首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modeling flow and transport using both temperature and dye tracing provides constraints that can improve understanding of karst networks. A laminar flow and transport model using the finite element subsurface flow model simulated the conduit connection between a sinking stream and spring in central Pennsylvania to evaluate how conduit morphology might affect dye transport. Single and overly tortuous conduit models resulted in high concentrations as dye flowed back into the conduit from the matrix after dye injections ceased. A forked conduit model diverted flow from the main conduit, reducing falling limb dye concentration. Latin hypercube sampling was performed to evaluate the sensitivity of 52 parameter combinations (conduit hydraulic conductivity, conduit cross-sectional area, matrix transmissivity, matrix porosity, and dispersivity) for four conduit geometry scenarios. Sensitivity of arrival time for 50% of the dye indicated no parameter combinations which simulate falling limb dye concentrations for tortuous geometries, confirming the importance of the forked geometry regardless of other parameters. Temperature data from high-resolution loggers were then incorporated into the forked conduit model to reproduce seasonal spring temperature using variable sink inflow. Unlike the dye trace models, the thermal models were sensitive to other model parameters, such as conduit cross-sectional area and matrix transmissivity. These results showed this dual approach (dye and temperature) to karst network modeling is useful for (1) exploring the role of conduit and matrix interaction for contaminant storage, (2) constraining karst conduit geometries, which are often poorly understood, and (3) quantifying the effect of seasonal trends on karst aquifers.  相似文献   

2.
Physics-based distributed models for simulating flow in karst systems are generally based on the discrete–continuum approach in which the flow in the three-dimensional fractured limestone matrix continuum is coupled with the flow in discrete one-dimensional conduits. In this study we present a newly designed discrete–continuum model for simulating flow in karst systems. We use a flexible spatial discretization such that complicated conduit networks can be incorporated. Turbulent conduit flow and turbulent surface flow are described by the diffusion wave equation whereas laminar variably saturated flow in the matrix is described by the Richards equation. Transients between free-surface and pressurized conduit flow are handled by changing the capacity term of the conduit flow equation. This new approach has the advantage that the transients in mixed conduit flow regimes can be handled without the Preissmann slot approach. Conduit–matrix coupling is based on the Peaceman’s well-index such that simulated exchange fluxes across the conduit–matrix interface are less sensitive to the spatial discretization. Coupling with the surface flow domain is based on numerical techniques commonly used in surface–subsurface models and storm water drainage models. Robust algorithms are used to simulate the non-linear flow processes in a coupled fashion. The model is verified and illustrated with simulation examples.  相似文献   

3.
As the first part of a sequence focusing on the dynamic response of composite caisson-piles foundations (CCPFs1), this paper develops a simplified method for the lateral response of these foundations. A Winkler model for the lateral vibration of the CCPF is created by joining the two components, the caisson and the pile group, where the four-spring Winkler model is utilized for the caisson and axial–lateral coupled vibration equations are derived for the pile group. For determining the coefficients of the four-spring Winkler model for the caissons, embedded footing impedance is used and a modification on the rotational embedment factor is made for the sake of the geometrical difference between shallow footings and caissons. Comparisons against results from finite element simulations demonstrate the reliability of this modified four-spring Winkler model for caissons in both homogenous and layered soils. The proposed simplified method for the lateral vibration of CCPFs is verified also by 3D finite element modeling. Finally, through an example, the idea of adding piles beneath the caisson is proved to be of great significance to enhance the resistance of the foundation against lateral dynamic loads.  相似文献   

