首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Seven petrographic thin sections of lunar rock sample 14321, ‘Big Bertha’, have been examined. It is a complex rock incorporating diverse lithic and single crystal fragments and represents a sampling of the heterogeneous Fra Mauro formation, considered by the writers to be lithified debris from the Imbrium impact event. Electron probe microanalysis and microscopic study of textures reveal the assembly history of this breccia which in turn allows some interpretation of the nature of the pre-Imbrium crust and the effect of the Imbrium impact and the subsequent transportation to the Apollo 14 site. The present-day polymict breccia 14321 is composed of basaltic clasts originating from the fragmentation of a single or closely related set of lava cooling units, a set of fragmental clasts designated as microbreccia 3 (themselves polymict microbreccias), and a light colored matrix which formed rock 14321 by cementing the two major groups of clasts. The light colored matrix material is derived from the fragmentation and mutual abrasion of the basalt and microbreccia 3. On the basis of consistent textural relations two older sets of microbreccias have been identified within microbreccia 3. Microbreccia 1 clasts are well-rounded, relatively light colored, and noritic. They are always completely enclosed within microbreccia 3, most often forming the central cores of rounded accretionary lapilli structures which we have designated as microbreccia 2. Microbreccias 1, 2, 3, and macrobreccia 14321 represent a chronological series of fragmentation and lithification events. Each of these events involved some thermal and/or shock metamorphism as evidenced by mineralogical and textural criteria, and the chronological order of formation of the breccias also corresponds to a decreasing intensity of associated thermal effects. The petrology and mineralogy of 14321 are described in detail in this paper. A more general interpretation of the combined petrographic and chemical data is given in Duncanet al. (1975a).  相似文献   

2.
Forty-nine sub-samples of the polymict breccia 14321,184 have been excavated from the rock and analysed by instrumental activation analysis techniques, specially modified to allow examination of small samples. Two distinct types of microbreccia clasts were analysed. A mare-type basalt of unusual composition is present as several discrete clasts. Mixing models for the clastic components of the breccia illustrate that at least three stages of assembly may be distinguished on compositional grounds. The first was at a site such that KREEP-rich materials dominated the clastic rocks formed, although a variety of lithic fragments were apparently present. The second assembly stage may have been primarily that of comminution and mixing of the more primitive materials, with addition of mare-type basalt elasts. The third stage saw addition of clasts of 14321-type basalt. In the final assembly stage the light matrix was apparently formed entirely by mutual abrasion of the pre-existing clasts, resulting in little or no change in bulk composition  相似文献   

3.
Since the Apollo 14 mission delivered samples of the Fra Mauro formation, interpreted as ejecta of the Imbrium impact, defining the age of this impact has emerged as one of the critical tasks required for the complete understanding of the asteroid bombardment history of the Moon and, by extension, the inner Solar System. Significant effort dedicated to this task has resulted in a substantial set of ages centered around 3.9 Ga and obtained for the samples from most Apollo landing sites using a variety of chronological methods. However, the available age data are scattered over a range of a few tens of millions of years, which hinders the ability to distinguish between the samples that are truly representative of the Imbrium impact and those formed/reset by other, broadly contemporaneous impact events. This study presents a new set of U-Pb ages obtained for the VHK (very high K) basalt clasts found in the Apollo 14 breccia sample 14305 and phosphates from (i) several fragments of impact-melt breccia extracted from Apollo 14 soil sample 14161, and (ii) two Apollo 15 breccias 15455 and 15445. The new data obtained for the Apollo 14 samples increase the number of independently dated samples from this landing site to ten. These Apollo 14 samples represent the Fra Mauro formation, which is traditionally viewed as Imbrium ejecta, and therefore should record the age of the Imbrium impact. Using the variance of ten ages, we propose an age of 3922 ± 12 Ma for this event. Samples that yield ages within these limits can be considered as possible products of the Imbrium impact, while those that fall significantly outside this range should be treated as representing different impact events. Comparison of this age for Imbrium (determined from Apollo 14 samples) with the ages of another eleven impact-melt breccia samples collected at four other landing sites and a related lunar meteorite suggests that they can be viewed as part of Imbrium ejecta. Comprehensive review of 40Ar/39Ar ages available for impact melt samples from different landing sites and obtained using the step-heating technique, suggests that the majority of the samples that gave robust plateau ages are indistinguishable within uncertainties and altogether yield a weighted average age of 3916 ± 7 Ma (95 % conf., MSWD = 1.1; P = 0.13) and a median average age of 3919 + 14/-12 Ma, both of which agree with the confidence interval obtained using the U-Pb system. These samples, dated by 40Ar/39Ar method, can be also viewed as representing the Imbrium impact. In total 36 out of 41 breccia samples from five landing sites can be interpreted to represent formation of the Imbrium basin, supporting the conclusion that Imbrium material was distributed widely across the near side of the Moon. Establishing temporal limits for the Imbrium impact allows discrimination of ten samples with Rb-Sr and 40Ar/39Ar ages about 50 Ma younger than 3922 ± 12 Ma. This group may represent a separate single impact on the Moon and needs to be investigated further to improve our understanding of lunar impact history.  相似文献   

