首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although much is known about overall sediment delivery ratios for catchments as components of sediment production and sediment yield, little is known about the component of temporary sediment storage. Sediment delivery ratios focused on the influence of storm-related sediment storage are measured at Matakonekone and Oil Springs tributaries of the Waipaoa River basin, east coast of New Zealand. The terrace deposits of both tributaries show abundant evidence of storm-related sedimentation, especially sediment delivered from Cyclone Bola, a 50 year return rainfall event which occurred in 1988. The sediment delivery ratio is calculated by dividing the volume of sediment transported from a tributary to the main stream by the volume of sediment generated at erosion sites in the tributary catchment. Because the sediment delivery volume is unknown, it can be calculated as the difference between sediment generation volume and sediment storage volume in the channel reach of the tributary. The volume of sediment generated from erosion sites in each tributary catchment was calculated from measurements made on aerial photographs dating from 1960 (1:44 000) and 1988 (1:27 000). The volume of sediment stored in the tributary can be calculated from measurements of cross-sections located along the tributary channel, which are accompanied by terrace deposits dated by counting annual growth rings of trees on terrace surfaces. Sediment delivery ratios are 0·93 for both Matakonekone catchment and Oil Springs catchment. Results indicate that Oil Springs catchment has contributed more than twice the volume of sediment to the Waipaoa River than the Matakonekone catchment (2·75 × 106 m3 vs 1·22 × 106 m3). Although large volumes of sediment are initially deposited during floods, subsequent smaller flows scour away much of these deposits. The sediment scouring rate from storage is 1·25 × 104 m3 a−1 for Matakonekone stream and 0·83 × 104 m3 a−1 for Oil Springs stream. Matakonekone and Oil Springs channels respond to extreme storms by instantaneously aggrading, then gradually excavating the temporarily stored sediment. Results from Matakonekone and Oil Springs streams suggest a mechanism by which event recurrence interval can strongly influence the magnitude of a geomorphic change. Matakonekone stream with its higher stream power is expected to excavate sediment deposits more rapidly and allow more rapid re-establishment of storage capacity. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
A physically based snow-evolution modelling system (SnowModel) that includes four sub-models: MicroMet, EnBal, SnowPack, and SnowTran-3D, was used to simulate eight full-year evolutions of snow accumulation, distribution, sublimation, and surface melt from glaciers in the Zackenberg river drainage basin, in north-east Greenland. Meteorological observations from two meteorological stations were used as model inputs, and spatial snow depth observations, snow melt depletion curves from photographic time lapse, and a satellite image were used for model testing of snow and melt simulations, which differ from previous SnowModel tests methods used on Greenland glaciers. Modelled test-period-average end-of-winter snow water equivalent (SWE) depth for the depletion area differs by a maximum of 14 mm w.eq., or ∼6%, more than the observed, and modelled test-period-average snow cover extent differs by a maximum of 5%, or 0·8 km2, less than the observed. Furthermore, comparison with a satellite image indicated a 7% discrepancy between observed and modelled snow cover extent for the entire drainage basin. About 18% (31 mm w.eq.) of the solid precipitation was returned to the atmosphere by sublimation. Modelled mean annual snow melt and glacier ice melt for the glaciers in the Zackenberg river drainage basin from 1997 through 2005 (September–August) averaged 207 mm w.eq. year−1 and 1198 mm w.eq. year−1, respectively, yielding a total averaging 1405 mm w.eq. year−1. Total modelled mean annual surface melt varied from 960 mm w.eq. year−1 to 1989 mm w.eq. year−1. The surface-melt period started between mid-May and the beginning of June and lasted until mid-September. Annual calculated runoff averaged 1487 mm w.eq. year−1 (∼150 × 106 m3) (1997–2005) with variations from 1031 mm w.eq. year−1 to 2051 mm w.eq. year−1. The model simulated a total glacier recession averaging − 1347 mm w.eq. year−1 (∼136 × 106 m3) (1997–2005), which was almost equal to previous basin average hydrological water balance storage studies − 244 mm w.eq. year−1 (∼125 × 106 m3) (1997–2003). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
In this study, long‐term discharge data and climate records, such as temperature and precipitation during 1977–2006, have been used to define basin climatic and hydrologic regimes and changes. Discharge analyses at four key gauging stations (Eagle, Stevens Village, Nenana, and Pilot Station) in the Yukon River Basin show that the runoff in the cold season (November to April) is low with small variations, whereas it is high (28 500–177 000 ft3/s; 810–5000 m3/s) with high fluctuations in the warm season (May to October). The Stevens Village Station is in the upper basin and has similar changes with the flow near basin outlet. Flow increases in May (61 074 ft3/s; 1729 m3/s) and September (23 325 ft3/s; 660 m3/s); and decreases in July (35 174 ft3/s; 996 m3/s) and August (6809 ft3/s; 193 m3/s). Discharge in May at the Pilot Station (near the basin outlet) shows a positive trend (177 000 ft3/s; 5010 m3/s). Daily flow analyses show high fluctuation during the warm season and very low flow during the cold season; the 10‐year average analyses of daily flow at Pilot Station show a small increase in the peak and its timing shifted to a little earlier date. The annual flow, average of 227 900 ft3/s (6450 m3/s) with high inter‐annual fluctuations, has increased by 18 200 ft3/s (or 8%; 520 m3/s) during 1977–2006. From 1977 to 2006, basin air temperature in June has increased by 3.9 °F (2.2 °C) and decreased by 10.5 °F (5.8 °C) in January. A strong and positive correlation exists between air temperature in April and discharge in May, whereas a strong and negative correlation relates August temperature and September discharge. Negative trend during 1977–2006 is observed for precipitation in June (0.6 in.; 15 mm) with a confidence over 93%. Precipitation in August and September has strong and positive correlations with discharge in September and October at basin outlet; the precipitation in other months has weak correlation with the discharge. The mean annual precipitation during 1977–2006 increased by 1.1 in. (or 8%; 28 mm), which contributes to the annual flow increase during the study period. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Streams can be classified as stable or unstable, depending on the stage of channel evolution. Many streams of the southern Piedmont in United States have high sediment loads and are listed as impaired under the total maximum daily load (TMDL) program and may be unstable. It is not clear as to what the target (reference) load or remediation measures should be for unstable streams. The objective of this study was to determine the relative channel stability for a typical southern Piedmont stream using rapid geomorphic assessments (RGAs) and sediment yield analysis. The results were supported through a sediment fingerprinting analysis. RGAs were performed along 52 reaches on the North Fork Broad River (NFBR) main stem and two tributaries. Annual sediment yields were calculated and compared with yields in the southern Piedmont for stable streams that are resilient to degradation or aggradation and unstable streams that are susceptible to such disturbances. Majority of the NFBR main stem was found to be unstable with signs of geomorphic instability in the form of degradation and aggradation. The estimated average annual sediment yield was 0·78 T ha?1 year?1. By comparison, the median annual yield is 0·20 T ha?1 year?1 for stable streams and 0·48 T ha?1 year?1 for unstable streams in the Piedmont ecoregion with comparable drainage basin size. We conclude that the NFBR is in an unstable stage of channel evolution. Sediment fingerprinting proved that majority of the stream‐suspended sediment emanated from eroding stream channels. The methods outlined in this study have implications for the reference condition and remediation efforts related to stream turbidity and stream channel restoration. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Total organic carbon fluxes of the Red River system (Vietnam)   总被引:1,自引:0,他引:1       下载免费PDF全文
Riverine transport of organic carbon from terrestrial ecosystems to the oceans plays an important role in the global carbon cycle. The Red River is located in Southeast Asia where river discharge, sediment loads and fluxes of elements (carbon, nitrogen and phosphorus) associated with suspended solids have been dramatically altered over past decades as a result of reservoir impoundment and land use, population, and climate change. Dissolved organic carbon (DOC) and particulate organic carbon (POC) concentrations were measured monthly at four stations of the Red River system from January 2008 to December 2010. The results reveal that POC changed synchronically with total suspended solids (TSS) concentration and with the river discharge, whereas no clear trend was observed for DOC concentration. The mean value of total organic carbon (TOC = DOC + POC) flux in the delta of the Red River was 31.5 × 1013 ± 4.0 × 1013 MgC.yr?1 (range 27.9–35.8 × 1013 MgC.yr?1 which leads to a specific TOC flux of 2012 ± 255 kgC.km?2.yr?1 during this 2008–2010 period. About 80% of the TOC flux was transferred to the estuary during the rainy season as a consequence of the higher river water discharge. The high mean value of the POC:Chl‐a ratio (1585 ± 870 mgC.mgChl‐a?1) and the moderate C:N ratio (7.3 ± 0.1) in the water column system suggest that organic carbon in the Red River system is mainly derived from erosion and soil leaching in the basin. The effect of two new dam impoundments in the Red River was also observable with lower TOC fluxes in 2010 compared with 2008. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
This study addresses the spatial variations in water quality along the River Vène (France). The Vène drains a 67 km2 rural basin, with a large karstic area, located in a Mediterranean context. A 1 day sampling campaign was conducted along the river, in winter low‐flow conditions (February 2003). Physico‐chemical parameters and water flow discharge were measured in situ during the sampling campaign. Water quality was evaluated by determining the concentrations of nitrogen and phosphorus in water and bed‐sediment samples. Nitrogen and phosphorus loads were evaluated taking into account the measured concentrations and discharge. The campaign included 18 sampling points and concerned the whole river from the spring to the outlet, plus the main inputs, i.e. sewage treatment works, main tributaries and karstic springs. The spatial evolution of nitrogen and phosphorus loads along the river allowed the significant role of point‐source inputs to be demonstrated. The decrease in nutrient loads along the river occurred mainly in specific reaches where fine sediments had accumulated. In these zones, phosphorus is trapped in the bed sediments in calcium‐bound phosphates due to precipitation processes. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Alluvial fans at tributary junctions modulate sediment flux through river networks, by buffering the mainstem channel from disturbance in the tributaries. Buffering occurs through the storage (and release) of sediment in fans. Here, we use an extensive historic dataset to characterise the ways in which fan buffering can change as sediment supply varies. In New Zealand's East Coast region, sediment supply and fluvial transport are prolific by global standards. We reconstruct how tributary-junction fans in this region have responded to sediment generated by deforestation and extreme storms. The dynamics of five fans along the Tapuaeroa River are examined for the period 1939–2015. In response to major sediment loading, fans aggraded by up to 12 m and prograded by up to 170 m. Net sediment accumulation ranged from near zero to 1.5×106 m3. Fan size, gradient, sediment storage and buffering were influenced by both upstream and downstream controls. Key upstream (tributary) influences were sediment supply and stream power; downstream (mainstem) influences included distal confinement and, importantly, the nature of fan interaction with the mainstem, which aggraded by up to 6 m. The fans' ability to buffer the Tapuaeroa River from change in the tributaries was largely governed by this downstream interaction: as the mainstem aggraded, it increasingly curtailed fan progradation, thus limiting buffering. Previous studies of tributary-junction fans have related fan morphometry to basin characteristics. However, we find that fan slope and area can vary considerably at decadal, annual or even monthly timescales. Consequently, we suggest that such studies could benefit by examining regional histories of disturbance. © 2019 John Wiley & Sons, Ltd.  相似文献   

