首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 503 毫秒
1.
Measurements of uranium concentration and the234U/238U activity ratio in oceanic basalts which have undergone low-temperature seafloor alteration indicate that uranium uptake is a pervasive occurrence but that the various phases involved behave differently with respect to this process. Palagonite exhibits uranium contents 8–20 times higher than unaltered glass coupled with low234U/238U, suggesting ongoing preferential leaching of234U. Altered crystalline interiors of several old basalts have234U/238U > 1, indicative of recent uranium exchange with seawater. The data also provide evidence for uranium sources with234U/238U higher than the seawater value of 1.14. Manganese crusts on basalts of a variety of ages have isotopic ratios indicating that they either are recent deposits or also have experienced continuing uranium exchange with seawater.  相似文献   

2.
A young (<1 m.y.) tholeiitic basalt dredged from the Mid-Atlantic Ridge displays a234U excess and a230Th deficiency that have resulted from the addition of seawater uranium during weathering at seafloor temperatures. Two older samples, though they acquired substantial amounts of uranium from seawater, are depleted in234U, indicating preferential leaching of this isotope. Hydrothermally altered samples suggest that some uranium loss may have occurred. Possible isotopic effects of preferential234U leaching, however, are obscured by secondary addition of seawater uranium at lower temperatures.  相似文献   

3.
Uranium contents and234U/238U activity ratios have been determined for groundwaters from the Lincolnshire Limestone artesian aquifer in eastern England. Changes in the quantitative and isotopic chemistry of the dissolved uranium are explained in terms of a mixing model involving the rapidly moving fissure water and much older water stored in the pore system of this oolitic limestone. The western part of the aquifer, closest to recharge, is dominated by oxidising groundwaters which then enter a reducing zone towards the east, where there is an abrupt decrease in Eh and the chlorinity of the groundwaters begins to increase. Uranium contents in the oxidising zone range from 0.7 to 3.4 μg kg?1 and234U/238U activity ratio of this dissolved uranium is close to unity, the equilibrium value. The uranium content decreases abruptly when the grounwaaters enter the reducing zone, averaging 0.04 μg kg?1 east of the oxidation/reduction barrier. Simultaneously with the decrease in uranium content, there is an increase in234U/238U activity ratio and this ratio increases to a maximum within 7 km of the oxidation/reduction barrier. This increase in activity ratio is attributed to enhanced234U solution due to234Th recoil from uraniferous fissure surfaces east of the oxidising zone. The activity ratio of dissolved uranium in the ancient pore waters could in principle reach high values due to234Th recoil from the oolith surfaces. However, the activity ratio actually declines further east and this can only be explained as a consequence of mixing with pore waters in which the uranium activity ratio is closer to equilibrium.234Th recoil from the oolith surfaces has probably been inhibited by sealing of the uranium-bearing surfaces in the process of oolith cementation.  相似文献   

4.
A new theory is described for the uptake of U in an open system applied to the dating of archaeological bones. Analytical solutions are obtained for the rate of radioactive decay of 238U, 234U and 230Th as a function of position for the case where both 238U and 234U diffuse across a bone, and where external supply of 234U is not in equilibrium with 238U. The new theory constitutes a forward model for predicting 238U, 234U and 230Th activity profiles across a bone given an age and diffusion coefficient. The forward model can be used in an inversion process whereby observations of activity profiles of 238U, 234U and 230Th as a function of position are used to infer the bone age of a sample together with robust measures of uncertainty. Differences from previous studies are that no closed system assumptions are required and no apparent age calculations necessary, while diffusion of 234U across the bone is accounted for in the inversion process. The procedure also does not require U-concentration profiles for the calculation of model parameters. The measurement of U-concentration profiles are, however, useful for the assessment of the reliability of the calculated results. Because of the assumption of constant 234U/238U ratios at the boundaries of the bone, DAD age results are generally older than closed system U-series results derived from the same isotopic data. Allowance is made for both correlated and uncorrelated errors in activity measurements as well as theoretical error caused by inhomogeneities in the sample. The implementation of the new approach (which we term the DAD model for Diffusion–Adsorption–Decay) is straightforward and efficient enough to allow estimation of age and its uncertainty on a desktop computer. Software for performing age estimation with the new model is available from the corresponding author.  相似文献   