4.
The manned Apollo 11, 12, 14 and 15 and the automated Luna 16 lunar missions have provided us with lunar rock and regolith (soil) samples from a number of geologically distinct sites. The mare regions were sampled by Apollo 11, 12 and Luna 16, whereas Apollo 14 landed on a terrain with more relief, the Fra Mauro Formation which represents an ejecta blanket from the Imbrian Basin, and Apollo 15 touched down near the lunar highlands. The samples collected consist of a mixture, mainly of basalt, breccia and regolith (soil-particulate matter, generally < 1 cm in size). The basalts show considerable variation in texture, mineralogy and chemistry and probably represent fragments from various parts of relatively thin and extensive lava flows in the maria. The breccias represent regolith material which was indurated to varying degrees by impact events. The regolith is a product of the breakdown, again by impact, of coherent rock masses of basalt and breccia.  相似文献   

5.
Rock 14318 is a complex microbreccia consisting of lithic fragments, chondrules, glass spherules, and glass and mineral fragments that are embedded into a fine-grained, partly glassy matrix. Rock fragmenta, chondrules, and glasses are tightly welded to the matrix and partly recrystallized, indicating a relatively high-temperature agglomeration history. Few lithic fragments have igneous textures; most are miorobreccias that have suffered various degrees of recrystallization before they were embedded into rock 14318. Compositions of lithic fragments, glasses and chondrules, in terms of compositional rock and rock suite equivalents, represent members of the ANT (anorthositic-noritic-troctolite) suite; the alkalic high-alumina basalt (KREEP) group; high-alkali quartz basalt; basalt; and dunite. The polymict nature of many lithic fragments suggests that rook 14318 require at least two, and probably more, impact episodes for its formation. Final agglomeration took place while part of the material was hot, as is indicated by the welded texture, suggesting that the final impact event was a large one, producing a fiery cloud similar to a nuée ardente. The close similarity in texture of lunar rock 14318 to certain polymict-brecciated meteorites such as Siena suggests that meteorites of this type were also formed by complex and successive impact events on the surface of the meteorite parent body, rather than during agglomeration of the parent body.  相似文献   