8.
An Erratum has been published for this article in Hydrological Processes 16(5) 2002, 1130–1131. Humid tropical regions are often characterized by extreme variability of fluvial processes. The Rio Terraba drains the largest river basin, covering 4767 km2, in Costa Rica. Mean annual rainfall is 3139±419sd mm and mean annual discharge is 2168±492sd mm (1971–88). Loss of forest cover, high rainfall erosivity and geomorphologic instability all have led to considerable degradation of soil and water resources at local to basin scales. Parametric and non‐parametric statistical methods were used to estimate sediment yields. In the Terraba basin, sediment yields per unit area increase from the headwaters to the basin mouth, and the trend is generally robust towards choice of methods (parametric and LOESS) used. This is in contrast to a general view that deposition typically exceeds sediment delivery with increase in basin size. The specific sediment yield increases from 112±11·4sd t km?2 year?1 (at 317·9 km2 on a major headwater tributary) to 404±141·7sd t km?2 year?1 (at 4766·7 km2) at the basin mouth (1971–92). The analyses of relationships between sediment yields and basin parameters for the Terraba sub‐basins and for a total of 29 basins all over Costa Rica indicate a strong land use effect related to intensive agriculture besides hydro‐climatology. The best explanation for the observed pattern in the Terraba basin is a combined spatial pattern of land use and rainfall erosivity. These were integrated in a soil erosion index that is related to the observed patterns of sediment yield. Estimated sediment delivery ratios increase with basin area. Intensive agriculture in lower‐lying alluvial fans exposed to highly erosive rainfall contributes a large part of the sediment load. The higher elevation regions, although steep in slope, largely remain under forest, pasture, or tree‐crops. High rainfall erosivity (>7400 MJ mm ha?1 h?1 year ?1) is associated with land uses that provide inadequate soil protection. It is also associated with steep, unstable slopes near the basin mouth. Improvements in land use and soil management in the lower‐lying regions exposed to highly erosive rainfall are recommended, and are especially important to basins in which sediment delivery ratio increases downstream with increasing basin area. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
Abstract

