果表明,文山城区50年一遇山洪淹没范围内的承灾体中城市房屋建筑的易损性最大。对易损性要素中的社会承灾能力分析认为,由于文山城区段防洪河道行洪能力低,蓄滞洪能力弱。山洪灾害的易损性仍然较高,山洪对文山城威胁形势严峻。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号