首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pyroxene-garnet solid-solution equilibria have been studied in the pressure range 41–200 kbar and over the temperature range 850–1,450°C for the system Mg4Si4O12Mg3Al2Si3O12, and in the pressure range 30–105 kbar and over the temperature range 1,000–1,300°C for the system Fe4Si4O12Fe3Al2Si3O12. At 1,000°C, the solid solubility of enstatite (MgSiO3) in pyrope (Mg3Al2Si3O12) increases gradually to 140 kbar and then increases suddenly in the pressure range 140–175 kbar, resulting in the formation of a homogeneous garnet with composition Mg3(Al0.8Mg0.6Si0.6)Si3O12. In the MgSiO3-rich field, the three-phase assemblage of β- or γ-Mg2SiO4, stishovite and a garnet solid solution is stable at pressures above 175 kbar at 1,000°C. The system Fe4Si4O12Fe3Al2Si3O12 shows a similar trend of high-pressure transformations: the maximum solubility of ferrosilite (FeSiO3) in almandine (Fe3Al2Si3O12) forming a homogeneous garnet solid solution is 40 mol% at 93 kbar and 1,000°C.If a pyrolite mantle is assumed, from the present results, the following transformation scheme is suggested for the pyroxene-garnet assemblage in the mantle. Pyroxenes begin to react with the already present pyrope-rich garnet at depths around 150 km. Although the pyroxene-garnet transformation is spread over more than 400 km in depth, the most effective transition to a complex garnet solid solution takes place at depths between 450 and 540 km. The complex garnet solid solution is expected to be stable at depths between 540 and 590 km. At greater depths, it will decompose to a mixture of modified spinel or spinel, stishovite and garnet solid solutions with smaller amounts of a pyroxene component in solution.  相似文献   

2.
Phase relations in the system Mg4Si4O12-Mg3Al2Si3O12 were examined at pressures of 19-27 GPa and relatively low temperatures of 800-1000 °C using a multianvil apparatus to clarify phase transitions of pyroxene-garnet assemblages in the mantle. Both of glass and crystalline starting materials were used for the experiments. At 1000 °C, garnet solid solution (s.s.) transforms to aluminous ilmenite s.s. at 20-26 GPa which is stable in the whole compositional range in the system. In Mg4Si4O12-rich composition, ilmenite s.s. transforms to a single-phase aluminous perovskite s.s., while Mg3Al2Si3O12-rich ilmenite s.s. dissociates into perovskite s.s. and corundum s.s. These newly determined phase relations at 1000 °C supersede preliminary phase relations determined at about 900 °C in the previous study. The phase relations at 1000 °C are quite different from those reported previously at 1600 °C where garnet s.s. transforms directly to perovskite s.s. and ilmenite is stable only very close to Mg4Si4O12. The stability field of Mg3Al2Si3O12 ilmenite was determined at 800-1000 °C and 25-27 GPa by reversed phase boundaries. In ilmenite s.s., the a-axis slightly increases but the c-axis and molar volume decrease substantially with increasing Al2O3 content. Enthalpies of ilmenite s.s. were measured by differential drop-solution calorimetry method using a high-temperature calorimeter. The excess enthalpy of mixing of ilmenite s.s. was almost zero within the errors. The measured enthalpies of garnet-ilmenite and ilmenite-perovskite transitions at 298 K were 105.2±10.4 and 168.6±8.2 kJ/mol, respectively, for Mg4Si4O12, and 150.2±15.9 and 98.7±27.3 kJ/mol, respectively, for Mg3Al2Si3O12. Thermodynamic calculations using these data give rise to phase relations in the system Mg4Si4O12-Mg3Al2Si3O12 at 1000 and 1600 °C that are generally consistent with those determined experimentally, and confirm that the single-phase field of ilmenite expands from Mg4Si4O12 to Mg3Al2Si3O12 with decreasing temperature. The earlier mentioned phase relations in the simplified system as well as those in the Mg2SiO4-Fe2SiO4 system are applied to estimate mineral proportions in pyrolite as a function of depth along two different geotherms: one is a horizontally-averaged temperature distribution in a normal mantle, and the other being 600 °C lower than the former as a possible representative geotherm in subducting slabs. Based on the previously described estimated mineral proportions versus depth along the two geotherms, density and compressional and shear wave velocities are calculated as functions of depth, using available mineral physics data. Along a normal mantle geotherm, jumps of density and velocities at about 660 km corresponding to the post-spinel transition are followed by steep gradients due to the garnet-perovskite transition between 660 and 710 km. In contrast, along a low-temperature geotherm, the first steep gradients of density and velocities are due to the garnet-ilmenite transition between 610 and 690 km. This is followed by abrupt jumps at about 690 km for the post-spinel transition, and steep gradients between 700 and 740 km that correspond to the ilmenite-perovskite transition. In the latter profile along the low-temperature geotherm, density and velocity increases for garnet-ilmenite and ilmenite-perovskite transitions are similar in magnitude to those for the post-spinel transition. The likely presence of ilmenite in cooler regions of subducting slabs is suggested by the fact that the calculated velocity profiles along the low-temperature geotherm are compatible with recent seismic observations indicating three discontinuities or steep velocity gradients at around 600-750 km depth in the regions of subducting slabs.  相似文献   

