首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Crustal structure in a number of Kamchatka volcanic regions is deduced from geophysical data. Anomalous structure and physical properties of the crust are found beneath some volcanic groups. Beneath the Klyuchevskaya and Avachinskaya volcanic groups crustal layers have high elastic properties. There is a thick transition layer from the crust to the upper mantle which has lower clastic properties and electrical resistance. These data, supported by experimental investigations of elastic properties of xenoliths in volcanic rocks at high pressures and temperatures, enable the probable substance composition of the crustal layers to be defined. The feeding zones and magma chambers of individual volcanoes are deduced from anomalies in gravity, electrical conductivity and seismic wave propagation.  相似文献   

2.
Velocity and Density Heterogeneities of the Tien-Shan Lithosphere   总被引:1,自引:0,他引:1  
—The Tien-Shan orogene is a region in which the earth’s crust undergoes considerable thickening and tangential compression. Under these conditions the lithosphere heterogeneities (composi tion, rheological) create the prerequisites for the development of various phenomena of tectonic layering (lateral shearing, different deformation of layers). To study the distribution of velocity, density and other elastic parameters, the results from a seismic tomography study on P-wave as well as S-wave velocities were used. Using empirical as well as theoretical formulas on the relationship between velocity, density and silica content in rocks, their distribution in the Tien-Shan’s lithosphere has been calculated. In addition, other elastic parameters, such as Young’s modulus, shear modulus, Poisson’s ratio and coefficient of general compressions have been determined. Zoning of different types of crust was carried out for the region investigated. The characteristics of the "crust-mantle" transition have been investi gated. Large blocks with different types of the earth’s crust were distinguished. Layers with inverse values of velocity, density and shear and Young modulus are revealed in the Tien-Shan lithosphere. All of the above described features open new ways to solve geodynamics problems.  相似文献   

3.
2008年汶川8.0级地震孕震机理研究   总被引:19,自引:7,他引:12       下载免费PDF全文
用三维流变非连续变形与有限元相结合(DDA+FEM)的方法,在青藏高原及邻近地区三维构造块体相互制约的大背景中,考虑了龙门山断裂带东西两侧地势、地壳厚度和分层的明显变化,及断裂带东侧四川盆地及鄂尔多斯块体坚硬地壳阻挡的影响,通过用GPS资料做位移速率边界约束和震源机制约束,计算得到研究区的速度场和应力场与该地区GPS测量结果和震源机制分布结果基本一致.在此基础上,模拟计算现今构造块体边界断层上表征剪应力及法向应力等综合影响的危险度分布.结果表明,上、中地壳层危险度分布中危险度较高的地段多数与近几十年来发生的七级以上大震区域基本一致.包括2008年汶川8.0级等大震的发震断层.通过分别对龙门山断裂带东西两侧的两种不同构造格局进行试算表明,龙门山断裂带东西两侧地势、地壳厚度、分层与物性明显变化对汶川大震的孕育发生均起了关键性作用.计算得到的应变率强度分布图可见,高原东部整个边缘地带均接近应变率强度的陡变带.其中以龙门山断裂带上的陡变最为明显,西侧应变率强度是东侧的近4倍,而且断裂带东侧应变率强度等值线衰减比西侧快.反映了汶川大震逆冲型发震断层地区独特的特征.此外,由计算得到的应变能密度分布图可见,龙门山断裂带在上、中地壳层中均位于宽度相同、其走向与龙门山断裂带走向一致的高应变能密度带中,在上地壳层这个带的东西两侧则是应变能密度较低的地区,而在中地壳层,其强度在断裂带东侧逐渐向东衰减,西侧应变能密度高,而东侧应变能密度较低.表明在印度板块强烈推挤作用和高原各构造块体相互制约及龙门山断裂带东西两侧特殊构造环境中,高原地壳物质向东水平运动,受到龙门山断裂带东侧介质刚性强度较大的四川盆地阻挡,使得汶川大震发震断层在大震前已积累了相当水平的应变能,并同时处于力学上的不稳定状态.  相似文献   