5.
Strong isotopic fractionation between234U and238U has been noted in deep oil-well brines. The waters are stratigraphically and structurally isolated from fresh-water inflow and have remained stagnant for more than five half-lifes of234U. Excess234U is explained by the234Th alpha-recoil nucleus event.  相似文献   

6.
In Funka Bay of Hokkaido, Japan, seawater, suspended matter and settling matter were collected once every month in the summer of 1974. These samples were analyzed for234Th, a short-lived daughter of dissolved238U. A pronounced disequilibrium between234Th and238U, and a highly variable concentration of234Th were found. Positive correlation, however, exist among the deficiency of234Th relative to238U in seawater, the concentration of particulate234Th, the fraction of particulate234Th to total234Th in seawater, the total dry weight of suspended matter, and the primary productivity during the month previous to sampling. The specific activity of234Th for the settling particles (620 ± 170 dpm/g) was nearly equal to that for suspended particles (720 ± 600 dpm/g) but much greater than that for plankton (47 ± 24 dpm/g). These facts suggest that suspended particles are somehow closely related to the removal of heavy metals from seawater, in spite of the negligibly small settling flux of suspended matter. The residence time of thorium in Funka Bay (mean depth: 60 m) is found to be about 60 days, which is nearly equal to those of210Pb and210Po.  相似文献   

7.
Isotopic dilution technique and mass spectrometry are used in order to measure isotopic compositions and concentrations of some particular elements on the Oklo sample KN50-3548, which are interesting for describing the nuclear reaction. These analyses give coherent results leading to the determination of the following parameters: neutron fluence, spectrum index, total number of fissions relative to uranium, and percentage of238U and239Pu fissions. From the percentage of plutonium fissions, the duration of the nuclear reaction is estimated to be 800,000 years. The age of the nuclear reaction is measured from the lead analysis and from the number of uranium fissions; these two determinations give respectivelyd = 1730 ± 10m.y. andd = 2000 ± 100m.y. The second method, based on the assumption that uranium and rare earths have not migrated, could mean that the nuclear reaction might be older than the Francevillian. It is also shown that no contamination by natural elements has occurred for lead, rare earths, palladium and rare gases, after the reaction.  相似文献   

8.
The234U and238U concentration in brine from six Gulf Coast geopressured aquifers has been determined. The results reveal very low uranium concentrations (from 0.003 to 0.03 μg/l) and uranium activity ratios slightly greater than unity (from 1.06 to 1.62). Reducing conditions within the aquifers are responsible for the low uranium concentrations. The uranium activity ratios observed are well below those calculated using theoretical considerations of alpha-particle recoil effects. This can be explained by interference with alpha-recoil nuclides entering the liquid phase as a result of quartz overgrowths on sand grains and high-temperature re-equilibration that tends to minimize the effects of the alpha-recoil process.The fact that the uranium activity ratios of the brines are slightly greater than unity instead of the equilibrium value of 1.000 indicates that either the alpha particle recoil blocking and re-equlibration effects are not complete or that another process is operative that enriches the fluid in excess234U by selectively removing uranium from radiation induced damage sites in the mineral (sand grain) matrix.  相似文献   