3.
The enstatite-diopside solvus in the system Mg2Si2O6-CaMgSi2O6 has been experimentally determined within the pressure range 5–40 kbars and the temperature range 900–1500°C. Experiments involving reversal of the phase boundaries by unmixing from glass starting material and by reaction of pure clinoenstatite and diopside showed difficulty in achieving equilibration due to persistence of metastable, subcalcic clinopyroxene and to the sluggishness of reaction rate. The experimental data showed that the temperature dependence of the diopside limb is less than previously accepted. At 1500°C and 30 kbars subcalcic diopside found by Davis and Boyd (1966) is shown to be metastable with respect to enstatite and more calcic diopside of composition En42.3Di57.7. The solvus widens with increasing pressure between 5 and 40 kbars at 1200°C, but at 900°C the pressure effect on the solvus is very small. The stability relationships of the four pyroxenes, protoenstatite, enstatite, iron-free pigeonite and diopside are summarized, based on data from the literature and the present study.  相似文献   

4.
At 30 kbar, calcite melts congruently at 1615°C, and grossularite melts incongruently to liquid + gehlenite (tentative identification) at 1535°C. The assemblage calcite + grossularite melts at 1450°C to produce liquid + vapor, with piercing point at about 49 wt.% CaCO3. Vapor phase is present in all hypersolidus phase fields except for those with less than about 7% CaCO3 or 8% Ca3Al2Si3O12. These results, together with known liquidus data for CaO—SiO2—CO2 and inferred results for CaO—Al2O3—CO2 and Al2O3—SiO2—CO2, permit construction of the position of the CO2- saturated liquidus surface in the quaternary system, and estimation of the positions of liquidus field boundaries separating some of the primary crystallization fields on this surface. The field of calcite is separated from those for grossularite and quartz by a field boundary with about 50% dissolved CaCO3. Crystallization paths of silicate liquids in the range Ca2SiO4—Ca3Al2Si3O12—SiO2, with some dissolved CO2, will terminate at a quaternary eutectic on this field boundary, with the precipitation of calcite together with grossularite and quartz, at a temperature below 1450°C. Addition of Al2O3 to CaO—SiO2—CO2 in amounts sufficient to stabilize garnet thus causes little change in the general liquidus pattern as far as carbonates and silicates are concerned. With addition of MgO, we anticipate that silicate liquids with dissolved CO2 will also follow liquidus paths to fields for the precipitation of carbonates; we conclude that similar paths link kimberlite and some carnbonatite magmas.  相似文献   

5.
Experimental data on the stability of titan-phlogopite [K2Mg4TiAl2Si6O20(OH)4] are presented which show it to be stable to substantially higher temperatures than normal phlogopite [K2Mg6Al2Si6O20(OH)4]. A qualitative model to explain the role of titan-phlogopite during magma generation is put forward. Breakdown of titan-phlogopite during melting at depth (> 150km) on subducted lithospheric slabs is believed responsible for the concomitant increase of K and Ti observed in magmas erupted during orogenic volcanism. At lower pressures (up to about 10 kbar) beneath mid-oceanic ridges, titan-phlogopite is predicted to behave as a refractory phase during partial melting in the mantle, especially if H2O-excess conditions pertain, although at higher pressures in this environment it would almost certainly behave as a low-melting component.  相似文献   