6.
Analytical data for 40 elements are reported for Apollo 16 soils 60601, 61181, 61501, 64801, 67701, 68501, 65701 and breccias 60015, 60017, 60018, 60315, 61016, 61175, 65015 and 66055. The soils are uniform except for the North Ray Crater rim sample which is richer in Al2O3.The breccia components show great diversity in composition. Low-K Fra Mauro basalt, Highland basalt (anorthositic gabbro) and plagioclase are important constituents. Medium-K Fra Mauro basalt is an important constituent of breccias 65015 and 60315.The breccias contain many meteorite fragments and high nickel contents, evidence of the early highland bombardment.Most of the refractory elements (REE, Th, U, Zr, Hf, Nb, Ba) show strong positive correlations, interpreted as resulting from mixing. The REE patterns of the breccias show extreme variation relative to chondrites. There is a good inverse correlation between REE and the europium anomaly (EuEux). The LaYb ratio is constant at 3.1 except in plagioclase. Eu depletion or enrichment is interpreted as due to addition or removal of plagioclase.The Cayley and Descartes formations cannot be distinguished chemically and the differences in surface expression are not due to chemical distinctions. They are interpreted as structural differences, related to early highland cratering and mare basin formation.The complex soil and breccia compositions are related to mixing of four components. These are Low-K Fra Mauro basalt, Highland basalt (anorthositic gabbro) and subordinate plagioclase and Medium-K Fra Mauro basalt. These compositions have been used in a computer program (PETMIX III) to provide fits for the analytical data in terms of the end-members.An average highland composition is proposed, based on the Apollo 15 and 16 orbital data for Si, Al, Mg and Th. Abundances for most other elements are derived from the interelement relationships and correlations, and checked by the mixing program.The resulting composition consists of 69 per cent Highland basalt (anorthositic gabbro) and 31 per cent Low-K Fra Mauro basalt. There is no significant Eu anomaly. The abundances are: SiO2: 45.2 per cent; TiO2: 0.68 per cent; Al2O3: 24.9 per cent; FeO: 6.3 per cent; MgO: 8.5 per cent; CaO: 13.8 per cent; Na2O: 0.4 per cent; K2O: 0.11 per cent; Cr2O3: 0.11 per cent; Ba: 144 ppm; Th: 1.8 ppm; U: 0.46 ppm; Pb: 1.6 ppm; Zr: 156 ppm; Hf: 3.2 ppm; Nb: 10.8 ppm; Y: 32 ppm; ΣREE: 85 ppm.  相似文献   

7.
尹锋  陈鸣 《岩石学报》2022,38(3):901-912
撞击角砾岩是陨石撞击过程形成的特有岩石种类,是研究撞击成坑过程、陨石坑定年、矿物岩石冲击变质的理想对象。岫岩陨石坑是一个直径1800m的简单陨石坑,坑内有大量松散堆积的撞击角砾岩。本研究通过光学显微镜、费氏台、电子探针、X射线荧光光谱仪、电感耦合等离子质谱仪等分析测试手段,主要研究了岫岩陨石坑撞击角砾岩的岩相学和冲击变质特征,并在此基础上讨论了撞击角砾岩的形成过程和陨石坑的形貌特征。岫岩陨石坑内产出有三种撞击角砾岩,分别是来自上部的玄武质角砾岩和复成分岩屑角砾岩,以及底部的含熔体角砾岩。组成玄武质角砾岩和复成分岩屑角砾岩的碎屑受到的冲击程度较低,仅有少量石英发育面状变形页理,指示不超过20GPa的冲击压力。而组成含熔体角砾岩的碎屑受到了很强的冲击,发育了熔融硅酸盐玻璃、石英面状变形页理、柯石英、二氧化硅玻璃、击变长石玻璃、莱氏石等冲击变质特征,指示的峰值压力超过50GPa。本研究证实了含熔体角砾岩通常产出在简单陨石坑底部,由瞬间坑的坑缘和坑壁垮塌的岩石碎屑与坑底的冲击熔体混合形成。岫岩坑的真实深度是495m,真实深度与直径的比值为0.275,符合简单陨石坑的尺寸特征。陨石坑内的撞击角砾岩中心厚度为188m,与直径之比为0.104,略低于其它简单坑,可能是受丘陵地貌影响导致改造阶段垮塌到坑内的岩石角砾偏少。  相似文献   

