首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The spatial and temporal variations of precipitation in the desert region of China (DRC) from 1951 to 2005 were investigated using a rotated empirical orthogonal function (REOF), the precipitation concentration index (PCI) and the Mann–Kendall trend test method (M‐K method). In addition, the association between variation patterns of precipitation and large‐scale circulation were also explored using the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data. The results indicated that the spatial pattern of precipitation was primarily the local climate effect significant type, with the first three EOFs explaining a total of 55·3% of the variance, and the large‐scale climate system effect type, which explained 9·8% of the variance. Prior to the 1970s, the East Asian summer monsoon was stronger, which resulted in abundant precipitation in the Inner Mongolia region. Conversely, the climate of the Xinjiang region was controlled by westerly circulation and had lower precipitation. However, this situation has been reversed since the 1980s. It is predicted that precipitation will decrease by 15–40 and 0–10 mm/year in the Inner Mongolia plateau and southern Xinjiang, respectively, whereas it will likely increase by 10–40 mm/year in northern Xinjiang. Additionally, 58–62% of the annual rainfall occurred during summer in the DRC, with precipitation increasing during spring and summer and decreasing in winter. The intra‐annual precipitation is becoming uniform, but the inter‐annual variability in precipitation has been increasing in the western portions of the DRC. The probability of precipitation during the study period increased by 30% and 22·2% in the extreme‐arid zones and arid zones, respectively. Conversely, the probability of precipitation during the study period decreased by 18·5% and 37·5% in the semi‐arid zones and semi‐wet zones, respectively. It is predicted that the northwest portion of the DRC will become warmer and wetter, while the central portion will become warmer and drier and the northeast portion will be subjected to drought. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Much of the discussion on hydrological trends and variability in the source region of the Yellow River centres on the mean values of the mainstream flows. Changes in hydrological extremes in the mainstream as well as in the tributary flows are largely unexplored. Although decreasing water availability has been noted, the nature of those changes is less explored. This article investigates trends and variability in the hydrological regimes (both mean values and extreme events) and their links with the local climate in the source region of the Yellow River over the last 50 years (1959–2008). This large catchment is relatively undisturbed by anthropogenic influences such as abstraction and impoundments, enabling the characterization of widely natural, climate‐driven trends. A total of 27 hydrological variables were used as indicators for the analysis. Streamflow records from six major headwater catchments and climatic data from seven stations were studied. The trend results vary considerably from one river basin to another, and become more accentuated with longer time period. Overall, the source region of the Yellow River is characterized by an overall tendency towards decreasing water availability. Noteworthy are strong decreasing trends in the winter (dry season) monthly flows of January to March and September as well as in annual mean flow, annual 1‐, 3‐, 7‐, 30‐ and 90‐day maxima and minima flows for Maqu and Tangnag catchments over the period 1959–2008. The hydrological variables studied are closely related to precipitation in the wet season (June, July, August and September), indicating that the widespread decrease in wet season precipitation is expected to be associated with significant decrease in streamflow. To conclude, decreasing precipitation, particularly in the wet season, along with increasing temperature can be associated with pronounced decrease in water resources, posing a significant challenge to downstream water uses. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
This study investigated spatial and temporal patterns of trends of the precipitation maxima (defined as the annual/seasonal maximum precipitation) in the Yangtze River basin for 1960–2005 using Mann–Kendall trend test, and explored association of changing patterns of the precipitation maxima with large-scale circulation using NCEP/NCAR reanalysis data. The research results indicate changes of precipitation maxima from relative stable patterns to the significant increasing/decreasing trend in the middle 1970s. With respect to annual variability, the rainy days are decreasing and precipitation intensity is increasing, and significant increasing trend of precipitation intensity was detected in the middle and lower Yangtze River basin. Number of rain days with daily precipitation exceeding 95th and 99th percentiles and related precipitation intensities are in increasing tendency in summer. Large-scale atmospheric circulation analysis indicates decreasing strength of East Asian summer monsoon during 1975–2005 as compared to that during 1961–1974 and increasing geopotential height in the north China, South China Sea and west Pacific regions, all of which combine to negatively impact the northward propagation of the vapor flux. This circulation pattern will be beneficial for the longer stay of the Meiyu front in the Yangtze River basin, leading to more precipitation in the middle and lower Yangtze River basin in summer months. The significant increasing summer precipitation intensity and changing frequency in the rain/no-rain days in the middle and lower Yangtze River basin have potential to result in higher occurrence probability of flood and drought hazards in the region.  相似文献   

4.