6.
7.
The stability field of knorringite (Mg3Cr2Si3O12) is studied experimentally. Knorringite is stable at pressures above 10.5 GPa at 1200°C and 11.8 GPa at 1400°C. Below these pressures, knorringite decomposes to enstatite + eskolaite. A phase diagram of the pyrope-knorringite system is described based on the available experimental data. The solubility of the knorringite molecule in pyrope is essentially dependent only on pressure, and the Cr/Cr+Al value of garnet is considered to be an indicator of the minimum pressure of equilibration. Consideration of the genesis of Cr-rich pyrope and other peridotitic inclusions in diamonds indicates that the fractionation process should have taken place, at least at depths to ca. 240 km, to give rise to the Cr-rich complement of Cr-poor upper mantle materials such as undepleted lherzolite. The knorringite-rich peridotitic suite in diamond will be identified with this complement, which may be the material constituting the deep upper mantle.  相似文献   

8.
Phase assemblages for five selected compositions in the system CaSiO3-Al2O3 have been investigated in the pressure range 100–300 kbar and at about 1000°C in a diamond-anvil press coupled with laser heating. At pressures below about 250 kbar, the assemblage of grossularite plus corundum is stable for compositions containing more than 25 mole% Al2O3. Above about 250 kbar, phase assemblages for the latter compositions are truncated by those in the join CaAl2O4-SiO2. Garnet solid solutions are stable between about 10 and 25 mole% Al2O3. Grossularite transforms to a new tetragonal form at pressures greater than about 250 kbar, but the stability field for the garnet solid solutions extends to pressures up to about 300 kbar. The perovskite modification appears to be stable at pressures above about 150 kbar, but is probably limited to nearly pure CaSiO3 composition. Phase behaviour for calcium-bearing silicates or aluminosilicates in the lower mantle are apparently more complicated than was suggested earlier.  相似文献   

9.
By incorporating the knowledge of the observed high-pressure phase transformations, the measured equilibrium phase boundaries for certain transitions, and the measured thermochemical data for certain phases in the system MgOSiO2, the equilibrium phase boundaries for all the phase transitions in this system at 1000°C have been calculated on the basis of an assumption that volume change across a phase boundary is independent of temperature. Three major seismic velocity discontinuities in the mantle (420, 570, and 650 km) have been chosen for comparison with the measured and calculated equilibrium phase boundaries for the high-pressure phases observed in the system MgOSiO2. Complications of phase changes due to the addition of FeO and Al2O3 to the system have also been accounted for. It is suggested by the results of this study that the 420- and 570-km discontinuities are probably related to phase transitions observed in the system MgOSiO2, but that the 650-km discontinuity is not likely to be associated with any of the equilibrium phase boundaries observed in olivine, pyroxene, and garnet, but may instead be a chemical change.  相似文献   

10.
High-pressure and high temperature experiments at 20 GPa on (Mg,Fe)SiO3 have revealed stability fields of two types of aluminium-free ferromagnesian garnets; non-cubic garnet and cubic garnet (majorite). Majorite garnet is stable only within a limited compositional variation, 0.2 < Fe/(Mg + Fe)< 0.4, and in the narrow temperature interval of 200°C around 2000°C, while the stability of non-cubic garnet with more iron-deficient compositions persists up to higher temperatures. These two garnets show fractional melting into iron-deficient garnet and iron-rich liquid, and the crystallization field of cubic garnet extends over Fe/(Mg + Fe)= 0.5. The assemblage silicate spinel and stishovite is a low-temperature phase, which also occurs in the iron-rich portion of the MgSiO3—FeSiO3 system. The sequence as given by the Fe/(Mg + Fe) value for the coexisting phases with the two garnets at 2000°C and 20 GPa is: silicate modified spinel aluminium-free garnets silicate spinel.Natural majorite in shock-metamorphosed chondrites is clarified to be produced at pressures above 20 GPa and temperatures around 2000°C. Similar shock events may cause the occurrence of non-cubic garnet in iron-deficient meteorites. Non-cubic garnet could be a stable phase in the Earth's mantle if a sufficiently low concentration of aluminium is present in the layer corresponding to the stable pressure range of non-cubic garnet. The chemical differentiation by melting in the deep mantle is also discussed on the basis of the present experimental results and the observed coexistence of majorite garnet with magnesiowüstite in chondrites.  相似文献   

