首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 526 毫秒
1.
A validation study of the distinct lattice spring model (DLSM) for wave propagation problems is performed. DLSM is a microstructure-based numerical model, which is meshless and has advantages in modelling dynamic problems where stress wave propagation is important. To verify the applicability of DLSM to modelling wave propagation through a discontinuous medium, the virtual wave source (VWS) method is used to obtain analytical solutions for wave propagation across a jointed rock mass. Numerical modelling results of the commercial code UDEC are selected as the reference. The effects of particle size and lattice rotation angle on wave propagation are first studied. Then, the results of wave transmission across a single joint with a different joint stiffness and across multiple parallel joints with different joint spacings are derived with DLSM, UDEC and VWS. These results are in good agreement with each other. Therefore, the capability of DLSM to model P-wave propagation across jointed rock mass is verified, which provides confidence for the further application of DLSM to modelling more complex problems.  相似文献   

2.
Stress wave attenuation across fractured rock masses is a great concern of underground structure safety. When the wave amplitude is large, fractures experience nonlinear deformation during the wave propagation. This paper presents a study on normal transmission of P‐wave across parallel fractures with nonlinear deformational behaviour (static Barton–Bandis model). The results show that the magnitude of transmission coefficient is a function of incident wave amplitude, nondimensional fracture spacing and number of fractures. Two important indices of nondimensional fracture spacing are identified, and they divide the area of nondimensional fracture spacing into three parts (individual fracture area, transition area and small spacing area). In the different areas, the magnitude of transmission coefficient has different trends with nondimensional fracture spacing and number of fractures. In addition, the study reveals that under some circumstances, the magnitude of transmission coefficient increases with increasing number of fractures, and is larger than 1. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
The existence of joint fissures makes explosive actions between rock masses more complex. Therefore, it is of great significance to carry out experiments studying blasting stress waves propagating in jointed rock masses. Based on the Froude Similarity principle, the geological mechanical models of intact rock masses and jointed rocks have been proposed. A blasting vibration experiment was carried out and demonstrated that the propagation of the blasting stress waves and changing structures have an important relationship. A numerical simulation of the blasting stress wave propagation law in a layered jointed rock mass was carried out. This study found that with an increase in the joint angle, the peak velocity of blasting stress wave, transmission coefficient and reflection coefficient all gradually increased, while the attenuation coefficient gradually decreased. With an increase in joint spacing, the attenuation rate of the blasting stress waves increased.  相似文献   

4.
节理岩体中应力波传播规律研究的进展   总被引:10,自引:1,他引:10  
讨论了位移不连续模型与特征值法结合的方法,对垂直于单一线性变形节理、多个平行线性变形节理、单一非线性变形节理,分别采用线性变形不连续模型、双曲线变形不连续模型(BB模型)进行的理论与相应的实验研究。用离散元程序UDEC,对上述问题进行数值模拟;用三维离散元程序3DEC,对节理岩体中三维波的传播进行的数值模拟。并用UDEC与有限差分程序AUTODYN-2D耦合,模拟爆炸过程及爆炸波在节理岩体中的传播。同时提出了几个有待研究的问题。  相似文献   

5.
节理岩体蠕变特性研究   总被引:13,自引:3,他引:10  
杨松林  张建民  黄启平 《岩土力学》2004,25(8):1225-1228
在已知岩石和节理蠕变规律的前提下,推导了节理岩体蠕变模型的一般表达式。假定岩石体积变形和节理法向压缩变形为弹性变形,忽略节理的剪胀现象,认为只有岩石畸变和节理剪切滑移与时间有关,从而推导了含三组相交节理的岩体蠕变模型及其参数。根据反演出的岩石和节理蠕变模型,计算了含三组相交节理的岩体在单轴应力作用下一些节理参数对岩体单轴蠕变的影响。分析表明,节理间距、剪胀系数以及节理夹角都对岩体的单轴蠕变变形有明显影响。节理间距越大,剪胀系数越大,节理夹角越小,节理岩体的单轴蠕变柔量也就越小,岩体的蠕变变形也越小。  相似文献   

6.
节理岩体几何结构非常复杂,研究其渗流特性对于指导含水岩层稳定性分析具有重要价值。应用离散裂隙网络模型DFN方法,基于VC++6.0软件平台,建立了平面渗流分析方法,分析了节理岩体不同几何分布情况下的渗透率张量特征,通过定义渗流定向性系数对岩体渗流的定向性特征进行了定量分析。结果表明:单组节理岩体渗流具有明显的各向异性特征,渗流定向性随着节理角度变化显著;节理随着节理贯通性增加,节理渗透率呈现对数增加趋势;两组节理情况下,各向异性特征随着节理组间夹角变化;两组节理岩体渗流特征研究中,正交分布下,岩体仍存在各向异性,但渗流定向性系数较低;当节理倾角服从正态分布时,随着节理倾角标准差增大,渗透率增加;两组节理夹角不同时,节理渗透主方向倾角随着夹角增大而相应增大,基本沿两组节理夹角方向的角平分线方向。  相似文献   