4.
The performance of pipelines subjected to permanent strike–slip fault movement is investigated by combining detailed numerical simulations and closed-form solutions. First a closed-form solution for the force–displacement relationship of a buried pipeline subjected to tension is presented for pipelines of finite and infinite lengths. Subsequently the solution is used in the form of nonlinear springs at the two ends of the pipeline in a refined finite element model, allowing an efficient nonlinear analysis of the pipe–soil system at large strike–slip fault movements. The analysis accounts for large strains, inelastic material behavior of the pipeline and the surrounding soil, as well as contact and friction conditions on the soil–pipe interface. The numerical models consider infinite and finite length of the pipeline corresponding to various angles β between the pipeline axis and the normal to the fault plane. Using the proposed closed-form nonlinear force–displacement relationship for buried pipelines of finite and infinite length, axial strains are in excellent agreement with results obtained from detailed finite element models that employ beam elements and distributed springs along the pipeline length. Appropriate performance criteria of the steel pipeline are adopted and monitored throughout the analysis. It is shown that the end conditions of the pipeline have a significant influence on pipeline performance. For a strike–slip fault normal to the pipeline axis, local buckling occurs at relatively small fault displacements. As the angle between the fault normal and the pipeline axis increases, local buckling can be avoided due to longitudinal stretching, but the pipeline may fail due to excessive axial tensile strains or cross sectional flattening. Finally a simplified analytical model introduced elsewhere, is enhanced to account for end effects and illustrates the formation of local buckling for relative small values of crossing angle.  相似文献   

5.
A simplified method with a dynamic Winkler model to study the seismic response of composite caisson–piles foundations (CCPF1) is developed. Firstly, with the dynamic Winkler model, the kinematic response of the CCPF subjected to vertically propagating seismic S-wave is analyzed by coupling the responses of caisson part and pile part. Secondly, a simplified model for the foundation–structure system is created with the structure simplified as a lumped mass connected to the foundation with an elastic column, and through the Fast Fourier Transformation (FFT) this model is enabled to solve transient seismic problems. Thirdly, the proposed method for the seismic response of CCPF-structure systems is verified by comparison against 3D dynamic finite element simulation, in which the Domain Reduction Method (DRM2) is utilized. Lastly, the mechanism and significance of adding piles in improving the earthquake resistance of the foundation and structure is analyzed through an example with different soil conditions. Discovered in this study is that adding piles under the caisson is an efficient way to increase seismic resistant capability of the soil–foundation–structure system, and the main mechanism of that is the elimination of the pseudo-resonance.  相似文献   

6.
In order to correctly interpret marine exploration data, which contain many elastic signals such as S waves, surface waves and converted waves, we have developed both a frequency-domain modeling algorithm for acoustic-elastic coupled media with an irregular interface, and the corresponding waveform inversion algorithm. By applying the continuity condition between acoustic (fluid) and elastic (solid) media, wave propagation can be properly simulated throughout the coupled domain. The arbitrary interface is represented by tessellating square and triangular finite elements. Although the resulting complex impedance matrix generated by finite element methods for the acoustic-elastic coupled wave equation is asymmetric, we can exploit the usual back-propagation algorithm used in the frequency domain through modern sparse matrix technology. By running numerical experiments on a synthetic model, we demonstrate that our inversion algorithm can successfully recover P- and S-wave velocity and density models from marine exploration data (pressure data only).  相似文献   

7.
Modern digital ionosonde measurements at low–middle latitude station, New Delhi, India, are used to assess the IRI-2007 model for the bottomside profile shape parameters B0 and B1 during solar minimum. Comparative analysis shows that in general, the IRI (B0 Table) option reveals better agreement with the B0 observations during daytime in all the seasons, while outside this time period, the IRI (Gulyaeva) predicted B0 values are closer to the observations. For B1 parameter, both the options in the IRI reproduce similar diurnal variations in all the seasons and are closer to observed values except during pre-sunrise and post-sunset hours.  相似文献   

8.
This article provides a partial answer to the question “What is the relation between excess hydraulic head and volume flux of water in a conduit within a porous matrix?”, focusing on the case that the forcing is steady. The conduit is modelled as a horizontal circular cylinder, imbedded within a porous matrix of rectangular cross section, having constant head prescribed on the sidewalls and being confined top and bottom. Laminar flow in the matrix is assumed to obey Darcy's law, while turbulent flow in the conduit is quantified using the Darcy–Weisbach equation. Analysis of the latter equation shows that the length scale of variations in the direction of the conduit is large compared with the scale of lateral and vertical variations. This permits separation of the full three-dimensional non-linear problem into a two-dimensional linear problem for head within the matrix and a one-dimensional non-linear problem for head within the conduit. Analytic solutions are obtained for the distribution of head in the matrix and in a conduit of either infinite or finite length. In both cases, the volume flux of water is proportional to the excess head to the 2/3 power, the conduit radius to the 5/3 power, the matrix permeability to the 1/3 power and gravity to the 1/3 power. The scale of variation of head along the conduit is proportional to the excess head to the ?1/3 power, the conduit radius to the 5/3 power, the matrix permeability to the ?2/3 power and gravity to the 1/3 power.  相似文献   