11.
In a diamond-anvil pressure cell coupled with laser heating, the system enstatite (MgSiO3)-pyrope (3 MgSiO3 · Al2O3) has been studied in the pressure region between about 100 and 300 kbar at about 1000°C using glass starting materials. The high-pressure phase behavior of the intermediate compositions of the system contrasts greatly with that of the two end-members. Differences between MgSiO3 and 95% MgSiO3 · 5% Al2O3 are especially remarkable. The phase assemblages β-Mg2SiO4 + stishovite and γ-Mg2SiO4 (spinel) + stishovite displayed by MgSiO3 were not observed in 95% MgSiO3 · 5% Al2O3, and the garnet phase, which was observed in 95% MgSiO3 · 5% Al2O3 at high pressure, was not detected in MgSiO3. These results suggest that the high-pressure phase transformations found in pure MgSiO3 would be inhibited under mantle conditions by the presence even of small amounts of Al2O3 (?4% by weight). On the other hand, pyrope displays a wide stability field, finally transforming at 240–250 kbar directly to an ilmenite-type modification of the same stoichiometry. The two-phase region, within which orthopyroxene and garnet solid solutions coexist, is very broad. The structure of the earth's mantle is discussed in terms of the phase transformations to be expected in a simple mixture of 90% MgSiO3 · 10% Al2O3 and Mg2SiO4. The seismic discontinuity at a depth of 400 km in the earth's mantle is probably due entirely to the olivine → β-phase transition in Mg2SiO4, with the progressive solution of pyroxene in garnet (displayed in 90% MgSiO3 · 10% Al2O3) occurring at shallower depths. The inferred discontinuity at 650 km is due to the combination of the phase changes spinel → perovskite + rocksalt in Mg2SiO4 and garnet → ilmenite in 90% MgSiO3 · 10% Al2O3. The 650-km discontinuity is thus characterized by an increase in the primary coordination of silicon from 4 to 6. A further discontinuity in the density and seismic wave velocities at greater depth associated with the ilmenite-perovskite phase transformation in 90% MgSiO3 · 10% Al2O3 is expected.  相似文献   

12.
The high-pressure and temperature phase transformations of MgSiO3 have been investigated in a diamond-anvil cell coupled with laser heating from 150 to 300 kbar at 1000–1400°C. X-ray diffraction study of the quenched samples reveals that the sequence of phase transformations for this compound is clinoenstatite → β-Mg2SiO4 plus stishovite → Mg2SiO4(spinel) plus stishovite → ilmenite phase → perovskite phase with increasing pressure. The hexagonal form of MgSiO3 observed by Kawai et al. is demonstrated to have the ilmenite structure and the “hexagonal form” of MgSiO3 observed by Ming and Bassett is shown to be predominantly the orthorhombic perovskite phase plus the ilmenite phase. The mixture of oxides, periclase plus stishovite, reported by Ming and Bassett was not observed in this study. The very wide stability field for the ilmenite phase of MgSiO3 found in this study suggests that this phase is of importance in connection with the observed rapid increase of velocity in the transition zone of the earth's mantle. On the basis of the extremely dense-packed structure of the perovskite phase of MgSiO3, this phase should be the most important component for the lower mantle.  相似文献   