7.
Geophysical site investigation techniques based on elastic waves have been widely used to characterize rock masses. However, characterizing jointed rock masses by using such techniques remains challenging because of a lack of knowledge about elastic wave propagation in multi-jointed rock masses. In this paper, the roughness of naturally fractured rock joint surfaces is estimated by using a three-dimensional (3D) image-processing technique. The classification of the joint roughness coefficient (JRC) is enhanced by introducing the scan line technique. The peak-to-valley height is selected as a key indicator for JRC classification. Long-wavelength P-wave and torsional S-wave propagation across rock masses containing naturally fractured joints are simulated through the quasi-static resonant column (QSRC) test. In general, as the JRC increases, the S-wave velocity increases within the range of stress levels considered in this paper, whereas the P-wave velocity and the damping ratio of the shear wave decrease. In particular, the two-dimensional joint specimen underestimates the S-wave velocity while overestimating the P-wave velocity. This suggests that 3D joint surfaces should be implicated to obtain the reliable elastic wave velocity in jointed rock masses. The contact characteristic and degree of roughness and waviness of the joint surface are identified as a factor influencing P-wave and S-wave propagation in multi-jointed rock masses. The results indicate a need for a better understanding of the sensitivity of contact area alterations to the elastic wave velocity induced by changes in normal stress. This paper’s framework can be a reference for future research on elastic wave propagation in naturally multi-jointed rock masses.  相似文献   

8.
节理岩体超声测试及单轴压缩试验研究   总被引:1,自引:0,他引:1  
孙旭曙  李建林  王乐华  陈兴周  李飞  程冬 《岩土力学》2014,35(12):3473-3478
为了获取节理岩体各向异性力学特性和声波传播规律的相互关系,通过制作圆柱形单一预制贯通节理试件,开展了7种不同倾角节理试件的超声波波速测试和单轴压缩试验。试验结果表明:(1)节理试件波速测试值离散性较大,但总体服从正态分布,波速平均值介于石膏试件和完整试件之间,波速随节理倾角增大呈线性递减;(2)不同倾角的节理面对节理试件力学特性的影响很大,在应力-应变关系、变形特征、强度特征和破坏模式上均表现出显著的各向异性特征;(3)节理试件的力学性质和超声波传播特性变化规律区别很大,采用超声波波速确定节理试件的力学参数会存在很大误差。  相似文献   

9.
The estimation of wave transmission across the fractured rock masses is of great importance for rock engineers to assess the stability of rock slopes in open pit mines. Presence of fault, as a major discontinuity, in the jointed rock mass can significantly impact on the peak particle velocity and transmission of blast waves, particularly where a fault contains a thick infilling with weak mechanical properties. This paper aims to study the effect of fault properties on transmission of blasting waves using the distinct element method. First, a validation study was carried out on the wave transmission across a single joint and different rock mediums through undertaking a comparative study against analytical models. Then, the transmission of blast wave across a fault with thick infilling in the Golgohar iron mine, Iran, was numerically studied, and the results were compared with the field measurements. The blast wave was numerically simulated using a hybrid finite element and finite difference code which then the outcome was used as the input for the distinct element method analysis. The measured uplift of hanging wall, as a result of wave transmission across the fault, in the numerical model agrees well with the recorded field measurement. Finally, the validated numerical model was used to study the effect of fault properties on wave transmission. It was found that the fault inclination angle is the most effective parameter on the peak particle velocity and uplift. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
基于离散元的强度折减法分析岩质边坡稳定性   总被引:26,自引:0,他引:26  
雷远见  王水林 《岩土力学》2006,27(10):1693-1698
将通用离散元UDEC与强度折减法结合,对含多结构面的岩质边坡的稳定性进行了分析。通过对节理岩质边坡的UDEC模型中的可变形块体和节理单元的强度参数进行折减,使模型不能再达到平衡状态,此时的折减系数就是边坡的安全系数,另外,由对应的边坡块体的速度矢量可以确定滑动面和边坡的破坏形态。通过与传统的条分法的结果比较,表明基于UDEC的强度折减法是一种可靠、有效的方法,为复杂节理岩质边坡的滑动面确定与安全系数计算开辟了新的途径。  相似文献   