9.
Natural concentrations of 238U and δ234U values were determined in estuarine surface waters and pore waters of the Amazon and Fly (Papua New Guinea) Rivers to investigate U transport phenomena across river-dominated land–sea margins. Discharge from large, tropical rivers is a major source of dissolved and solid materials transported to the oceans, and are important in defining not only oceanic mass budgets, but also terrestrial weathering rates.On the Amazon shelf, salinity-property plots of dissolved organic carbon, pH and total suspended matter revealed two vastly contrasting water masses that were energetically mixed. In this mixing zone, the distribution of uranium was highly non-conservative and exhibited extensive removal from the water column. Uranium removal was most pronounced within a salinity range of 0–16.6, and likely the result of scavenging and flocculation reactions with inorganic (i.e., Fe/Mn oxides) and organic colloids/particles. Removal of uranium may also be closely coupled to exchange and resuspension processes at the sediment/water interface. An inner-shelf pore water profile indicated the following diagenetic processes: extensive (1 m) zones of Fe(III)—and, to a lesser degree, Mn(IV)—reduction in the absence of significant S(II) concentrations appeared to facilitate the formation of various authigenic minerals (e.g., siderite, rhodocrosite and uraninite). The pore water dissolved 238U profile co-varied closely with Mn(II). Isotopic variations as evidenced in δ234U pore waters values from this site revealed information on the origin and history of particulate uranium. Only after a depth of about 1 m did the δ234U value approach unity (secular equilibrium), denoting a residual lattice bound uranium complex that is likely an upper-drainage basin weathering product. This suggests that the enriched δ234U values represent a riverine surface complexation product that is actively involved in Mn–Fe diagenetic cycles and surface complexation reactions.In the Fly River estuary, 238U appears to exhibit a reasonably conservative distribution as a function of salinity. The absence of observed U removal does not necessarily imply non-reactivity, but instead may record an integration of concurrent U removal and release processes. There is not a linear correlation between δ234U vs. 1/238U that would imply simple two component mixing. It is likely that resuspension of bottom sediments, prolonged residence times in the lower reaches of the Fly River, and energetic particle–colloid interactions contribute to the observed estuarine U distribution. The supply of uranium discharged from humid, tropical river systems to the sea appears to be foremost influenced by particle/water interactions that are ultimately governed by the particular physiographic and hydrologic characteristics of an estuary.  相似文献   

10.
The geochemical and U-series isotopic characteristics of hydrothermal sulfide samples from the Jade site (127°04.5′E, 27°15′N, water depth 1300–1450 m) at Jade site in the Okinawa Trough were analyzed. In the hydrothermal sulfide samples bearing sulfate (samples HOK1 and HOK2), the LREEs are relatively enriched. All the hydrothermal sulfide samples except HOK1 belong to Zn-rich hydrothermal sulfide. In comparison with Zn-rich hydrothermal sulfides from other fields, the contents of Zn, Pb, Ag, Cd, Au and Hg are higher, the contents of Fe, Al, Cr, Co, Ni, Sr, Te, Cs, Ti and U lower, and the 210Pb radioactivity ratios and 210Pb/Pb ratios very low. In the hydrothermal sulfide mainly composed of sphalerite, the correlations between rare elements Hf and U, and Hf and Mn as well as that between dispersive elements Ga and Zn, are strongly positive; also the contents of Au and Ag are related to Fe-sulfide, because the low temperature promotes enrichment of Au and Ag. Meanwhile, the positive correlations between Fe and Bi and between Zn and Cd are not affected by the change of mineral assemblage. Based on the 210Pb/Pb ratios of hydrothermal sulfide samples (3.99×10−5-5.42×10−5), their U isotopic composition (238U content 1.15–2.53 ppm, 238U activity 1.07–1.87 dpm/g, 234U activity 1.15–2.09 dpm/g and 234U/238U ratio 1.07–1.14) and their 232Th and 230Th contents are at base level, and the chronological age of hydrothermal sulfide at Jade site in the Okinawa Trough is between 200 and 2000 yr. Supported by the Pilot Project of Knowledge Innovation Project, Chinese Academy of Sciences (Grant No. KZCX2-YW-211), National Natural Science Foundation of China (Grant Nos. 40830849, 40176020), and Special Foundation for the Eleventh Five Plan of COMRA (Grant No. DYXM-115-02-1-03)  相似文献   