13.
A brief report is made of current laboratory investigations on phase relations among olivine, pyroxene, anorthite, magnetite, tridymite, liquid and gas in the system Mg2SiO4-CaAl2Si2O8-FeO-Fe2O2-SiO2 over a wide range of oxygen partial pressures. Courses of fractional crystallization under various conditions of oxygen partial pressure are depicted using an anorthite saturation diagram. Starting with a basalt-like composition in the system, fractional crystallization at a moderate oxygen partial pressure (10 atm.) results in an andesite-like residual liquid of composition 55 SiO2, 14 iron oxide, 6 MgO, 9 CaO, 16 Al2O3 at a temperature of 1155°C. With fractional crystallization in a closed system, the end liquid approaches the composition of 45 SiO2, 38 iron oxide, 6 CaO and 11 Al2O3, at a temperature of 1050°C and oxygen partial pressure of about 10?12 atm. The andesitic final liquid in this system would be expected to further differentiate toward dacitic and rhyolitic compositions if alkalies and water were present in the system. On the basis of these studies, the derivation of liquids of andesitic, dacitic or rhyolitic composition from primary basalts by fractional crystallization seems entirely possible if the oxygen partial pressure is maintained at a moderate or high level.  相似文献   

14.
The system Mg2SiO4MgOH2O was investigated at pressures between 85 and 160 kbar and at temperatures between 750 and 1200°C. In runs for a gel with Mg/Si ratio of 3 and with 4.0 wt.-percent H2O, a dense hydrous magnesian silicate, denoted phase B by Ringwood and Major, was found at pressures from about 100 kbar to at least 160 kbar in the whole temperature range studied. In the following table the crystallographic parameters and chemical formula of phase B, determined in this study, are compared with those of the other dense hydrous silicates in Mg2SiO4MgOH2O.
  相似文献   

15.
High-pressure phase relations in ZnSiO3 and Zn2SiO4 were investigated at about 1000°C and in the pressure range of 100–500 kbar, using a double-staged split-sphere type of high-pressure apparatus.Clinopyroxene-type ZnSiO3 transforms directly into a polymorph with the ilmenite structure at 120 kbar. The hexagonal unit cell dimensions of the ZnSiO3 ilmenite are determined to be a = 4.746 ± 0.001 A?and c = 13.755 ± 0.002 A? under ambient conditions.The following reactions are also recognized at about 1000°C:
and:
The stabilities of silicate ilmenites, especially the absence of ilmenite of transition metal silicate composition, is discussed. It is pointed out that data on phase relations in zinc silicates may be informative for the consideration on those in magnesium silicates under very high pressures. It is suggested that the silicate ilmenite may be a major constituent in the lower mantle.  相似文献   

16.
The elastic moduli of a synthetic single crystal of pyrope (Mg3Al2Si3O12) have been determined using a technique based on Brillouin scattering. These results are used in an evaluation of the effect of composition on the elastic properties of silicate garnet solid solution series (Mg, Fe, Mn, Ca)3 (Al, Fe, Cr)2 Si3O12. In the pyralspites (Mg FeMn aluminum garnets), for which a large amount of data is available, this analysis indicates that the bulk modulus K is independent of the Fe2+/Mg2+ ratio, which is similar to the behavior observed in olivines and pyroxenes. However, the shear modulus μ of the garnets increases by 10% from the Mg to the Fe end member, in contrast to the decrease of μ with Fe content which is observed in olivines and pyroxenes. This contrasting behavior is most probably related to the oxygen coordination of the cation site occupied by Mg2+ and Fe2+ in these different minerals.  相似文献   

17.
The phase behaviour of MSiO4 compounds (MHf, Zr, U and Th0 has been investigated at high pressures and temperatures in a diamond-anvil press coupled with laser heating. All of these compounds have been found to undergo two or perhaps three phase transformations at pressures below 300 kbar. The high-pressure phase transformations of these compounds differ from one another, with the exception of HfSiO4 and ZrSiO4, which undergo identical phase transformations. The ultimate phase assemblages of these compounds are of dense component dioxides (although this is yet to be confirmed in ThSiO4). It is suggested that the heat-producing elements U and Th would exist as dioxide solid solutions rather than silicates in the deep interior of the earth. Moreover, the densities of these dioxides are more than twice as great as mantle silicates and even slightly greater than pure iron under similar P, T conditions. Gravitational separation due to mandle convection may transport these dioxides to the deep interior of the earth to form deep heat sources. It is also suggested, however, that these deep heat sources are located in the inner-outer core boundary instead of in the lower mantle.  相似文献   