8.
We present compositional data for 358 lithic fragments (2-4-mm size range) and 15 soils (<1-mm fines) from regolith samples collected at the Apollo 12 site. The regolith is dominated by mare basalt, KREEP impact-melt breccias (crystalline and glassy), and regolith breccias. Minor components include alkali anorthosite, alkali norite, granite, quartz monzogabbro, and anorthositic rocks from the feldspathic highlands. The typical KREEP impact-melt breccia of Apollo 12 (mean Th: 16 μg/g) is similar to that of the Apollo 14 site (16 μg/g), 180 km away. Both contain a minor component (0.3% at Apollo 12, 0.6% at Apollo 14) of FeNi metal that is dissimilar to metal in ordinary chondrites but is similar to metal found in Apollo 16 impact-melt breccias. The Apollo 12 regolith contains another variety of KREEP impact-melt breccia that differs from any type of breccia described from the Apollo sites in being substantially richer in Th (30 μg/g) but with only moderate concentrations of K. It is, however, similar in composition to the melt breccia lithology in lunar meteorite Sayh al Uhaymir 169. The average composition of typical mature soil corresponds to a mixture of 65% mare basalt, 20% typical KREEP impact-melt breccia, 7% high-Th impact-melt breccia, 6% feldspathic material, 2.6% alkali noritic anorthosite, and 0.9% CM chondrite. Thus, although the site was resurfaced by basaltic volcanism 3.1-3.3 Ga ago, a third of the material in the present regolith is of nonmare origin, mainly in the form of KREEP impact-melt breccias and glass. These materials occur in the Apollo 12 regolith mainly as a result of moderate-sized impacts into surrounding Fra Mauro and Alpes Formations that formed craters Copernicus (93 km diameter, 406 km distance), Reinhold (48 km diameter, 196 km distance), and possibly Lansberg (39 km diameter, 108 km distance), aided by excavation of basalt interlayers and mixing of regolith by small, local impacts. Anomalous immature soil samples 12024, 12032, and 12033 contain a lesser proportion of mare basalt and a correspondingly greater proportion of KREEP lithologies. These samples consist mainly of fossil or paleoregolith, likely ejecta from Copernicus, that was buried beneath the mixing zone of micrometeorite gardening, and then brought to the near surface by local craters such as Head, Bench, and Sharp Craters.  相似文献   

9.
Glasses in a soil sample (14156) from the middle layer of the trench at the Fra Mauro landing site show a wide range of compositions clustered around certain preferred compositions. Ninety per cent of the glasses are of two major types—Fra Mauro basalt (63 per cent) with high K and 17 weight per cent Al2O3 and Highland basalt or anorthositic gabbro (27 per cent) with low K and 25–26 weight per cent Al2O3. The glass population is almost identical with that of the comprehensive soil 14259 (Apollo Soil Survey, 1971).  相似文献   

10.
The 16 trace elements (Ag, Au, Bi, Br, Cd, Cs, Ge, In, Ir, Rb, Re, Sb, Se, Te, Tl and Zn) were measured by radiochemical neutron activation analysis in six samples of 14321, 184: microbreccia-2 (15), microbreccia-3 (14A, 16A and 19A), basaltic clast (1A), and light matrix material (9A). The 14321 microbreccias typically contain a siderophile-rich ancient meteoritic component, poor in volatiles, which is characterized by low IrAu and ReAu ratios (0.25-0.38 and 0.34-0.50, respectively, normalized to Cl). This component also occurs in Apollo 12 KREEP glasses, norite fractions of Apollo 14 1–2 mm soils, Apennine Front breccias, and Cayley Formation material, and may represent ejecta from the Imbrian basin.The basaltic clast 14321, 184-1A closely resembles 14053 in trace element content, and both are 5–10 times higher than mare basalts in volatile trace elements (Br, Cd, Tl). The light matrix material contains 9.2 ± 0.5 per cent of microbreccias, judging from its siderophile content.  相似文献   

11.
New drill core data are provided which support earlier interpretations that the Kalkkop structure, a 600–630 m wide, near-circular feature south-southwest of Graaff-Reinet in the Eastern Cape Province of South Africa, is a meteorite impact crater. Shock metamorphosed clasts in suevitic crater fill and Re---Os isotope data of this breccia indicate the presence of a minor (0.05%) meteoritic component in the suevite. The new data come from a 1992 borehole, which transected the complete crater fill and extended from about 160 to 380 m depth into the sedimentary basement belonging to the Koonap Formation of the Beaufort Group (Karoo Supergroup). Dyke breccias were found in the otherwise coherent Beaufort Group sediments forming the floor to the Kalkkop Crater. Mostly narrow zones of different breccia types, including injections of lithic impact breccia, a possible pseudotachylite veinlet and cataclasite occur predominantly in an approximately 65 m wide zone below the crater floor, with a few other cataclasite occurrences found lower down in the basement. Stratigraphical crater constraints provide information for the depth-diameter scaling and breccia volumes associated with such small, bowl-shaped impact craters formed in sedimentary targets.U---Th series dating of limestone samples from near the top and the bottom of the crater sediment fill constraints the age of the Kalkkop impact event to about 250 ± 50 ka, similar to the age of the Pretoria Saltpan impact crater, also located in South Africa. The variety of different breccia types (polymict and monomict impact breccias; local formations of pseudotachylitic and cataclastic breccias) observed in the crater fill of the Kalkkop Crater indicates the need to carefully distinguish different breccia types in order to assess the respective importance of each formation.  相似文献   