Water discharge and suspended and dissolved sediment data from three rivers (Napo, Pastaza and Santiago) in the Ecuadorian Amazon basin and a river in the Pacific basin (Esmeraldas) over a 9-year period, are presented. This data set allows us to present: (a) the chemical weathering rates; (b) the erosion rates, calculated from the suspended sediment from the Andean basin; (c) the spatio-temporal variability of the two regions; and (d) the relationship between this variability and the precipitation, topography, lithology and seismic activity of the area. The dissolved solids load from the Esmeraldas basin was 2 × 106 t year-1, whereas for the Napo, Pastaza and Santiago basins, it was 4, 2 and 3 × 106 t year-1, respectively. For stations in the Andean piedmont of Ecuador, the relationship between surface sediment and the total sediment concentration was found to be close to one. This is due to minimal stratification of the suspended sediment in the vertical profile, which is attributed to turbulence and high vertical water speeds. However, during the dry season, when the water speed decreases, sediment stratification appears, but this effect can be neglected in the sediment flux calculations due to low concentration rates. The suspended sediment load in the Pacific basin was 6 × 106 t year-1, and the total for the three Amazon basins was 47 × 106 t year-1. The difference between these contributions of the suspended sediment load is likely due to the tectonic uplift and the seismic and volcanic dynamics that occur on the Amazon side.