The confounding effects of step change invalidate the stationarity assumption of commonly used trend analysis methods such as the Mann–Kendall test technique, so previous studies have failed to explain inconsistencies between detected trends and observed large precipitation anomalies. The objectives of this study were to (1) formulate a trend analysis approach that considers nonstationarity due to step changes, (2) use this approach to detect trends and extreme occurrences of precipitation in a mid‐latitude Eurasian steppe watershed in North China, and (3) examine how runoff responds to precipitation trends in the study watershed. Our results indicate that annual precipitation underwent a marginal step jump around 1995. The significant annual downward trend after 1994 was primarily due to a decrease in summer rainfall; other seasons exhibited no significant precipitation trends. At a monthly scale, July rainfall after 1994 exhibited a significant downward trend, whereas precipitation in other months had no trend. The percentage of wet days also underwent a step jump around 1994 following a significant decreasing trend, although the precipitation intensity exhibited neither a step change nor any significant trend. However, both low‐frequency and high‐frequency precipitation events in the study watershed occurred more often after than before 1994; probably as either a result or an indicator of climate change. In response to these precipitation changes, the study watershed had distinctly different precipitation‐runoff relationships for observed annual precipitations of less than 300 mm, between 300 and 400 mm, and greater than 400 mm. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Based on daily precipitation data of more than 2000 Chinese stations and more than 50 yr, we constructed time series of extreme precipitation based on six different indices for each station: annual and summer maximum(top-1) precipitation,accumulated amount of 10 precipitation maxima(annual, summer; top-10), and total annual and summer precipitation.Furthermore, we constructed the time series of the total number of stations based on the total number of stations with top-1 and top-10 annual extreme precipitation for the whole data period, the whole country, and six subregions, respectively. Analysis of these time series indicate three regions with distinct trends of extreme precipitation:(1) a positive trend region in Southeast China,(2) a positive trend region in Northwest China, and(3) a negative trend region in North China. Increasing(decreasing)ratios of 10–30% or even 30% were observed in these three regions. The national total number of stations with top-1 and top-10 precipitation extremes increased respectively by 2.4 and 15 stations per decade on average but with great inter-annual variations.There have been three periods with highly frequent precipitation extremes since 1960:(1) early 1960 s,(2) middle and late 1990 s,and(3) early 21 st century. There are significant regional differences in trends of regional total number of stations with top-1 and top-10 precipitation. The most significant increase was observed over Northwest China. During the same period, there are significant changes in the atmospheric variables that favor the decrease of extreme precipitation over North China: an increase in the geopotential height over North China and its upstream regions, a decrease in the low-level meridional wind from South China coast to North China, and the corresponding low moisture content in North China. The extreme precipitation values with a50-year empirical return period are 400–600 mm at the South China coastal regions and gradually decrease to less than 50 mm in Northwest China. The mean increase rate in comparison with 20-year empirical return levels is 6.8%. The historical maximum precipitation is more than twice the 50-year return levels.  相似文献   

6.