11.
The general purpose finite element code DYNA2D is used to calculate the response of an unlined tunnel in jointed rock, with sliding interfaces used to represent the joints. The model problem selected for analysis closely follows a calculation using the discrete element code UDEC. Results for two cases [(1) jointed rock with lubricated joints (no joint friction) and (2) jointed rock with frictional resistance to joint motion] are presented and compared with each other and the UDEC results.  相似文献   

12.
In this paper, an anisotropic strength criterion is established for jointed rock masses. An orientation distribution function (ODF) of joint connectivity, is introduced to characterize the anisotropic strength of jointed rock masses related to directional distributed joint sets. Coulomb failure condition is formulated for each plane of jointed rock masses by joint connectivity, where the friction coefficient and cohesion of the jointed rock mass are related to those of the intact rock and joint and become orientation dependent. When approximating joint connectivity by its second‐order fabric tensor, an anisotropic strength criterion is derived through an approximate analytical solution to the critical plane problem. To demonstrate the effects of joint distribution on the anisotropic strength of jointed rock masses, the failure envelopes are worked out for different relative orientations of material anisotropy and principal stress axes. The anisotropic strength criterion is also applied to wellbore stability analyses. It is shown that a borehole drilled in the direction of the maximum principal in situ stress is not always the safest due to the anisotropic strength of the jointed rock mass. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
依据弹性波理论,应力波斜入射线弹性节理时会发生波场分解。根据入射、透射及反射各波形的不同到时,运用离散元软件UDEC模拟应力波在含倾斜节理岩体中的传播并计算其透射、反射系数,并分析其波型转换规律。应力波斜入射单节理时,模拟得到的透射、反射系数随节理刚度、入射角度的变化规律,与已有的理论解是吻合的。应力波斜入射一组平行节理时,随着节理间距的增大,其同类波的透射系数Tpp、Tss先增大后减小,最后趋于稳定值;节理条数越多,Tpp、Tss越小。此外,不同条数的节理,透射系数达到最大值的临界节理间距值基本一致,但趋于稳定时的节理间距值随节理条数的增加而逐渐增大。  相似文献   

14.
李超  刘红岩  阎锡东 《岩土力学》2015,36(Z2):655-664
节理岩体是工程中最常见的一类岩体,其在地震、爆炸等动载下的力学响应及破坏过程对相关工程安全性的影响至关重要。采用基于有限元应力分析和统计损伤理论开发的动态版RFPA2D数值模拟软件,对动载下节理岩体的动态破坏过程进行了模拟,重点讨论了节理条数、节理贯通度、节理倾角及应力波峰值对岩体动态破坏过程的影响规律。计算结果表明,断续节理岩体动态破坏过程及破坏强度与节理构造形态、应力波峰值密切相关。相同动载下,随着节理条数的增加,岩体破坏程度以及应力波能量损失增强,但当节理条数数超过一定值后,岩体破坏程度及应力波能量损失逐渐趋于稳定;节理贯通度较小时,岩体破坏程度较低且破坏单元自上而下均匀分布。随着节理贯通度的增加,岩体破坏增强,且破坏主要出现于节理上部岩体;节理倾角较小时,节理上部岩体破坏严重,易形成次生贯通裂纹。随着节理倾角增加,破坏范围逐渐变大,不易形成次生贯通裂纹;倾角为45°~60°时,岩体破坏效果最佳;动载荷的峰值越大,试样的破坏越严重。当峰值达到一定值时,节理附近发育出多条裂隙并向上下方不断发展而导致岩体完全破坏。在不同节理贯通度工况下与岩石霍布金森压杆(SHPB)试验结果进行比较,结论吻合,证明该数值模拟的合可行性和结论的可靠性。  相似文献   

15.
周小平  张永兴  王建华 《岩土力学》2004,25(Z2):139-143
对于连续介质问题,可以利用Mohr-Coulomb准则很好地解决圆形隧道滑动区问题.但是对于节理岩体问题要复杂得多.由于节理岩体具有复杂的力学特性,因此节理岩体圆形隧道滑动区的确定问题一直都没有很好地解决.节理岩体的力学特性可以很好地用考虑了中间主应力影响的非线性统一强度准则来表达.根据非线性统一强度准则确定了即时摩擦角,进而获得了节理岩体圆形隧道滑动区和支护应力的封闭形式的理论解,并给出了算例.  相似文献   