Editor Z.W. Kundzewicz

Citation Armijos, E., Laraque, A., Barba, S., Bourrel, L., Ceron, C., Lagane, C., Magat, P., Moquet, J.-S., Pombosa, R., Sondag, F., Vauchel, P., Vera, A., and Guyot, J.L., 2013. Yields of suspended sediment and dissolved solids from the Andean basins of Ecuador. Hydrological Sciences Journal, 58 (7), 1478–1494.  相似文献   

10.
Changes in the hydrological regimes of Arctic rivers could affect the thermohaline circulation of the Arctic Ocean. In this study, we analysed spatiotemporal variations in temperature and precipitation in the Ob River Basin regions during 1936–2017 based on data from the Global Precipitation Climatology Center. Changes in discharge and response to climate change were examined based on monthly observed data during the same period. It is indicated the Ob River Basin experienced significant overall rapid warming and wetting (increased precipitation) in the study period, with average rates of 0.20°C (10 year−1) and 5.3 mm (10 year−1), respectively. The annual spatial variations of temperature and precipitation showed different scales in different regions. The discharge in spring and winter significantly increased at a rate of 384.1 and 173.1 m3/s (10 year−1), respectively. Hydrograph separation indicated infiltration and supported that deep flow paths increased the contribution of groundwater to base flow. Meanwhile, the variation of the ratio of Qmax/Qmin suggested that the basin storage and the mechanism of discharge generation have significantly changed. The hydrological processes were influenced by changes of permafrost in a certain in the Ob River Basin. An increase in the recession coefficient (RC) implies that the permafrost degradation in the basin due to climate warming affected hydrological processes in winter. Permafrost degradation affected the Qmax/Qmin more significantly in the warm season than RC due to the enhanced infiltration that converted more surface water into groundwater in the cold season. The impact of precipitation on discharge, including surface flow and base flow, was more significant than temperature at the annual and seasonal scales in the Ob River Basin. The base flow was more obviously influenced by temperature than surface flow. The results of this study are significant for analyses of the basin water budget and freshwater input to the Arctic Ocean.  相似文献   