18.
Clay mineral formation in DSDP Leg 34 basalt   总被引:1,自引:0,他引:1  
A blue-green smectite (iron-rich saponite) and green mica (celadonite) are the dominant sheet silicates in veins within the 10.5 m of basalt cored during DSDP Leg 34, Site 321, in the Nazca plate. Oxygen isotopic analyses of these clays, and associated calcite, indicate a formation temperature of≤25°C.Celadonite contains appreciable Fe2O3, K2O and SiO2, intermediate MgO, and very little Al2O3. Celadonite is commonly associated with goethite and hematite, which suggests that this phase formed by precipitation within a dominantlyoxygenated environment of components leached from basalt and provided by seawater. A mass balance estimate indicates that celadonite formation can remove no more than 15% of the K annually transported to the oceans by rivers. In contrast, iron-rich saponite containing significant Al2O3 appears to have precipitated from anon-oxidizing, distinctly alkaline fluid containing a high Na/K ratio relative to unmodified seawater.Seawater-basalt interaction at low temperatures, resulting in the formation of celadonite and smectite may explain chemical gradients observed in interstitial waters of sediments overlying basalts.  相似文献   

19.
An extensive study of a big number of gneiss specimens with various shock features from the suevite allowed unravelling of the shock behavior of almandite garnets.Almandites in shocked metamorphic rocks show with increasing dynamic pressures strong irregular fracturing. differently oriented sets of planar fractures or elements, brown turbidity and nucleation of minute crystals of an unknown phase in solid garnets. At higher peak pressures garnet was found to break down to (1) orthopyroxene + spinel + glass, and to (2) spinel + glass due to fast shock-melting.Extensive quantitative electron microprobe studies of almandite garnets and their breakdown products were carried out. The breakdown products within the original grain boundaries of the garnets consist of an alumina-rich orthopyroxene (with up to 10 wt. % Al2O3), hercynite to pleonaste spinels and a silica and calcium-rich glass matrix. The chemical zonation of magnesium and manganese of the former garnets is inherited in the composition of the newly formed orthopyroxenes.Petrographic evidence and chemical composition suggest a fast breakdown of the almandite garnets after passing of shock waves at rapidly falling pressures and very high post-shock temperatures within the ejected gneissic rock material.  相似文献   

20.
Garnets crystallized experimentally from within the anhydrous melting ranges of an olivine tholeiite, a tholeiitic andesite and an augite leucitite at pressures between 18 and 45 kbars contain up to 0.4% Na2O and 0.6% P2O5. The Na and P are thought to form a substitution couple, replacing Ca and Si in the garnet structure; representing limited solid solution between grossular (Ca3Al2Si3O12) and the phosphate Na3Al2P3O12. This substitution is enhanced by increasing pressure and by falling temperature (increasing degree of crystallization) at constant pressure.Current knowledge of the crystalline site of P in the upper mantle is hampered by lack of data on the stability of apatite and other phosphates at appropriate pressures and temperatures. If all samples of garnetiferous upper mantle brought to the surface by magmatic processes have been depleted to some extent by previous escape of a partial-melt fraction, P2O5 concentrations below 0.1% in their garnets could nevertheless signify that this phase was the sole predepletion host for P in the upper mantle, at the depths from which such inclusions are derived. If garnet and apatite are the principal minerals containing P in the upper mantle, it may be possible to use covariances between P and rare-earth elements in mafic liquids to detect which of these phases was the dominant host for P at the site of magma genesis. This approach confirms the widely-held opinion that strongly alkalic mafic magmas are products of upper-mantle partial fusion in the presence of residual garnet. It also leads to a contrasting proposal that mid-ocean ridge basalts may be generated by upper-mantle partial fusion at comparatively small depths, in the presence of residual apatite.  相似文献   

PhaseCompositionSpace groupCell parametersDensity (g cm?3)
abcβ
(Å)(Å)(Å)(°)
ChondroditeMg5Si2O10H2P21/c7.9144.75210.350108.713.06
ClinohumiteMg9Si4O18H2P21/c13.6954.74710.284100.643.14
Phase AMg7Si2O14H6P637.8609.5732.96
Phase BMg23Si8O42H6P21/c10.60014.09810.092104.053.32
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号