12.
Northwest Africa (NWA) 4472 is a polymict lunar regolith meteorite. The sample is KREEP-rich (high concentrations of potassium, rare earth elements and phosphorus) and comprises a heterogeneous array of lithic and mineral fragments. These clasts and mineral fragments were sourced from a range of lunar rock types including the lunar High Magnesian Suite, the High Alkali Suite, KREEP basalts, mare basalts and a variety of impact crater environments. The KREEP-rich nature of NWA 4472 indicates that the sample was ejected from regolith on the nearside of the Moon in the Procellarum KREEP Terrane and we have used Lunar Prospector gamma-ray remote sensing data to show that the meteorite is most similar to (and most likely sourced from) regoliths adjacent to the Imbrium impact basin.U-Pb and Pb-Pb age dates of NWA 4472 phosphate phases reveal that the breccia has sampled Pre-Nectarian (4.35 Ga) rocks related to early episodes of KREEP driven magmatism. Some younger phosphate U-Pb and Pb-Pb age dates are likely indicative of impact resetting events at 3.9-4 Ga, consistent with the suggested timing of basin formation on the Moon. Our study also shows that NWA 4472 has sampled impact melts and glass with an alkali-depleted, incompatible trace element-rich (high Sc, low Rb/Th ratios, low K) compositional signature not related to typical Apollo high-K KREEP, or that sampled by KREEPy lunar meteorite Sayh al Uhaymir (SaU) 169. This provides evidence that there are numerous sources of KREEP-rich protoliths on the Moon.  相似文献   

13.
To characterize the compositions of materials accreted to the Earth-Moon system between about 4.5 and 3.8 Ga, we have determined Os isotopic compositions and some highly siderophile element (HSE: Re, Os, Ir, Ru, Pt, and Pd) abundances in 48 subsamples of six lunar breccias. These are: Apollo 17 poikilitic melt breccias 72395 and 76215; Apollo 17 aphanitic melt breccias 73215 and 73255; Apollo 14 polymict breccia 14321; and lunar meteorite NWA482, a crystallized impact melt. Plots of Ir versus other HSE define excellent linear correlations, indicating that all data sets likely represent dominantly two-component mixtures of a low-HSE target, presumably endogenous component, and a high-HSE, presumably exogenous component. Linear regressions of these trends yield intercepts that are statistically indistinguishable from zero for all HSE, except for Ru and Pd in two samples. The slopes of the linear regressions are insensitive to target rock contributions of Ru and Pd of the magnitude observed; thus, the trendline slopes approximate the elemental ratios present in the impactor components contributed to these rocks. The 187Os/188Os and regression-derived elemental ratios for the Apollo 17 aphanitic melt breccias and the lunar meteorite indicate that the impactor components in these samples have close affinities to chondritic meteorites. The HSE in the Apollo 17 aphanitic melt breccias, however, might partially or entirely reflect the HSE characteristics of HSE-rich granulitic breccia clasts that were incorporated in the impact melt at the time of its creation. In this case, the HSE characteristics of these rocks may reflect those of an impactor that predated the impact event that led to the creation of the melt breccias. The impactor components in the Apollo 17 poikilitic melt breccias and in the Apollo 14 breccia have higher 187Os/188Os, Pt/Ir, and Ru/Ir and lower Os/Ir than most chondrites. These compositions suggest that the impactors they represent were chemically distinct from known chondrite types, and possibly represent a type of primitive material not currently delivered to Earth as meteorites.  相似文献   