11.
In recent years, the natural hydrology behaviors were greatly influenced by climate change. The relation between runoff and climate change are always the core of scientific hydrological study in arid region. This paper presents a multi-variate time series controlled auto-regressive (CAR) model based on hydrological and climatic data of typical tributaries Jinghe River in Ebinur Lake Basin of Xinjiang covering the period from 1957 to 2012. The aim is to study the climate change and its effects on runoff of the Jinghe River, Northwest China. The results showed the following: the runoff of the Jinghe River was unevenly distributed and has obvious seasonal changes throughout the year. It was concentrated in summer and has along dry season with less runoff. The monthly maximum river runoff was from June to September and accounted for 74% of annual runoff. The river runoff increased since the 1980s till the 1990s; in the 21st century there was a trend of decreasing. The oscillatory period of annual runoff series in the Jinghe River Basin was 21a and 13a, and these periods were more obvious, followed by 32a and 9a. The oscillation with a time scale of 21a and 13a was a fulltimed domain. The MRE is 6.54%, the MAE is 0.84 × 108 m3, and the RMSE is 0.039. The CAR model passed the F-test and residual test, and the change trend of calculated and measured values of annual runoff is consistence, which means that the model was reasonable.  相似文献   

12.
Runoff generated from large storm events, such as hurricanes, is expected to transport large quantities of suspended sediment. Observations of suspended-sediment loads transported during Hurricane Hugo in the Lago Loìza (Lake Loiza) basin, Puerto Rico, indicate that loads were lower than expected. In the two main tributaries that enter Lago Loìza, Rio Grande de Loìza and Rio Gurabo, 99 600 tonnes of suspended sediment was transported by 58·2 × 106 m3 of runoff in a 48 h period. The storm-average suspended-sediment concentration in the Río Grande de Loìza for Hurricane Hugo was 2290 mgl−1, the second lowest for the 12 storms that have been monitored at this site. In Río Gurabo the storm-average suspended-sediment concentration was 1420 mgl−1, the sixth lowest recorded out of 15 monitored storms. In Quebrada Salvatierra, a small tributary to Río Grande de Loìza, suspended-sediment concentrations were as low as 33 mgl−1 during the peak runoff of 20 m3 s−1. Normally the suspended-sediment concentrations at this discharge are 3000 mgl−1. Hurricane force winds seem to be the most important factor contributing to the lower than expected suspended-sediment loads in the Lago Loìza basin. The high winds caused vegetation and debris to be dislodged and displaced. Debris accumulated on hillslopes and in small channels, blocked bridges and formed debris dams. These dams caused local backwater effects that reduced stream velocities and decreased suspended-sediment loads.  相似文献   

13.
《水文科学杂志》2013,58(3):602-617
Abstract

The main areas of net moisture uptake are examined in air masses over the Orinoco River basin, located in equatorial South America, north of the Amazon basin. Although the Orinoco River has the third largest average annual discharge in the world (with 5.4 × 1011 m3 year?1 draining into the Atlantic Ocean), the sources of moisture that feed it have not previously been studied in any detail. The results are presented from analyses of back-tracking of all the air masses over the Orinoco basin over a period of five years (2000–2004) using the diagnostic Lagrangian tool FLEXPART. The input data for the model were obtained from the European Centre for Medium-range Weather Forecasts (ECMWF). Air transported into the Orinoco basin experiences a large uptake of water over the tropical North Atlantic within the three days prior to its arrival over the basin. The Tropical South Atlantic and the eastern coast of the Pacific become significant moisture sources for about 5–10 days before arriving over the Orinoco basin. Contrary to what might be expected, large areas of the Amazon basin, along with the Gulf of Mexico, do not provide significant moisture to the study area. Interestingly, over these zones the air experiences net moisture loss. Preliminary analysis of the processes that occur leads to the conclusion that most of the water observed over the Orinoco basin derives from advective fluxes into the area, while recycling of moisture is negligible.  相似文献   