9.
采用有限元法精确模拟复杂介质条件下的地震波场,一般采用三角单元,但在节点数相同的情况下,三角单元的计算精度不如矩形单元高,采用三角单元模拟复杂界面时,编制确定结构刚度矩阵非零元素位置的程序也较为麻烦。采用矩形单元离散含有倾斜或起伏界面的地质模型时,无法避免绕射噪声,若加密网格又会增加计算量。为此,本文基于任意四边形单元模拟声波的传播,在倾斜或起伏界面条件下,可以有效避免因离散引起的“阶梯状”界面,在不增加计算量以及内存占用的前提下,有效地消除离散绕射噪声。采用对角的集中质量矩阵代替一致质量矩阵,避免矩阵的求逆运算,从而提高显式有限元法的计算效率;对结构刚度矩阵采用紧凑存储格式,每一行需要存储的元素最多为5个,同时零元素不参与运算,既减少内存的占用,又极大地提高计算效率。   相似文献   

10.
An efficient method for modelling the propagation of elastic waves in unbounded domains is developed. It is applicable to soil–structure interaction problems involving scalar and vector waves, unbounded domains of arbitrary geometry and anisotropic soil. The scaled boundary finite element method is employed to derive a novel equation for the displacement unit-impulse response matrix on the soil–structure interface. The proposed method is based on a piecewise linear approximation of the first derivative of the displacement unit-impulse response matrix and on the introduction of an extrapolation parameter in order to improve the numerical stability. In combination, these two ideas allow for the choice of significantly larger time steps compared to conventional methods, and thus lead to increased efficiency. As the displacement unit-impulse response approaches zero, the convolution integral representing the force–displacement relationship can be truncated. After the truncation the computational effort only increases linearly with time. Thus, a considerable reduction of computational effort is achieved in a time domain analysis. Numerical examples demonstrate the accuracy and high efficiency of the new method for two-dimensional soil–structure interaction problems.  相似文献   

11.
We propose a novel computational method for the efficient simulation of two-phase flow in fractured porous media. Instead of refining the grid to capture the flow along the faults or fractures, we represent the latter as immersed interfaces, using a reduced model for the flow and suitable coupling conditions. We allow for non matching grids between the porous matrix and the fractures to increase the flexibility of the method in realistic cases. We employ the extended finite element method for the Darcy problem and a finite volume method that is able to handle cut cells and matrix-fracture interactions for the saturation equation. Moreover, we address through numerical experiments the problem of the choice of a suitable numerical flux in the case of a discontinuous flux function at the interface between the fracture and the porous matrix. A wrong approximate solution of the Riemann problem can yield unphysical solutions even in simple cases.  相似文献   

12.
A solution conduit has a permeable wall allowing for water exchange and solute transfer between the conduit and its surrounding aquifer matrix. In this paper, we use Laplace Transform to solve a one‐dimensional equation constructed using the Euler approach to describe advective transport of solute in a conduit, a production‐value problem. Both nonuniform cross‐section of the conduit and nonuniform seepage at the conduit wall are considered in the solution. Physical analysis using the Lagrangian approach and a lumping method is performed to verify the solution. Two‐way transfer between conduit water and matrix water is also investigated by using the solution for the production‐value problem as a first‐order approximation. The approximate solution agrees well with the exact solution if dimensionless travel time in the conduit is an order of magnitude smaller than unity. Our analytical solution is based on the assumption that the spatial and/or temporal heterogeneity in the wall solute flux is the dominant factor in the spreading of spring‐breakthrough curves, and conduit dispersion is only a secondary mechanism. Such an approach can lead to the better understanding of water exchange and solute transfer between conduits and aquifer matrix. Highlights:
    相似文献   