14.
Regolith samples from the Apollo 15 landing site are described in terms of two major fractions, a homogeneous glass fraction and a non-homogeneous glass fraction. The proportions of different components in the homogeneous glass fraction were determined directly by chemical analyses of individual particles. They are mainly green glass, a mare-like glass, and different types of Fra Mauro and Highland type glasses. The proportions of various components in the remainder of each of the soils were determined indirectly by finding the mix of components that best fits their bulk compositions. The mixing model suggests that the Apennine Front consists mainly of rocks of low-K Fra Mauro basalt composition. These may overlie rocks with the composition of anorthositic gabbro. Green glass, which occurs widely throughout the site is believed to be derived from a green glass layer which darkens upland surfaces and lies beneath the local mare surface.  相似文献   

15.
The petrogenesis of Apollo 14 high-Al basaltic melts was studied using crystal stratigraphy, which involves textural (crystal size distributions — CSDs) and chemical analyses (electron microprobe and laser ablation inductively coupled plasma mass spectrometry). The samples studied here include pristine basalt 14072 and basaltic clasts from breccia 14321, and impact-generated crystalline samples 14073, 14276 and 14310. Plagioclase was the focus of this study because of its relatively high modal abundances and because it was on the liquidus for much of the melt cooling histories. Plagioclase crystals were analyzed (core-to-rim compositions where possible) to test and refine petrogenetic models based upon whole-rock compositions (Groups A, B, and C designations) and to investigate basalt 14072 and impact-melt crystallization. Textural studies have shown that each basalt group has distinctive plagioclase CSDs, which are in turn distinctive from those of the impact melts. Evolution of the individual basaltic melts was studied by comparing the equilibrium-melt compositions (calculated from plagioclase compositions using relevant partition coefficients) to fractional crystallization (FC) and assimilation and fractional crystallization (AFC) models. Petrogenetic modeling of trace elements in Group A basalts revealed that petrogenesis continued beyond 40% total crystallization required to model whole-rock compositions, and that there were open-system processes that affected the magma during plagioclase crystallization. Petrogenetic modeling of pristine high-Al basalts (14072 and Groups A, B and C) using trace elements shows that the equilibrium-melt compositions do not fall on a single AFC or FC trajectory. This is consistent with fluctuating degrees of assimilation (i.e., variable r-values) and/or variable assimilant compositions during petrogenesis. Petrogenetic modeling reveals that the impact melts experienced only closed-system fractional crystallization. This work demonstrates the importance of crystal stratigraphy in revealing the intricacies of lunar basalt petrogenesis.  相似文献   

16.
Analytical data are presented for Apollo 14 fines ( < 1 mm) sample 14163,136 for 31 trace elements. The heavy REE are enriched monotonically by factors of 105 ± 10 over chondrites. Eu shows a large depletion (30 × chondrites) and the light REE show a smooth progressive enrichment with a slight fall at La. Ba, Cs, Th, U, Nb, Zr and Hf are strongly enriched, relative to chondritic abundances. Thus the outer portions of the moon sampled by the Imbrium event, and now represented by the Fra Mauro Formation, possessed high concentrations (100–200 × chondrites) for many elements, prior to the excavation of the mare basins. A correlation may exist between Gd/Eu and Zr/Hf ratios in lunar materials.  相似文献   