16.
Today, grouting is used as an aid in ground improvement in most civil and mining engineering projects. Groutability and grout penetration depth are among the most important issues that are considered in grouting operation. Various parameters such as in-situ stress, pore water pressure, joint geometric and geomechanical characteristics, grout properties (viscosity and yield stress) and technical factors such as grouting pressure and flow rate affect the groutability and grout penetration depth in a jointed rock mass. Knowledge of the effect of these parameters has advantages in the prediction of grouting results. Typically, cement-based grout is used in jointed rock masses. Unlike water, stable cement-based grout usually acts as a Bingham fluid. In this study the effect of important parameters on grouting process in a jointed rock mass was investigated numerically using the DEM method. In the conducted study, the problem geometry represents a horizontal section in a regularly jointed rock mass with two joint sets. The analyses results show that the grout penetration depth and intake increase as joint aperture, normal stiffness and grouting pressure increase and in-situ stress and pore water pressure decrease. Increase in joint spacing does not have any effect on the grout penetration depth but decreases the grout intake. The effect of joint orientation on grouting process is strongly dependent on in-situ stress state. On the other hand, increase in grout yield stress decreases the grout penetration depth and intake, while grout viscosity does not have any effect on maximum grout penetration depth and intake. To further investigate the above mechanisms, the grouting process conducted in Gotvand dam-Iran was simulated numerically.  相似文献   

17.
The purpose of this paper is to investigate the application of the discrete element program UDEC for modelling underground explosions in a jointed rock mass. A field underground explosion test has been conducted and UDEC and AUTODYN were utilised in a coupled manner to predict the rock mass response due to the underground explosion. The dynamic equation for the state of the rock material obtained from impact tests was incorporated into the calibration modelling. The comparison of modelling results with test results and empirical formulas shows that UDEC is capable of modelling explosion wave propagation in jointed rock mass with high reliability.  相似文献   

18.
Microplane damage model for jointed rock masses   总被引:1,自引:0,他引:1  
The paper presents a new microplane constitutive model for the inelastic behavior of jointed rock masses that takes into account the mechanical behavior and geometric characteristics of cracks and joints. The basic idea is that the microplane modeling of rock masses under general triaxial loading, including compression, requires the isotropic rock matrix and the joints to be considered as two distinct phases coupled in parallel. A joint continuity factor is defined as a microplane damage variable to represent the stress‐carrying area fraction of the joint phase. Based on the assumption of parallel coupling between the rock joint and the rock matrix, the overall mechanical behavior of the rock is characterized by microplane constitutive laws for the rock matrix and for the rock joints, along with an evolution law for the microplane joint continuity factor. The inelastic response of the rock matrix and the rock joints is controlled on the microplane level by the stress–strain boundaries. Based on the arguments enunciated in developing the new microplane model M7 for concrete, the previously used volumetric–deviatoric splits of the elastic strains and of the tensile boundary are avoided. The boundaries are tensile normal, compressive normal, and shear. The numerical simulations demonstrate satisfactory fits of published triaxial test data on sandstone and on jointed plaster mortar, including quintessential features such as the strain softening and dilatancy under low confining pressure, as well as the brittle–ductile transition under higher confining pressure, and the decrease of jointed rock strength and Young's modulus with an increasing dip angle of the joint. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
This paper deals with the modeling of jointed rock masses reinforced by rock bolts. It is well known that rock bolts are extremely effective in reinforcing jointed rocks. However, if a continuum approach is adopted for modeling jointed rock masses, it is often misleading to evaluate the effectiveness of the rock bolts by numerical analyses such as the finite element method. This may be due to the fact that since no more joints exist in the continuum, the effectiveness of the rock bolts in constraining the relative displacements along the joints cannot be evaluated properly. In order to investigate the reinforcement effect of rock bolts, physical model tests were performed in the laboratory. The test results revealed that jointed rock masses should be modeled as an equivalent continuum after the installation of rock bolts and that the mechanical parameters of the equivalent continuum should be evaluated by considering the reinforcement effect of the rock bolts. Therefore, the values of the mechanical parameters differ from place to place in accordance with the relation between joint orientation and rock bolt direction, even though joint systems are homogeneous. In conclusion, in the continuum approach for modeling jointed rock masses, it should be emphasized that rock bolts and jointed rock masses should not be modeled separately but should be modeled simultaneously by considering the reinforcement effect of the rock bolts in constraining joint movement. The modeling of shotcrete reinforced by steel ribs is also discussed in comparison to the modeling by rock bolts.  相似文献   

20.
A three dimensional constitutive model is formulated for deformation analysis of jointed rock masses containing up to three joint sets with arbitrary spatial configurations. A representative elementary volume (REV) that represents the deformational response of the rock mass is defined and the constitutive relationships are developed based on superposition of deformations of the REV components. By representing the constitutive relationships in a tensorial form, the model is able to implement deformation anisotropy of jointed rock masses. The Mohr-Coulomb failure criterion with tension cut-off is used for the intact rock and the joint sets. The model is implemented in FLAC3D and the deformations and strength values calculated by the model are compared with the results from a 3DEC model and analytical solutions. The model results are in good agreement with those obtained from 3DEC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号