4.
地壳主要岩石流变参数及华北地壳流变性质研究   总被引:23,自引:3,他引:23       下载免费PDF全文
周永胜  何昌荣 《地震地质》2003,25(1):109-122
岩石流变参数和变形机制是根据断层摩擦和岩石幂次流动本构关系建立岩石圈强度剖面的基础。近 30年来 ,高温高压实验取得了很大进展 ,获得了大量地壳矿物和岩石流变资料。本文系统总结了这些流变实验资料 ,并应用流变数据结合地震震源深度分布 ,对华北地壳流变性质进行了研究。结果表明 ,以花岗岩和低级变质岩为代表的上地壳为脆性破裂 ,其强度受断层摩擦约束 ,以长英质片麻岩为主的中地壳和以中性麻粒岩为主的下地壳上层处于塑性流变状态 ,由干的基性麻粒岩组成的下地壳下层处于脆性向塑性流变的过渡状态。华北地壳的这种物质组成和流变为地壳不同层次的解耦和强震孕育提供了力学条件 ,也构成了不同尺度块体的底边界  相似文献   

5.
Prediction of elastic full wavefields is required for reverse time migration, full waveform inversion, borehole seismology, seismic modelling, etc. We propose a novel algorithm to solve the Navier wave equation, which is based on multi‐block methodology for high‐order finite‐difference schemes on curvilinear grids. In the current implementation, the blocks are subhorizontal layers. Smooth anisotropic heterogeneous media in each layer can have strong discontinuities at the interfaces. A curvilinear adaptive hexahedral grid in blocks is generated by mapping the original 3D physical domain onto a parametric cube with horizontal layers and interfaces. These interfaces correspond to the main curvilinear physical contrast interfaces of a subhorizontally layered formation. The top boundary of the parametric cube handles the land surface with smooth topography. Free‐surface and solid–solid transmission boundary conditions at interfaces are approximated with the second‐order accuracy. Smooth media in the layers are approximated up to sixth‐order spatial schemes. All expected properties of the developed algorithm are demonstrated in numerical tests using corresponding parallel message passing interface code.  相似文献   

6.
A new model is proposed for passive degassing from sub-volcanic magma chambers. The water content in stably stratified shallow magma chamber will be equated to its solubility at the upper boundary by convection. Water from a lower layer high in water content can enrich the contact zone of the upper layer and lead to further convective overturn of this boundary layer. A complete set of equations describing convection with bubble formation and dissolution is reduced to a simplified form by assuming a small bubble content. The development and pattern of flow driven by vesiculation is modeled numerically in a 2D magma chamber for relatively low Raleigh numbers (5×105). Bubbles rising from the magma will collect near the roof in a layer of 8–10 vol% and then escape upward to fumaroles. The Stokes flux of bubbles escaping from an andesitic magma with viscosity 104 P and a top surface of about 500×500 m corresponds with observed total magmatic water fluxes of 35 kg/s. Pressure within the chamber is buffered by elastic (and local visco-elastic) deformations in the solid rocks bounding the chamber to the range between ambient and close to lithostatic values. In a chamber closed to fresh magma inputs, the decrease in volume due to such gentle volatile escape lowers the reference pressure. Bubbles flux from the lower layer induced by variation of the saturation level around stratification boundary may be efficient mechanism for the water transport between layers.  相似文献   

7.
A three-layer elastic-gravitational fault displacement model using dislocation theory has been developed and used to examine the effect of layering of earth elastic moduli on surface and subsurface displacement fields for a vertical strike-slip fault. The model has been used to examine the effect of depth variation of elastic properties at coseismic and postseismic time scales. For pure strike-slip motion the effect of gravity on coseismic and postseismic horizontal deformation is negligible. For coseismic deformation the model predicts that (for constant Poisson's ratio) an increase in elastic moduli with depth attenuates the displacements within the upper layers with respect to displacement distribution for a uniform half-space, while an inclusion of a soft layer between the top layer and lower half-space amplifies upper layer displacements. The effect of variation in Poisson's ratio on surface and subsurface displacements has also been examined.The effect of postseismic stress relaxation on surface and subsurface displacements for a three-layer model has been calculated and compared with that of a uniformly relaxed half-space model. Layer 1 is assumed to correspond to the upper crust, layer 2 the lower crust and layer 3 the upper mantle. The effect of postseismic stress relaxation within a uniform half-space and within just the lower crust and upper mantle has been examined. Stress relaxation within the whole half-space decreases the amplitude and shortens the wavelength of displacements, while stress relaxation within the lower two layers increases the amplitude and broadens the wavelength of displacements. The difference between uniform and layered postseismic relaxation is particularly pronounced at the base of the crust.Coseismic and postseismic normal and volumetric strains for a vertical strike-slip fault have also been examined. For a uniformly relaxed half-space model, an increase in normal strains is shown with respect to the coseismic elastic solution, whereas the postseismic volumetric strain is effectively zero. For a three-layer model with stress relaxation in the lower layers only, the normal and volumetric strains within the top elastic layer resemble coseismic strains, while in the lower layers which suffer a rigidity decrease, the postseismic volumetric strain is effectively zero.  相似文献   