17.
Feldspathic Mare Basalts at the Apollo 17 Landing Site, Taurus-Littrow   总被引:1,自引:0,他引:1  
O'HARA  M. J. 《Journal of Petrology》2001,42(8):1401-1427
The basalt target rocks that have been converted to regolithacross the lunar maria are everywhere more feldspathic and lessmafic than the basalt hand specimens recovered from four Apollolanding sites, an effect not due to either horizontal or verticalmixing with adjacent highland materials. These crushed targetrocks need to be characterized by direct chemical and petrographicanalysis of the lithic fragments of basalt in the regolithsand by determination of the phase equilibria in and adjacentto these compositions at low pressure. Such data are availablefor the basalts of Mare Crisium and Mare Nubium (Luna 16, 24)and for Very Low Titanium basalt, first defined by three lithicfragments from the Apollo 17 core. These are all feldspathicbasalts, as are those from the Mare Tranquillitatis and OceanusProcellarum soils (Apollo 11, 12). Such data are lacking forthe principal basalt components at Mare Imbrium and Mare Serenitatis(Apollo 15, 17). The thoroughly investigated Apollo 17 landingsite at Taurus–Littrow, SE Mare Serenitatis, providesan example where other published information may be used toarrive at estimates of the composition of the feldspathic marebasalt that was the principal target material for regolith formation.This crushed basalt composition is that of a liquid close tobeing in simultaneous equilibrium with all of olivine, plagioclase,calcium-rich pyroxene, spinel, armalcolite and ilmenite at lowpressure. The simplest explanation would be that the basaltthat dominated the formation of the regolith comes from a differentflow unit than the hand specimens, but it strains credulitythat not a single hand specimen can be positively assigned tothat upper unit, and not a single soil sample can be positivelyidentified as having formed principally from the unit that providesthe hand specimens. KEY WORDS: cotectic; lithic fragment; lunar; target rock; regolith  相似文献   

18.
雨海盆地是月球上研究程度最高的多环结构盆地,月球上古老的和年轻的玄武岩在盆地中均有分布,因此雨海是研究月海玄武岩岩浆活动的理想区域。为了更合理的厘定雨海地区的玄武质岩浆演化历史,本文主要结合岩石学、年代学等工作对本区玄武岩的充填期次进行重新划分。利用嫦娥一号IIM光谱数据进行岩石类型分布图编制,初步划分了5类不同钛含量的月海玄武岩;基于高分辨率100m LRO宽视角影像数据通过撞击坑尺寸-频率定年法(CSFD)对本区玄武岩单元模式年龄进行厘定,共划分35个玄武岩单元,发现本区在3.49~2.23Ga均有玄武质岩浆充填活动,具有多期次性。在建立不同类别玄武岩、形貌特征与模式年龄的对应关系基础上,将玄武岩充填划分为4个期次:极低钛玄武岩(3.49~3.20Ga)、低钛玄武岩(3.29~2.83Ga)、中钛玄武岩(3.13~2.52Ga)、(极)高钛玄武岩(2.92~2.23Ga)。本区地形地貌高程特征与不同表面年龄的玄武岩单元之间总体上呈现出一定的负相关性。因此在本区玄武质岩浆期次划分考虑上,不仅要考虑玄武岩的成分特征,更要考虑结合与玄武岩演化密切相关的年代学及形貌学特征,利用形貌、成分数据和年代学信息来共同约束玄武质岩浆期次划分及演化历史。  相似文献   

19.
Appel  Fedo  Moorbath  & Myers 《地学学报》1998,10(2):57-62
A low-strain domain has been identified in the metamorphosed, mostly highly deformed volcanic and sedimentary rocks of the early Archaean Isua supracrustal belt. This domain contains well-preserved volcanic and sedimentary features, including basaltic pillow lavas, pillow breccia, heterogeneous volcanic breccia, amygdules in metabasalt, and polymict conglomerate dominated by recrystallized chert and volcanic clasts. The low-strain domain is bounded by highly deformed rocks mostly derived from basalt, chert, and banded iron formation. These discoveries demonstrate that some primary features have escaped the pervasive metasomatism dominant in other parts of the belt and, furthermore, strengthen the characterization of the Isua supracrustals as a typical greenstone belt.  相似文献   

20.
Radiochemical neutron activation analysis has been used to determine Ni, Zn, Ga, Ge, Cd, In, Ir and Au in duplicate samples of lunar soil 14141 and one additional replicate each of soils 14163 and 14259. The concentrations of extralunar trace elements Ni, Ge, Ir and Au in 14141 and 14163 are, respectively, about 69 and 82 per cent as high as those in 14259. Although most of the mass of 14141 appears to be ejecta from Cone Crater, a sizable contamination by mature Fra Mauro soil such as 14259 is also present. The siderophilic-element concentrations of the subregolith Fra Mauro materials are estimated to be 25 ± 25 per cent of those observed in 14259.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号