11.
We report trace element, samarium (Sm)–neodymium (Nd) and lead (Pb) isotopic data for individual micro-and mesobands of the Earth's oldest Banded Iron Formation (BIF) from the ∼ 3.7–3.8 Ga Isua Greenstone Belt (IGB, West Greenland) in an attempt to contribute to the characterization of the depositional environment and to the understanding of depositional mechanisms of these earliest chemical sediments. Rare earth element (REE)-yttrium (Y) patterns of the individual mesobands show features of modern seawater with diagnostic cerium (Ce/Ce), presodymium (Pr/Pr) and Y/holmium (Ho) anomalies. Very low high field strength elements (HFSE) concentrations indicate essentially detritus-free precipitation. Uranogenic Pb isotope data define a correlation line with a slope of 3691 ± 41 Ma, indicating that the uranium (U)–lead (Pb) system remained closed after the formation of this BIF. High 207Pb/204Pb relative to 206Pb/204Pb ratios compared to average mantle growth evolution models are a feature shared by BIF, penecontemporaneous basalts and clastic volcanogenic metasediments and are indicative of the ultimate high-μ (238U/204Pb) character of the source region, an essentially mafic Hadean protocrust. Sm–Nd isotopic relations on a layer-by-layer basis point to two REE sources controlling the back-arc basin depositional environment of the BIF, one being seafloor-vented hydrothermal fluids (εNd (3.7 Ga)  + 3.1), the other being ambient surface seawater which reached its composition by erosion of parts of the protocrustal landmass (εNd(3.7 Ga)  + 1.6). The validity of two different and periodically interacting water masses (an essentially two-component mixing system) in the deposition of alternating iron- and silica-rich layers is also reflected by systematic trends in germanium (Ge)/silicon (Si) ratios. These suggest that significant amounts of silica were derived from unexposed and/or destroyed mafic Hadean landmass, unlike iron which probably originated from oceanic crust following hydrothermal alteration by deep percolating seawater. Ge/Si distributional patterns in the early Archean Isua BIF are similar to those reported from the Paleoproterozoic Hamersley (Western Australia) BIF, but overall Ge concentrations are about one order of magnitude higher in the Archean BIF. This seems consistent with other lines of evidence that the ambient Archean seawater was enriched with iron relative to Proterozoic and recent seawater.  相似文献   

12.
The determination of uranium series disequilibria in fluvial environments is proposed as a method of calculating catchment mass balances. The technique is based on two main principles. Firstly, 234U is more mobile than 238U, especially during the early stages of weathering. Secondly, uranium is far more mobile than either thorium or protactinium. Consequently, teaching during weathering results in the loss of the uranium found in the fresh rock, leaving the two immobile daughters behind. The ratio of uranium carried by sediment to that dissolved, US/UW can, therefore, be determined from river water and sediment isotopic activity ratios. Fluxes of uranium can then be calculated from average concentrations in the water and the associated sediment, from which a sediment yield can be inferred. The Witham catchment in Lincolnshire has been used to test the proposed method. A US/UW ratio of between 5 and 7 is determined and a sediment yield of 2.51 ± 2.12 tonnes yr?1 km?2 is proposed. Although some problems concerning environmental chemistry have arisen, the validity of the approach is confirmed by the close correspondence between the results obtained and those inferred by earlier workers using more conventional methods.  相似文献   

13.
After the termination of phosphogypsum discharges to the Huelva estuary (SW Spain), a unique opportunity was presented to study the response of a contaminated environmental compartment after the cessation of its main source of pollution. The evolution over time of uranium concentrations in the estuary is presented to supply new insights into the decontamination of a scenario affected by Naturally Occurring Radioactive Material (NORM) discharges. The cleaning of uranium isotopes from the area has not taken place as rapidly as expected due to leaching from phosphogypsum stacks.An in-depth study using various techniques of analysis, including 234U/238U and 230Th/232Th ratios and the decreasing rates of the uranium concentration, enabled a second source of uranium contamination to be discovered. Increased uranium levels due to acid mine drainage from pyrite mines located in the Iberian Pyrite Belt (SW Spain) prevent complete uranium decontamination and, therefore, result in levels nearly twice those of natural background levels.  相似文献   

14.
This study presents a continental paleoclimatic record in the south of France, based on δ18O, δ13C and the 234U/238U activity ratio, dated by the 230Th/234U disequilibrium method with thermal ionization mass spectrometry. A stalagmite (Cla4) from the Clamouse Cave offers a discontinuous stable isotopic record between 189 ka and 74 ka which covers marine isotope stages (MIS) 7, 6.4, 5.5, 5.3 and 5.1. The growth phases of the Cla4 stalagmite correspond to high sea level stages, except during MIS 6.4 (169-162 ka). All the growth phases of Cla4 correspond to humid periods, corresponding to the sapropel events observed in the eastern Mediterranean basin. Thus, the influence of a strong hydrological activity in the eastern Mediterranean basin during these periods prevailed as far west as the south of France. Because the karstic system studied strongly buffers the isotopic composition of water, isotopic variations of the calcite deposited in the cave represent mainly global and large-scale environmental variations when isotopic equilibrium conditions prevailed for calcite crystallization. Sub-stage 5.3, the end of 5.5 and MIS 7 were colder by about 4-6°C (calculated temperature) compared to present-day temperature while the growth phases of sub-stages 5.1 and the beginning of 5.5 reflect environmental conditions close to present ones. The δ18O and δ13C values of cave deposits of the sub-stage 6.4 are: (1) strongly marked by kinetic fractionation processes such as evaporation due to moisture deficit within the cave atmosphere during the first step of this growth phase and (2) related to higher humidity due to a second period of enhanced rainfall during the second step of growth. This study shows that even if calcite has not been deposited at isotopic equilibrium, its isotopic composition can give insights into the environmental conditions at the time of deposition.  相似文献   