Spatiotemporal trends in precipitation may influence vegetation restoration, and extreme precipitation events profoundly affect soil erosion processes on the Loess Plateau. Daily data collected at 89 meteorological stations in the area between 1957 and 2009 were used to analyze the spatiotemporal trends of precipitation on the Loess Plateau and the return periods of different types of precipitation events classified in the study. Nonparametric methods were employed for temporal analysis, and the Kriging interpolation method was employed for spatial analysis. The results indicate a small decrease in precipitation over the Loess Plateau in last 53 years (although a Mann–Kendall test did not show this decrease to be significant), a southward shift in precipitation isohyets, a slightly delayed rainy season, and prolonged return periods, especially for rainstorm and heavy rainstorm events. Regional responses to global climate change have varied greatly. A slightly increasing trend in precipitation in annual and sub‐annual series, with no obvious shift of isohyets, and an evident decreasing trend in extreme precipitation events were detected in the northwest. In the southeast, correspondingly, a more seriously decreasing trend occurred, with clear shifts of isohyets and a slightly decreasing trend in extreme precipitation events. The result suggests that a negative trend in annual precipitation may have led to decreased soil erosion but an increase in sediment yield during several extreme events. These changes in the precipitation over the Loess Plateau should be noted, and countermeasures should be taken to reduce their adverse impacts on the sustainable development of the region. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
变网格大气模式对1998年东亚夏季风异常的模拟研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文利用法国国家科研中心(CNRS)动力气象实验室(LMD)发展的可变网格的格点大气环流模式LMDZ4,对1998年东亚夏季降水进行了模拟,考查了变网格模式对东亚夏季降水的模拟性能.结果表明,模式在一定程度上能模拟出东亚夏季降水的极大值中心、夏季风雨带以及降水由东南向西北递减的空间分布特征.模式基本再现了1998年夏季两次雨带的进退特征,包括降水强度、雨带范围等,从而合理再现了1998年夏季江淮地区的"二度梅"现象.与观测相比,模拟的不足在于:在陡峭地形区附近存在虚假降水;江淮和华北地区以及四川盆地存在水汽输送的气旋式辐合偏差,同时高层环流辐散偏强,使得下层暖湿空气辐合上升、降水偏多;在东南地区存在反气旋式的水汽输送偏差,30°N以南地区降水偏少.对于1998年的"二度梅"现象,模拟偏差主要表现为长江中下游地区两次(特别是第二次)较强降水持续时间偏短,强降水范围偏小,而黄淮和华南地区却降水偏多.分析表明,模式对两次梅雨期降水的模拟偏差直接受环流形势模拟偏差的影响.LMDZ4区域模式版本的特点一是区域加密,二是加密区内预报场每10天向再分析资料恢复一次.敏感试验结果表明,LMDZ4加密区向强迫场的10天尺度恢复总体上有利于提高模式对华北降水的模拟能力,而对长江流域和华南降水的模拟具有不利影响.较之均匀网格模拟试验,加密试验由于在东亚的分辨率大大提高,对东亚夏季降水模拟效果更好.  相似文献   

8.
ABSTRACT

The summer precipitation (June–September) in the source region of the Yellow River accounts for about 70% of the annual total, playing an important role in water availability. This study divided the source region of the Yellow River into homogeneous zones based on precipitation variability using cluster analysis. Summer precipitation trends and teleconnections with global sea-surface temperatures (SST) and the Southern Oscillation Index (SOI) from 1961 to 2010 were investigated by Mann-Kendall test and Pearson product-moment correlation analysis. The results show that the northwest part (Zone 1) had a non-significantly increasing trend, and the middle and southeast parts (zones 2 and 3) that receive the most precipitation displayed a statistically significant decreasing trend for summer precipitation. The summer precipitation in the whole region showed statistically significant negative correlations with the central Pacific SST for 0–4 month lag and with the Southern Indian and Atlantic oceans SST for 5–8 month lag. Analyses of sub-regions reveal intricate and complex correlations with different SST areas that further explain the summer precipitation variability. The SOI had significant positive correlations, mainly for 0–2 months lag, with summer precipitation in the source region of the Yellow River. It is seen that El Niño Southern Oscillation (ENSO) events have an influence on summer precipitation, and the predominant negative correlations indicate that higher SST in equatorial Pacific areas corresponding to El Niño coincides with less summer precipitation in the source region of the Yellow River.
Editor Z.W. Kundzewicz; Associate editor D. Gerten  相似文献   

9.