8.
This paper aims to demonstrate that the elastic stiffnesses and the anisotropic parameters of rocks can be accurately predicted from geophysical features such as the porosity, the density, the compression stress, the pore pressure and the burial depth using relevant machine learning methods. It also suggests that the extreme gradient boosting method is the best method for this purpose. It is more accurate, extremely faster to train and more robust than the artificial neural networks and the support vector machine methods. Very high R-squared scores was obtained for the predicted elastic stiffnesses of a relevant dataset that is available in the literature. This dataset contains different types of rocks, and the values of the features are in large ranges. An optimal set of parameters was obtained by considering an appropriate sensitivity analysis. The optimized model is very easy to implement in Python for practical applications.  相似文献   

9.
周永胜  何昌荣 《地震地质》2002,24(1):124-132
京津唐张地区普遍存在壳内低速层 ,鄂尔多斯块体内部没有发现低速层 ,壳内低速层的这种分布受新生代裂陷伸展的控制。华北地区中地壳下部和下地壳低速层是岩石塑性流变的结果 ,中地壳上部低速层是地壳裂陷伸展时形成的水平拆离带和韧性剪切带 ,岩石各向异性和流体作用可能是引起低速的原因。壳内软弱层 (低速和塑性流变层 )增强了块体层间的解耦作用 ,对地震孕育起着重要作用  相似文献   

10.
Summary The transmission of transverse surface waves in piezoelectric (622) crystal class has been studied in four cases. In the first case, a thin piezoelectric layer is resting on a deep elastic layer whereas in the second case, both the layers are considered piezoelectric with different materials. In the third case, a piezoelectric stratum is bounded on both sides by deep elastic layers whereas, in the fourth case, the upper and lower elastic layers are replaced by piezoelectric layers of different materials. The wave velocity equations are obtained for all cases.  相似文献   

11.
Based on terrestrial gravity data, in this paper we prepared a map of Bouguer anomalies, which was filtered to separate shallow and deep gravity sources. Based on a density model and gravimetric inversion techniques, the discontinuous crust-mantle boundary and the top of crystalline basement were modeled. Subsequently, the equivalent elastic thickness (Te) was evaluated, considering information from the crust-mantle discontinuity and topographic load, finding high Te values in the eastern Andean foothills and west of the Velasco range. These results are consistent with the positive isostatic and residual Bouguer anomaly values, which suggest the presence of high-density rocks in the mid-to upper crust. In addition, petrographic and geochemical analysis conducted in surface outcrops suggest a mantle origin.  相似文献   

12.
本文利用GOCEL2观测重力梯度的五个独立分量(T_(xx),T_(zz),T_(xy),T_(xz),T_(yz)),联合EGM2008地球重力场模型计算垂直重力,反演计算了青藏高原及邻区0~120 km深度岩石圈三维密度结构.将经过低阶项改正、地形效应改正、沉积层界面起伏效应改正得到的剩余重力及重力梯度异常值作为观测值,以改正剩余量归一化权重作为观测权重,基于Tikhonov正则化理论建立反演目标函数.反演过程中,利用地震层析S波速度转换密度作为初始约束,通过非等权最小二乘迭代法计算得到最终反演密度.反演结果表明:(1)40 km深度,青藏高原内部为中地壳,表现为低密度,邻区为中下地壳,表现为高密度.青藏高原内部中地壳强低密度层主要分布在高原边界.其成因是印度板块俯冲和周围坚硬块体阻挡作用导致在高原边界形成的高应变积累闭锁区,为壳内低密度软弱物质的形成提供了条件.(2)80 km深度,青藏高原上地幔顶部显示出低密度的特征.高原内部东、中、西密度特征差异明显,低密度以95°E为中心线呈东西对称分布.以班公一怒江缝合带为中心,在拉萨块体和羌塘块体内从北向南出现了"低-高-低"的密度分布起伏特征.该特征与GRACE得到的莫霍面起伏特征一致,结合大地构造结果,这种起伏特征验证了印度、羌塘块体从南北两侧分别向喜马拉雅、拉萨地块挤入的双向俯冲模式.(3)四川盆地和鄂尔多斯盆地内,地壳高密度异常较地震波速异常明显偏低,表明古老的四川盆地和鄂尔多斯盆地比想象中更冷、更坚硬.塔里木盆地和柴达木盆地内壳、幔高密度的结构特征,对应地幔物质上涌.  相似文献   