15.
Calcitic crusts of calcareous red algae could be suitable material for age determination of raised marine deposits and palaeothermometry at annual to sub-annual resolution. We examined the potential of U–Th dating of cold-water calcareous algae by analysing fossil specimens (n=10) from Kapp Ekholm (Svalbard) and recent specimens from Norway (n=3) and Scotland (n=1). After initial measurements using α-spectrometry, thermal ionisation mass spectrometry (TIMS) was used to study the material in more detail. Recent specimens contain 0.19–1.55 μg g−1 U, and the measured (234U/238U) activity ratios vary between 1.12 and 1.30. Fossil specimens contain 1–168 μg g−1 U, and display variable and highly elevated initial (234U/238U) activity ratios. In general, the TIMS results show increasing (234U/238U) activity ratios and concentrations of U and Th with increasing stratigraphic age. From this it is evident that marine calcareous red algae contain U in-vivo and they experience substantial post-mortem uptake of U. We conclude that direct U–Th dating of fossil calcareous algae from raised marine deposits is not viable without further geochemical understanding of the in-vivo uptake and post-depositional pathways of U and Th in such deposits. Despite the convincing open-system behaviour of the material, comparison with previously published chronostratigraphy from the site shows that the calcareous algae generally yield ages that are too old. This is in contrast to the expected result based on simple continuous post-mortem U accumulation and calls for a complex model comprising migration of U and multi-component addition of Th (detrital/colloidal) to explain the observed trends.  相似文献   

16.
We analyzed uranium-series concentrations and isotopic ratios in a mixed aragonite and calcite stalagmite from Juxtlahuaca Cave, from the Sierra Madre del Sur of Mexico. The U-series data for the aragonite layers return highly precise and stratigraphically correct ages over the past ca. 4300 years. In contrast, age determinations from calcite layers are too old by several hundred years relative to the precise aragonite ages, have analytical uncertainties an order of magnitude larger than aragonite ages, and yield ages that do not overlap the aragonite ages within analytical uncertainties. Based on geochemical and petrographic observations, we interpret the calcite layers to have formed from recrystallization of aragonite soon after primary aragonite deposition. Calcite occurs as discontinuous lenses on and off the growth axis, and laminae can be traced between aragonite and calcite layers, demonstrating that visible growth banding is not effaced in the recrystallization process. Paired aragonite-calcite U-series data from coeval stratigraphic layers demonstrate that uranium concentrations decrease by two orders of magnitude during calcitization, and result in decreased (234U/238U). Uranium loss during diagenesis mimics a need for an age correction using an initial 230Th/232Th ratio one to two orders of magnitude larger than the bulk Earth ratio of 4.4 ± 2.2 × 10−6. A need for apparent high initial 230Th/232Th ratios results from ingrowth of 230Th during 234U decay.  相似文献   

17.
Approximation of terrestrial lead isotope evolution by a two-stage model   总被引:13,自引:0,他引:13  
Parameters on which models for terrestrial lead isotope evolution are based have recently been revised. These parameters are the isotopic composition of troilite lead, the age of the meteorite system and the decay constants of uranium and thorium. As a result, the normal single-stage model in which the age of the earth is taken to be that of the meteorite system is now untenable.A two-stage model has been constructed which permits the age of the earth to be that of the meteorite system and which also yields good model ages for samples of all ages. The new model postulates that lead developed initially from a primordial composition assumed to be that of troilite lead beginning at 4.57 b.y. ago. The average values of 238U/204Pb and 232Th/204Pb for this first stage were 7.19 and 32.21 respectively. At approximately 3.7 b.y. ago differentiation processes brought about the conditions of a second stage, in which 238U/204Pb ≈ 9.74 and 232Th/204Pb ≈ 37.19 in those portions of the earth which took part in mixing events, giving rise to average lead.  相似文献   