新疆夏季降水年代际转型的归因分析   总被引:4,自引:0,他引:4       下载免费PDF全文
本研究针对我国内陆新疆地区在20世纪80年代末出现由暖干向暖湿的年代际转型,从大气环流因子进行归因分析.结果显示,位于东亚沿海地区的东亚-太平洋型遥相关波列(EAP)的强度和位置的年代际加强和偏移对于新疆地区此次气候的干湿转型具有重要贡献.转型之前EAP强度偏弱,位置相对偏东,对新疆夏季降水变化没有明显贡献,且影响新疆夏季降水发生的主要环流系统是位于中纬度欧亚大陆上空的异常纬向波列.转型后EAP强度偏强,位置相对前期向西偏移,因此从西北太平洋向我国内陆地区的异常水汽输送显著增强,使得新疆地区大气含水量增加,从而导致20世纪80年代末以后新疆夏季降水的增加.  相似文献   

10.
Analyses of the spatio-temporal variability of precipitation extremes defined by eleven extreme precipitation indices in Shandong were conducted by utilizing the methods of linear regression, ensemble empirical mode decomposition (EEMD) and Mann–Kendall test. The results revealed that statistically significant decreasing trends existed for almost all extreme precipitation indices except for the consecutive dry days (CDD) and simple daily intensity index. A periodicity of 10–15 years for precipitation extremes is detected by EEMD analysis. Greatest 5-day total rainfall (RX5day), very wet days (R95p) and annual total wet-day precipitation (PRCPTOT) experienced decreasing trends in the region stretching from the southeast coast to the west, while the spatial distribution of the decreasing trends for other indices was more complicated. Moreover, the frequency of occurrence in precipitation extremes at Changdao station, surrounded by the sea in the northeast region, increased in contrast to surrounding stations. This may suggest a possible effect from the local marine environment on extreme precipitation. In addition, the stations with statistically significant positive trends for CDD were mainly located in mid-west Shandong and along the southeast coast, where the extreme precipitation and total rainfall were, on the contrary, characterized by decreasing trends. These results indicate that drought or severe drought events have become more frequent in those regions. Analysis of large-scale atmospheric circulation changes indicates that a strengthening anticyclonic circulation and increasing geopotential height as well as decreasing strength of monsoonal flow in recent decades may have contributed to the variations in extreme precipitation in Shandong.  相似文献   

11.
In most studies, trend detection is performed under the assumption of a monotonic trend. However, natural processes and, in particular, hydro‐climatic variables may not conform to this assumption. This study performs a simultaneous evaluation of gradual and abrupt changes in Canadian low streamflows using a modified Mann–Kendall (MK) trend test and a Bayesian multiple change‐point detection model. Statistical analysis, using the whole record of observation (under a monotonic trend assumption), shows that winter and summer low flows are dominated by upward and downward trends, respectively. Overall, about 20% of low flows are characterized by significant trends, where ~80% of detected significant trends are upward (downward) for winter (summer) season. Change‐point analysis shows that over 50% of low‐flow time series experienced at least one abrupt change in mean or in direction of trend, of which ~50% occurred in 1980s with a mode in 1987. Analysis of segmented time series based on a common change‐point date indicates a reduced number of significant trends, which is attributed to first, the change in nonstationarity behaviour of low flows leading to less trend‐type changes in the last few decades; and second, the false detection of trends when the sample data are characterized by shifts in mean. Depending on whether the monotonic trend assumption holds, the on‐site and regional interpretation of results may vary (e.g. winter low flow) or even lead to contradictory conclusions (e.g. summer low flow). Trend analysis of last two decades of streamflows shows that (1) winter low flows are increasing in eastern Canada and southern British Columbia, whereas they are decreasing in western Canada; (2) summer low flows are increasing in central Canada, southern British Columbia and Newfoundland, whereas they are decreasing in Yukon and northern British Columbia and also in eastern Ontario and Quebec. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Using the 1961–1995 monthly averaged meteorological data from 148 surface stations in the Qinghai-Xizang Plateau (QXP) and its surrounding areas, calculation of the 35-year atmospheric heat source/sink (<Qi>) and an analysis on its climatic features and relation to rainfall in China have been made. It is found that on the average, the atmospheric heat source over the QXP is the strongest in June (78 W / m2) and cold source is the strongest in December (−72 W/m2). The sensible heat of the surface increases remarkably over the southwest of the QXP, causing the obvious increase of <Qi> there in February and March, which makes a center of the atmospheric heat source appear over the north slope of the Himalayas. Afterwards, this center continues to intensify and experiences noticeable migration westwards twice, separately occurring in April and June. The time when the atmosphere over the east of the QXP becomes heat source and reaches strongest is one month later than that over the southwest of the QXP. In summer, the latent heat of condensation becomes a heating factor as important as the sensible heat and is also a main factor that makes the atmospheric heat source over the east of the QXP continue growing. On the interdecadal time scale, (Q1) of the QXP shows an abrupt change in 1977 and a remarkable increase after 1977. The atmospheric heat source of the spring over the QXP is a good indicator for the subsequent summer rainfall over the valleys of the Changjiang and Huaihe rivers and South China and North China. There is remarkable positive correlation between the QXP heat source of summer and the summer rainfall in the valleys of the Changjiang River.  相似文献   

13.