13.
采用ABAQUS建立12层剪力墙结构的有限元模型,利用该结构1/5缩尺模型振动台试验时预留试块的材性试验结果及相似关系,确定相应原型结构材料的性能参数,将试验参数和我国混凝土结构设计规范给出的混凝土单轴受拉/压应力-应变关系曲线相结合,确定ABAQUS模型中混凝土损伤塑性模型所需的应力-应变参数;将试验参数和张劲公式法相结合,确定ABAQUS模型中混凝土损伤塑性模型所需的损伤因子参数。对比有限元分析结果和振动台试验结果,验证参数设置的有效性。ABAQUS有限元分析和振动台试验所得原型结构前三阶振型和自振周期相差很小,说明ABAQUS模型和参数设置能够反映并用于计算实际结构的弹性响应。ABAQUS有限元分析得到的结构损伤情况与试验模型的损伤情况基本一致;结构的顶点加速度曲线和滞回曲线等响应的有限元分析结果与试验结果在多遇地震作用下基本吻合,但由于振动台试验累积损伤的影响,两者的差异随着地震波幅值的增大而逐渐增大;ABAQUS有限元分析得到的位移包络曲线与剪力墙结构弯曲变形的特点相符。以上弹塑性分析结果进一步表明了ABAQUS模型和参数设置能够很好地模拟结构在地震作用下的响应。  相似文献   

14.
A parallel soil–structure interaction (SSI) model is presented for applications on distributed computer systems. Substructring method is applied to the SSI system and a coupled finite–infinite element based parallel computer program is developed. In the SSI system, infinite elements are used to represent the soil which extends to infinity. In this case, a large finite element mesh is required to define the near field for reliable predictions. The resulting large-scale problems are solved on distributed computer systems in this study. The domain is represented by separated substructures and an interface. The number of substructures are determined by the available processors in the parallel platform. To avoid the formation of large interface equations, smaller interface equations are distributed to processors while substructure contributions are performed. This saves a lot of memory storage and computational effort. Direct solution techniques are used for the solution of interface and substructure equation systems. The program is investigated through some example problems. The example problems exposed the need for solving large-scale problems in order to reach better results. The results of the example problems demonstrated the benefits of the parallel SSI algorithm.  相似文献   

15.
Gang Liu  Fuguo Tong  Bin Tian 《水文研究》2019,33(26):3378-3390
This work introduces water–air two‐phase flow into integrated surface–subsurface flow by simulating rainfall infiltration and run‐off production on a soil slope with the finite element method. The numerical model is formulated by partial differential equations for hydrostatic shallow flow and water–air two‐phase flow in the shallow subsurface. Finite element computing formats and solution strategies are presented to obtain a numerical solution for the coupled model. An unsaturated seepage flow process is first simulated by water–air two‐phase flow under the atmospheric pressure boundary condition to obtain the rainfall infiltration rate. Then, the rainfall infiltration rate is used as an input parameter to solve the surface run‐off equations and determine the value of the surface run‐off depth. In the next iteration, the pressure boundary condition of unsaturated seepage flow is adjusted by the surface run‐off depth. The coupling process is achieved by updating the rainfall infiltration rate and surface run‐off depth sequentially until the convergence criteria are reached in a time step. A well‐conducted surface run‐off experiment and traditional surface–subsurface model are used to validate the new model. Comparisons with the traditional surface–subsurface model show that the initiation time of surface run‐off calculated by the proposed model is earlier and that the water depth is larger, thus providing values that are closer to the experimental results.  相似文献   

16.
The finite element method, here viewed as a special case of the Galerkin projective method, is applied to the modelling of magnetotelluric problems, and its adaptation to geological profiles is outlined. A novel method for obtaining surface field values, involving matrix representation of the normal derivative operator, is presented in detail. Results obtained by this method are compared with well-known infinite series solutions for the vertical fault and the outcropping dyke. Two profiles containing sulphide zones are also modelled, the results being compared with field data; satisfactory agreement is obtained.  相似文献   