14.
《水文科学杂志》2013,58(3):531-542
Abstract

River corridor wetland restoration and freshwater diversion from the lower Mississippi River are being considered as two major options to reduce nitrogen input to the Gulf of Mexico. However, it is largely uncertain how much nitrogen can actually be retained from the overflowing waters by these wetland systems. This study quantified the nitrogen inflow and outflow for the largest distributary basin of the Mississippi River, the Atchafalaya River Swamp basin. The goal of the study was to seek answers to three critical questions: (a) Does the Atchafalaya River Swamp remove a significant amount of nitrogen from the overflowing water, or is it releasing more nitrogen into the Gulf? (b) How do the nitrogen removal or release rates fluctuate seasonally and annually? (c) What are the relationships between the nitrogen removal capacity and the hydrological conditions in the basin such as river stage and discharge? By utilizing the long-term (1978–2002) river discharge and water quality data, monthly and annual nitrogen fluxes were quantified, and their relationships with the basin hydrological conditions investigated. A total nitrogen—sum of the total Kjeldahl nitrogen (TKN) and nitrate plus nitrite nitrogen (NO3+NO2)—mass input—output balance between the upstream (Simmesport) and downstream (Morgan City and Wax Lake Outlet) locations was established to examine the nitrogen removal potential for this, the largest freshwater swamp basin in North America. The results from this study showed that, over the past 25 years, the Atchafalaya River Swamp basin acted as a source for NO3+NO2 nitrogen, although the average annual output of NO3+NO2 nitrogen (174 584 Mg) was only slightly higher (2.3%) than the average annual input of NO3+NO2 nitrogen (170 721 Mg). The higher NO3+NO2 mass outflow occurred throughout summer and autumn, indicating an active role of biological processes on nitrogen in the overflowing waters of the Atchafalaya. However, this swamp basin has served as a major sink for organic nitrogen: the annual averages of TKN mass input and output were 200 323 and 145 917 Mg year?1, respectively, presenting a 27.2% removal rate by the basin. This large TKN reduction appeared high during springs and low during late summers, corresponding with the fluctuation of the hydrological conditions of the river.  相似文献   

15.
The long-term average annual soil loss (A) and sediment yield (SY) in a tropical monsoon-dominated river basin in the southern Western Ghats, India (Muthirapuzha River Basin, MRB; area: 271.75 km2), were predicted by coupling the Revised Universal Soil Loss Equation (RUSLE) and sediment delivery ratio (SDR) models. Moreover, the study also delineated soil erosion risk zones based on the soil erosion potential index (SEPI) using the analytic hierarchy process (AHP) technique. Mean A of the basin is 14.36 t ha?1 year?1, while mean SY is only 3.65 t ha?1 year?1. Although the land use/land cover types with human interference show relatively lower A compared to natural vegetation, their higher SDR values reflect the significance of anthropogenic activities in accelerated soil erosion. The soil erosion risk in the MRB is strongly controlled by slope, land use/land cover and relative relief, compared to geomorphology, drainage density, stream frequency and lineament frequency.  相似文献   

16.
The annual discharge of the Lower Jordan River has decreased from about 1250 × 106 m3 y?1 to about 300 × 106 m3 y?1 due to water exploitation. The decrease in water discharge was not followed by a similar decrease in the suspended sediment. Evidence from air photographs and maps from 1920s to early 1970s show that the river is adjusting itself by shortening its course. The shortening is not distributed uniformly along the valley length. Local effects obscure the effect of decreasing discharge. Since the early 1970s the channel is becoming longer again due to a change in the dominant flow.  相似文献   

17.
Carbon transported by rivers is an important component of the global carbon cycle. Here, we report on organic carbon transport along the third largest river in China, the Songhua River, and its major tributaries. Water samples were collected seasonally or more frequently to determine dissolved organic carbon (DOC) and particulate organic carbon (POC) concentrations and C/N and stable carbon isotopic ratios. Principal component analysis and multiple regression analysis of these data, in combination with hydrological records for the past 50 years, were used to determine the major factors influencing the riverine carbon fluxes. Results indicate that the organic carbon in the Songhua River basin is derived mainly from terrestrial sources. In the 2008–2009 hydrological year, the mean concentrations of DOC and POC were 5.87 and 2.36 mg/L, and the estimated fluxes of the DOC and POC were 0.30 and 0.14 t·km?2·year?1, respectively. The riverine POC and DOC concentrations were higher in subcatchments with more cropland, but the area‐specific fluxes were lower, owing to decreased discharge. We found that hydrological characteristics and land‐use type (whether forest or cropland) were the most important factors influencing carbon transport in this system. Agricultural activity, particularly irrigation, is the principal cause of changes in water discharge and carbon export. Over the last 50 years, the conversion of forest to cropland has reduced riverine carbon exports mainly through an associated decrease in discharge following increased extraction of water for irrigation.  相似文献   