The first step towards developing a reliable seasonal runoff forecast is identifying the key predictors that drive rainfall and runoff. This paper investigates the lag relationships between rainfall across Australia and runoff across southeast Australia versus 12 atmospheric‐oceanic predictors, and how the relationships change over time. The analysis of rainfall data indicates that the relationship is greatest in spring and summer in northeast Australia and in spring in southeast Australia. The best predictors for spring rainfall in eastern Australia are NINO4 [sea surface temperature (SST) in western Pacific] and thermocline (20 °C isotherm of the Pacific) and those for summer rainfall in northeast Australia are NINO4 and Southern Oscillation Index (SOI) (pressure difference between Tahiti and Darwin). The relationship in northern Australia is greatest in spring and autumn with NINO4 being the best predictor. In western Australia, the relationship is significant in summer, where SST2 (SST over the Indian Ocean) and II (SST over the Indonesian region) is the best predictor in the southwest and northwest, respectively. The analysis of runoff across southeast Australia indicates that the runoff predictability in the southern parts is greatest in winter and spring, with antecedent runoff being the best predictor. The relationship between spring runoff and NINO4, thermocline and SOI is also relatively high and can be used together with antecedent runoff to forecast spring runoff. In the northern parts of southeast Australia, the atmospheric‐oceanic variables are better predictors of runoff than antecedent runoff, and have significant correlation with winter, spring and summer runoff. For longer lead times, the runoff serial correlation is reduced, especially over the northern parts, and the atmospheric‐oceanic variables are likely to be better predictors for forecasting runoff. The correlations between runoff versus the predictors vary with time, and this has implications for the development of forecast relationship that assumes stationarity in the historical data. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Daily temperature and precipitation data from 136 stations of Southwest China (SWC) during the last five decades, from 1960 to 2007, were analysed to determine the spatial and temporal trends by using the Mann–Kendall trend test. Results show that SWC has become warmer over the last five decades, especially in the recent 20–25 years. The increasing trends in winter months are more significant than those in the months of other seasons, and spatially Tibet, Hengduan mountains area and west Sichuan Plateau have larger temperature trend in magnitude than the other regions have. A downward trend was detected in Sichuan Basin also, but the region with cooler temperature was shrinking due to the statistically significant increasing trend of temperature after 1990s. Both annual and seasonal means of daily maximum and minimum temperatures show an increasing trend, but trend magnitude of minimum temperature was larger than that of maximum temperature, resulting in the decrease of diurnal temperature range for SWC in the last 50 years. Annual precipitation showed slightly and statistically insignificant increasing trend, but statistically significant increasing trend has been detected in winter season while autumn witnessed a statistically significant decreasing trend. The results could be a reference for the planning and management of water resources under climate change. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Spatial and temporal variations of the isotopic composition of precipitation were investigated to better understand their controlling factors. Precipitation was collected from six locations in Hokkaido, Japan, and event‐based analyses were conducted for a period from March 2010 to February 2013. Relatively low δ values and a high d‐excess for annual averages were observed at three sites located along the Japan Sea compared to the three sites at Pacific Ocean side. Lower δ values in spring and fall and higher d‐excess in winter were observed for the region along the Japan Sea. In total, 264 precipitation events were identified. Precipitation originated predominantly from low‐pressure system (LPS) events, which were classified as northwest (LPS‐NW) and southeast (LPS‐SE) events according to the routes of the low‐pressure center, that passed northwest and southeast of Hokkaido, respectively. LPS‐SE events showed lower δ18O than LPS‐NW events, which is attributable to the lower δ18O of water vapor resulting from heavy rainfalls in the upstream region of the LPS air mass trajectories over the Pacific Ocean. This phenomenon observed in Hokkaido can be found in other midlatitude coastal regions and applied for hydrological, atmospheric, and paleoclimate studies. A characteristic spatial pattern was found in LPS‐NW events, in which lower δ18O was observed on the Japan Sea side than on the Pacific Ocean side in each season. This is likely due to the location of the sampling sites and their distance from the LPS: Precipitation with lower δ18O in the region along the Japan Sea occurs in a well‐developed cloud system near the low‐pressure center in cold and warm sectors of LPS, whereas precipitation with higher δ18O on the Pacific side mainly occurs in a warm sector away from the low‐pressure center. Air mass from the north does not always cause low δ in precipitation, and the precipitation process in the upstream region is another important factor controlling the isotopic composition of precipitation, other than the local temperature and precipitation amount.  相似文献   

16.