13.
The dynamic soil-structure interaction of a shear wall embedded in elastic isotropic and homogeneous soil layers underlain by bedrock, subjected to SH waves, is modeled in the present article. The soil layers consist of irregular interfaces and it has been shown that the scattering due to the roughness of the layers has significant effect on the displacement of both the foundation and the shear wall. To demonstrate the phenomena indirect boundary element method(IBEM) has been used on the basis of its validation in previous problems of similar type. The system response is compared with the analytical solution of the same type of model for vertically propagating incident SH waves. It is observed that for the low frequency of wave, displacement is abruptly high, and as a result the combination of shear wall and foundation perceives resonance. The thickness of the soil layer, mass of the shear wall, stiffness of the bedrock and the soil layers all affects the system frequency and displacement.  相似文献   

14.
地球内部的热事件与地壳上地幔结构的相关研究   总被引:1,自引:0,他引:1  
本文计算并讨论了当地球内部有热脉动事件发生时非稳态的热作用模型及其对地热场和大地热流的影响。理论计算和实际资料表明,构造活动区和稳定地区应有不同的热作用过程,在构造活动区地壳内的低速,低阻层和上地幔的低速,低阻层的埋藏深度之差与该地的热活动史有一定的对应关系。如华北平原地区,观测的二层深度差为40—60公里,推测热脉动持续时间为40百万年,活动史为50—70百万年:而银川盆地二层间隔为36—40公里,活动史为30—40百万年  相似文献   

15.
This proposed model is based on geological, geophysical and geochemical data. Previous models suggested for the lower continental crust consisted of basalt, gabbro, or charnockitic rocks; however, experimental and field petrological data indicate that the bulk of crustal rocks are metamorphic. A lower crust of heterogeneous metamorphic rocks also agrees with seismic reflection results which show numerous reflections from “layering”. Geothermal conditions favor a “dry” charnockitic or gabbroic lower crust rather than an amphibolitic lower crust because heat production data imply that wet amphibolitic rocks would have a higher heat production than their dry metamorphic equivalents. Relatively high velocities from field and laboratory measurements in such low-density rocks as granite, syenite, anorthosite and granulitic rocks in general imply that the composition of the lower crust is more felsic than gabbro. Variation in seismic velocity and depths from crustal refraction studies and numerous seismic reflections all indicate a highly heterogeneous lower crust. The lower crust, which has traditionally been described as gabbroic or mafic, may consist of such diverse rocks as granite gneiss, syenite gneiss, anorthosite, pyroxene granulite, and amphibolite, interlayered on a small scale, deformed, and intruded by granite and gabbro. Interlayering of these rocks explains the presence and character of seismic reflections. Abrupt changes in dip, tight folding, disruption of layers, intrusion, and changes in layer thickness explain the characteristic discontinuity of deep reflections. Igneous intrusions may be floored by metamorphic rocks. The lower crust consists of a complex series of igneous and metamorphic rock of approximate intermediate composition.  相似文献   

16.
In-situ elastic properties in deep boreholes are controlled by several factors, mainly by lithology, petrofabric, fluid-filled cracks and pores. In order to separate the effects of different factors it is useful to extract lithology-controlled part from observedin-situ velocities. For that purpose we calculated mineralogical composition and isotropic crack-free elastic properties in the lower part of the Kola borehole from bulk chemical compositions of core samples. We use a new technique of petrophysical modeling based on thermodynamic approach. The reasonable accuracy of the modeling is confirmed by comparison with the observations of mineralogical composition and laboratory measurements of density and elastic wave velocities in upper crustal crystalline rocks at high confining pressure. Calculations were carried out for 896 core samples from the depth segment of 6840–10535m. Using these results we estimate density and crack-free isotropic elastic properties of 554 lithology-defined layers composing this depth segment. Average synthetic P- wave velocity appears to be 2.7% higher than the velocity from Vertical Seismic Profiling (VSP), and 5% higher than sonic log velocity. Average synthetic S-wave velocity is 1.4 % higher than that from VSP. These differences can be explained by superposition of effects of fabric-related anisotropy, cracks aligned parallel to the foliation plain, and randomly oriented cracks, with the effect of cracks being the predominant control. Low sonic log velocities are likely caused by drilling-induced cracking (hydrofractures) in the borehole walls. The calculated synthetic density and velocity cross-sections can be used for much more detailed interpretations, for which, however, new, more detailed and reliable seismic data are required.  相似文献   