17.
Horizontal impedance functions of inclined single piles are measured experimentally for model soil-pile systems with both the effects of local soil nonlinearity and resonant characteristics.Two practical pile inclinations of 5° and 10° in addition to a vertical pile embedded in cohesionless soil and subjected to lateral harmonic pile head loadings for a wide range of frequencies are considered.Results obtained with low-to-high amplitude of lateral loadings on model soil-pile systems encased in a laminar shear box show that the local nonlinearities have a profound impact on the horizontal impedance functions of piles.Horizontal impedance functions of inclined piles are found to be smaller than the vertical pile and the values decrease as the angle of pile inclination increases.Distinct values of horizontal impedance functions are obtained for the ’positive’ and ’negative’ cycles of harmonic loadings,leading to asymmetric force-displacement relationships for the inclined piles.Validation of these experimental results is carried out through three-dimensional nonlinear finite element analyses,and the results from the numerical models are in good agreement with the experimental data.Sensitivity analyses conducted on the numerical models suggest that the consideration of local nonlinearity at the vicinity of the soil-pile interface influence the response of the soil-pile systems.  相似文献   

18.
An effective stress method is presented for analysis of seismic response and liquefaction of irregular ground including soil–structure interaction, based on an implicit–explicit finite element method. A pore water pressure is computed with iteration from the total stress considering an undrained condition. The simulated pore water pressure is in reasonably good agreement with the experimental data. The proposed method of analysis is compared with other well-known methods for a one-dimensional model, which is in good agreement. The present effective stress method is also applied to liquefaction problems involving a two-dimensional soil–structure model. The structure is modelled by not only a rigid model but also as a multi-degree-of-freedom system with bi-linear springs. The numerical results are considered to be significant from the viewpoint of earthquake engineering.  相似文献   

19.
Monte-Carlo simulations of a two-dimensional finite element model of a flood in the southern part of Sicily were used to explore the parameter space of distributed bed-roughness coefficients. For many real-world events specific data are extremely limited so that there is not only fuzziness in the information available to calibrate the model, but fuzziness in the degree of acceptability of model predictions based upon the different parameter values, owing to model structural errors. Here the GLUE procedure is used to compare model predictions and observations for a certain event, coupled with both a fuzzy-rule-based calibration, and a calibration technique based upon normal and heteroscedastic distributions of the predicted residuals. The fuzzy-rule-based calibration is suited to an event of this kind, where the information about the flood is highly uncertain and arises from several different types of observation. The likelihood (relative possibility) distributions predicted by the two calibration techniques are similar, although the fuzzy approach enabled us to constrain the parameter distributions more usefully, to lie within a range which was consistent with the modellers' a priori knowledge of the system.  相似文献   

20.
A localized truncation error analysis with complex derivatives (LTEA+CD) is applied recursively with advanced circulation (ADCIRC) simulations of tides and storm surge for finite element mesh optimization. Mesh optimization is demonstrated with two iterations of LTEA+CD for tidal simulation in the lower 200 km of the St. Johns River, located in northeast Florida, and achieves more than an over 50% decrease in the number of mesh nodes, relating to a twofold increase in efficiency, at a zero cost to model accuracy. The recursively generated meshes using LTEA+CD lead to successive reductions in the global cumulative truncation error associated with the model mesh. Tides are simulated with root mean square error (RMSE) of 0.09–0.21 m and index of agreement (IA) values generally in the 80s and 90s percentage ranges. Tidal currents are simulated with RMSE of 0.09–0.23 m s?1 and IA values of 97% and greater. Storm tide due to Hurricane Matthew 2016 is simulated with RMSE of 0.09–0.33 m and IA values of 75–96%. Analysis of the LTEA+CD results shows the M2 constituent to dominate the node spacing requirement in the St. Johns River, with the M4 and M6 overtides and the STEADY constituent contributing some. Friction is the predominant physical factor influencing the target element size distribution, especially along the main river stem, while frequency (inertia) and Coriolis (rotation) are supplementary contributing factors. The combination of interior- and boundary-type computational molecules, providing near-full coverage of the model domain, renders LTEA+CD an attractive mesh generation/optimization tool for complex coastal and estuarine domains. The mesh optimization procedure using LTEA+CD is automatic and extensible to other finite element-based numerical models. Discussion is provided on the scope of LTEA+CD, the starting point (mesh) of the procedure, the user-specified scaling of the LTEA+CD results, and the iteration (termination) of LTEA+CD for mesh optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号