This work presents an updated climatology of blocking episodes for the Southern Hemisphere between 1960 and 2000, based on data from NCEP/NCAR reanalysis. Five contiguous areas of blocking activity are considered; Southeastern Pacific, Southwestern Pacific, Atlantic, Indian and Oceania. The impact of the three most important areas of onset blocking episodes (Southeastern Pacific, Atlantic and Oceania) upon the climate of the adjacent continental areas (South America and Australia) was evaluated. Composites of the meteorological variables (temperature and precipitation) were obtained for periods of diagnosed blockings. The impact of the blocking episodes over the climate of South America and Australia is highlighted whenever anomaly fields of temperature and precipitation are significant at the 5% and 10% levels, respectively. Impacts of Southeastern Pacific and Atlantic blockings are observed on the temperature field over several regions of South America. Significantly higher (lower) temperatures than climatology occur in southern Brazil, northern Argentina, Uruguay and Paraguay, and lower (higher) than climatology in the extreme south of South America for the Southeastern Pacific (Atlantic) blocking episodes. Precipitation over South America is also affected by the Southeastern Pacific and Atlantic blockings in different ways. The Southeastern Pacific blocking has higher impact on precipitation in summer (dry conditions in northeast Brazil) and spring (wet conditions in central and southern Brazil), while the Atlantic blocking affects precipitation in autumn and winter (wet conditions in parts of central and southern Brazil). The blocking cases over Oceania affect southeastern Australia with normal to higher than climatological precipitation and with negative temperature anomalies in that region. Finally we provide a detailed analysis of a South Atlantic blocking episode, which occurred between the 4th and the 8th of June 1997. This event shows clearly the split of the jet stream into two branches (subtropical and polar) surrounding the anticyclonic sector, and satellite imagery revealed the presence of transient systems in the periphery of the blocking anticyclone responsible for high values of precipitation in the southeastern sector of South America.  相似文献   

17.