17.
The rheological properties of upper mantle rocks play an important role in controlling the dynamics of the lithosphere and mantle convection. Experimental studies and microstructures in naturally deformed mantle rocks usually imply that olivine controls the upper mantle rheology. Here we show for the first time evidence from the geometry of folded compositional layers in mantle rocks from Western Norway that garnet-rich rocks can have lower solid-state viscosities than olivine-rich rocks. Modeling of melt-free and dry rheology of garnet and olivine confirms that the reversed viscosity contrast between garnet-rich and olivine-rich layers for this folding event can be achieved over a relatively wide range of temperatures at low stress conditions when the fine-grained garnet deforms by diffusion creep while the coarse-grained olivine deforms by dislocation creep and/or diffusion creep.In general, modeling of the fold viscosity contrast shows that in the stable subcontinental lithospheric mantle or convecting mantle such a reversed viscosity contrast can be formed due to diffusion creep processes in fine-grained garnets in a dry mantle environment or at conditions where the garnet-pyroxene layer is partially molten, i.e. close to solidus–liquidus conditions in the upper mantle. Alternatively in cold plate tectonic settings, e.g. in subduction zones, some water-weakening is a feasible mechanism to create the reversed viscosity contrast between garnet and olivine.  相似文献   

18.
华北、西北一些地区地壳和上地幔内高导层   总被引:8,自引:1,他引:7       下载免费PDF全文
本文根据大地电磁测深方法的探测,发现地壳和上地幔内存在几—几十欧姆·米的低阻层(高导层)事实,探讨高导层的分布特点与大地构造特征,高导层与其它地球物理场,高导层的成因机制及其与大陆浅源地震之间的关系  相似文献   

19.
Analyses are made of the upper limits on the height of mountains and the thickness of possible continental blocks on Venus. Insufficient creep data exist to reach definitive conclusions about these limits. However, if Venusian rocks are no more refractory than quartzite or dunite, as appears likely, then it is possible to conclude that high mountains, continental blocks of appreciable thicknesses, and deep ocean basins can exist over an extended period of time on Venus, at temperatures prevailing there now, only if the cytherean rocks are dry. Plate tectonics cannot exist on Venus if her rocks are wet. The elevation differences that are maintained by active tectonic or volcanic processes are not considered in this paper.  相似文献   

20.
依据大地电磁测深所发现的上地幔高导层顶面深度可以给出大陆岩石圈-软流圈界面(LAB)的空间发育特征,为认识岩石圈结构及壳幔相互作用等提供重要信息.本文在1996年编制的中国大陆上地幔高导层顶面深度图的基础上,补充了1995—2010年大地电磁测深结果和大地热流数据,以1°×1°网度编制了新的中国大陆上地幔高导层顶面深度图.我国上地幔高导层顶面深度变化很大,具有南北分带,东西分块的特征,呈东浅、西深、北浅、南深的格局,从最浅的50~60km到最深的230km,平均深度为100~120km.据上地幔高导层顶面分布形态,全国共可划分出27个隆起区.通过与中国已知内生金属矿产和油气田的分布对比,发现我国大陆80%以上中生代内生金属矿床分布在上地幔高导层隆起带或其梯度带上方.中国大陆东部含油气盆地主体对应上地幔隆起区,油气田多位于隆起区上方或其边部的过渡带上;西部主体位于幔坳区,主要油气田对应盆地中心的幔坳向周边幔隆过渡的梯度带上;中部表现为仅盆地腹地对应幔坳,盆地周边对应规模较大的上地幔隆起带,主要油气田位于隆起带.总的来看内生金属矿床一般分布在上地幔隆起区靠近造山带一侧,而油气田一般分布在上地幔隆起区靠近盆地一侧.软流圈的不断上隆,造成岩石圈减薄、拉张,张性断裂的出现成为地球深部物质和热量向地壳上部运移的有利通道,为内生金属矿产的形成提供了成矿物质和能量保障,也为含油气盆地带来了生烃催化剂、热能和无机成因的石油与天然气.地球深部超临界流体的存在对上地幔高导层的形成、成矿物质运移可能发挥了重要作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号