18.
A physically based model of runoff formation with daily resolution has been developed for the upper part of the Ussuri basin with an area of 24400 km2 based on ECOMAG hydrological modeling platform. Two versions of the hydrological model have been studied: (1) a crude version with the spatial schematization of the drainage area and river network based on DEM 1 × 1 km with the use of soil and landscape maps at a scale of 1: 2500000 and (2) a detailed version with DEM 80 × 80 m and soil and landscape maps of the scale of 1: 100000. Each version of the model has been tested for two variants of meteorological inputs: (1) meteorological forcing data (temperature, air humidity, precipitation) at eight weather stations and (2) with the involvement of additional data on precipitation collected at 15 gages in the basin. The model has been calibrated and validated over a 34-year period (1979–2012) with the use of runoff data for the Ussuri R. and its tributaries. The results of numerical experiments for assessing the sensitivity of model hydrological response to the spatial resolution of land surface characteristics and the density of precipitation gaging stations are discussed.  相似文献   

19.
Strontium (Sr) concentrations and isotopic ratios have been measured in a series of water and rock samples from most of the major tributaries of the Lake Qinghai basin on the north‐eastern Tibetan Plateau. Dissolved Sr and 87Sr/86Sr show ranges of 488–12 240 nmol/l and 0·710497–0·716977, respectively. These data, together with measurements of major cations and anions in rivers and their tributaries and various lithologies of the catchment, were used to determine the contributions of Sr and its isotopic expense to rivers and lakes. Our results demonstrate that the chemical components and 87Sr/86Sr ratios of the alkaline waters are derived from mixing of carbonate and silicate sources, with the former contributing 72 ± 18% dissolved Sr to rivers. The difference in tributary compositions stems from the lithology of different river systems and low weathering intensity under a semi‐arid condition. Variation in 87Sr/86Sr ratios places constraint on the Sr‐isotopic compositions of the main tributaries surrounding Lake Qinghai. The water chemistry of the Buha River, the largest river within the catchment underlain by the late Paleozoic marine limestone and sandstones, dominates Sr isotopic composition of the lake water, being buffered by the waters from the other rivers and probably by groundwater. However, the characteristic chemical composition of the lake itself differs remarkably from the rivers, which can be attributed to precipitation of authigenic carbonates (low‐magnesium calcite, aragonite, and dolomite), though this does not impact the Sr isotope signature, which may remain a faithful indicator in paleo‐records. Regarding the potential role of groundwater input within the Lake Qinghai systems in the water budget and water chemistry, we have also determined the Sr concentration and 87Sr/S6Sr ratio of groundwater from diverse environments. This has allowed us to further constrain the Sr isotope systematic of this source. A steady‐state calculation gives an estimate for the groundwater flux of 0·19 ± 0·03 × 108 m3/yr, accounting for about 8% of contemporary lake Sr budget. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The Senegal River is of intermediate size accommodating at present about 3.5 million inhabitants in its catchment. Its upstream tributaries flow through different climatic zones from the wet tropics in the source area in Guinea to the dry Sahel region at the border between Senegal and Mauritania. Total suspended matter, particulate and dissolved organic carbon and nitrogen as well as nutrient concentrations were determined during the dry and wet seasons at 19 locations from the up- to downstream river basin. The aims of the study were to evaluate the degree of human interference, to determine the dissolved and particulate river discharges into the coastal sea and to supply data to validate model results. Statistical analyses showed that samples from the wet and dry season are significantly different in composition and that the upstream tributaries differ mainly in their silicate and suspended matter contents. Nutrient concentrations are relatively low in the river basin, indicating low human impact. Increasing nitrate concentrations, however, show the growing agriculture in the irrigated downstream areas. Particulate organic matter is dominated by C4 plants during the wet season and by aquatic plankton during the dry season. The total suspended matter (TSM) discharge at the main gauging station Bakel was about 1.93 Tg yr−1 which is in the range of the only available literature data from the 1980s. The calculated annual discharges of particulate organic carbon (POC), dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) are 55.8 Gg yr−1, 54.1 Gg yr−1, and 5.3 Gg yr−1, respectively. These first estimates from the Senegal River need to be verified by further studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号