Investigation of the precipitation phenomenon as one of the most important meteorological factors directly affecting access to water resources is of paramount importance. In this study, the precipitation concentration index (PCI) was calculated using annual precipitation data from 34 synoptic stations of Iran over a 50-year period (1961–2010). The trend of precipitation and the PCI index were analyzed using the Mann–Kendall test after removing the effect of autocorrelation coefficients in annual and seasonal time scales. The results of zoning the studied index at annual time scale revealed that precipitation concentration follows a similar trend within two 25-year subscales. Furthermore, the PCI index in central and southern regions of the country, including the stations of Kerman, Bandarabbas, Yazd, Zahedan, Shahrekord, Birjand, Bushehr, Ahwaz, and Esfahan indicates a strong irregularity and high concentration in atmospheric precipitations. In annual time scale, none of the studied stations, had shown regular concentration (PCI < 10). Analyzing the trend of PCI index during the period of 1961–2010 witnessed an insignificant increasing (decreasing) trend in 16 (15) stations for winter season, respectively, while it faced a significant negative trend in Dezful, Saghez, and Hamedan stations. Similarly, in spring, Kerman and Ramsar stations exhibited a significant increasing trend in the PCI index, implying significant development of precipitation concentration irregularities in these two stations. In summer, Gorgan station showed a strong and significant irregularity for the PCI index and in autumn, Tabriz and Zahedan (Babolsar) stations experienced a significant increasing (decreasing) trend in the PCI index. At the annual time scale, 50 % of stations experienced an increasing trend in the PCI index. Investigating the changes in the precipitation trend also revealed that in annual time scale, about 58 % of the stations had a decreasing trend. In winter, which is the rainiest season in Iran, about 64 % of stations experienced a decreasing trend in precipitation that caused an increasing trend in PCI index. Comparing the spatial distribution of PCI index within two 25 years sub-periods indicated that the PCI index of the second sub-period increased in the spring time scale that means irregularity of precipitation distribution has been increased. But in the other seasons any significant variations were not observed. Also in the annual time scale the PCI index increased in the second sub-period because of the increasing trend of precipitation.  相似文献   

18.
Climatologists have been paying much attention to the global and regional climatic charac-teristics during the LGM. A lot of paleodata were obtained in East Asia during the LGM[1—5] and laid the firm foundation of reconstructing East Asian paleoclimate t…  相似文献   

19.
The plausible long‐term trend of precipitation in China and its association with El Niño–southern oscillation (ENSO) are investigated by using non‐parametric techniques. It is concluded that a greater number of decreasing trends are observed than are expected to occur by chance. Geographically, the decreasing trend was concentrated in most parts of China, including the Songliao River, Hai River, Huai River, Yellow River, Zhujiang River, and southern part of the Yangtze River basins, whereas an increasing trend appeared primarily in the western and middle parts of China, mainly including the Inland River basin, and the northern part of the Yangtze River basins. Monthly mean precipitation for the summer and early autumn months generally decreased, with the greatest decrease occurring in August. The precipitation in spring from January to April and later autumn, including September and October, tended to increase. The teleconnection between precipitation and ENSO has been investigated by using the non‐parametric Kendall's τ. The correlation coefficients between the southern oscillation index (SOI) and precipitation show the areas with positive or negative associations. Approximately 20% of the stations exhibit statistically significant correlations between SOI and precipitation, of which 70% show a negative correlation, with most of them appearing in southeast China and several appearing in northwest and northeast China. Similar regional patterns are also observed when the precipitation records are further subdivided into El Niño, La Niña, and neutral periods. Statistical tests for the three kinds of time series were carried out using the non‐parametric Wilcoxon rank‐sum test, and it is noted that the stations with significant differences in precipitation averages are mainly marked in the Yellow River basin and south China. The frequencies of below‐ and above‐average precipitation that occurred during the El Niño, La Niña, and neutral periods are estimated as well. The result shows that greater precipitation may be associated with El Niño episodes in south China, but drought may easily occur during El Niño episodes in the Yellow River basin. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
本文利用Hadley气候预测与研究中心的区域气候模式系统PRECIS进行中国区域气候基准时段(1961~1990年)和SRES B2情景下2071~2100年(2080s)最高、最低气温及日较差变化响应的分析.气候基准时段的模拟结果与观测资料的对比分析表明:PRECIS具有对中国区域最高、最低气温及日较差的模拟能力,能够模拟出中国区域最高、最低气温及日较差的局地分布特征.对SRES B2情景下相对于气候基准时段的最高、最低气温及日较差变化响应分析表明:中国区域2080s时段年、冬季和夏季平均最高、最低气温变化均呈一致增加的趋势,北方地区增温幅度普遍大于南方地区.夏季东北地区极端高温事件发生的频率将会增加,而冬季华北地区极端冷害事件发生频率将会减少.未来中国区域年平均日较差将出现北方地区减小而南方地区增加的趋势.冬季长江中下游以南地区日较差呈增加趋势,而夏季华东地区、西北地区及内蒙古中部日较差将呈减小趋势,其中在青藏高原北部地区存在一个较强的低值中心.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号