18.
We have developed techniques to determine238U,234U and232Th concentrations in seawater by isotope dilution mass spectrometry. U measurements are made using a233U236U double spike to correct for instrumental fractionation. Measurements on uranium standards demonstrate that234U/238U ratios can be measured accurately and reproducibly.234U/238U can be measured routinely to ± 5‰ (2σ) for a sample of 5 × 109 atoms of234U (3 × 10−8 g of total U, 10 ml of seawater). Data acquisition time is 1 hour. The small sample size, high precision and short data acquisition time are superior to-counting techniques.238U is measured to ± 2‰ (2σ) for a sample of 8 × 1012 atoms of238U ( 3 × 10−9 g of U, 1 ml of seawater).232Th is measured to ± 20‰ with 3 × 1011232Th atoms (10−10 g232Th, 1 1 of seawater). This small sample size will greatly facilitate investigation of the232Th concentration in the oceans. Using these techniques, we have measured238U,234U and232Th in vertical profiles of unfiltered, acidified seawater from the Atlantic and238U and234U in vertical profiles from the Pacific. Determinations of234U/238U at depths ranging from 0 to 4900 m in the Atlantic (7°44′N, 40°43′W) and the Pacific (14°41′N, 160°01′W) Oceans are the same within experimental error (± 5‰,2σ). The average of these234U/238U measurements is 144 ± 2‰ (2σ) higher than the equilibrium ratio of 5.472 × 10−5. U concentrations, normalized to 35‰ salinity, range from 3.162 to 3.281 ng/g, a range of 3.8%. The average concentration of the Pacific samples (31°4′N, 159°1′W) is 1% higher than that of the Atlantic (7°44′N, 40°43′W and 31°49′N, 64°6′W).232Th concentrations from an Atlantic profile range from 0.092 to 0.145 pg/g. The observed constancy of the234U/238U ratio is consistent with the predicted range of234U/238U using a simple two-☐ model and the residence time of deep water in the ocean determined from14C. The variation in salinity-normalized U concentrations suggests that U may be much more reactive in the marine environment than previously thought.  相似文献   

19.
The decay constantf238) for the spontaneous fission of238U was re-determined by means of a man-made uranium glass of known age (126 yr). The spontaneous U fission tracks that had accumulated since the date of manufacture were counted on internal faces of the glass with an error of less than 1.7%. No thermal annealing of the spontaneous tracks was observed. The U content was determined by induced fission tracks. The value obtained forλf238 is(8.57 ± 0.42) × 10?17yr?1. Main sources of error are the date of glass melting and the determination of the thermal neutron dose.  相似文献   

20.
Spectral gamma ray wireline logging derives the concentrations of potassium, thorium, and uranium of the formation by measuring the gamma ray spectrum under the assumption of secular equilibrium. These measurements were carried out in a number of boreholes drilled by Ocean Drilling Program Leg 193 at the PACMANUS hydrothermal field. Spectral gamma ray logs from several of these holes show intervals of increased radioactivity, associated with high uranium values of up to 60 ppm (Snowcap hydrothermal field) and 25 ppm (Roman Ruins hydrothermal field). Nine samples of hydrothermally altered dacite were analyzed using gamma spectrometry to examine the origin of elevated radioactivity and to test for distortion of secular equilibrium. Core spectrometry indicates that secular equilibrium is distorted. Distortion can be explained by either an uptake of nuclides of the lower part of the 238U decay series, or by removal of 238U or 234Th from the rocks. In all cases wireline uranium logs and core spectrometry do not reflect true uranium concentrations of the formation but uranium is overestimated by a factor of 3–4. At Roman Ruins, uranium values from wireline logging show higher uranium concentrations over large intervals than uranium values from core spectrometry and from published core geochemistry, even when a possible leaching of uranium is taken into account. Wireline logs indicate that depth intervals of increased radioactivity are related to the occurrence of stockwork mineralization. In these depth intervals, core recovery was extremely low. In addition to the distortion of secular equilibrium, low core recovery and preferential loss of softer and more altered material cause a sampling bias between core samples and wireline data and may explain the observed difference in uranium concentrations between core and wireline logs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号