首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ninety voyager images ranging in phase angle from 3 to 143° and covering the spectral range from 0.34 to 0.58 μm were analyzed to derive the photometric properties of Europa. At small phase angles the disk-integrated phase curve is remarkable in that it shows little or no evidence of an opposition effect (in agreement with earlier Earth-based observations by Millis and Thompson, Icarus26, 408, 1975). The phase integral determined in the Voyager clear filter (centered near 0.47 μm) is 1.09 ± 0.11, in good agreement with previous estimates based on radiometry. The bolometric Bond albedo is 0.62 ± 0.14. The scattering properties of Europa in general, and of the two major terrain types (bright plains and darker mottled terrain) in particular, cannot be represented by a lunar-like photometric law. However, an equation which is a linear superposition of a lunar-like scattering law and a Lambert component provides an adequate simple representation of the scattering properties. The plains are photometrically more homogeneous than the darker mottled terrain. In the Voyager clear filter, the average normal reflectance is 0.71 for the plains on both the leading and trailing hemispheres; for the darker mottled terrain the values are 0.60 on the leading hemisphere, and 0.48 on the trailing one.  相似文献   

2.
The surface composition of Europa is of great importance for understanding both the internal evolution of Europa and its putative ocean. The Near Infrared Mapping Spectrometer (NIMS) investigation on Galileo observed Europa and the other Galilean satellites from 0.7 to 5.2 μm with spatial resolution down to a few kilometers during flybys by the spacecraft as it orbited Jupiter. These data have been analyzed and results published over the life of the Galileo mission and afterward. One result was the discovery of hydrated minerals at some locations on Europa and Ganymede. The data are noisy, especially for Europa, due to radiation affecting the NIMS electronics and detectors, and other artifacts are also present. The NIMS data are now being reprocessed using the accumulated knowledge gained over the entire missions to remove noise spikes and compensate for some other defects in the data. We are analyzing these reprocessed data in an attempt to defined better the nature of the hydrate spectral features and improve their interpretation. We report here on analyses of two NIMS reprocessed observations for the 0.7-3-μm region. A revised hydrate spectrum is calculated and mapped in detail across two lineaments. The spectrum shows the expected distorted water features but little or no spectral structure in these features. A narrow, weak spectral feature appears at 1.344 μm, which is weakly correlated with lower albedo. Several other weak features may be present but are difficult to confirm in these limited data sets. The hydrate signature shows the greatest strength within and toward the center of the lineaments, confirming and strengthening the association of the hydrate with these endogenic features. This trend may indicate that the material in the lineaments is youngest toward the center and has more water frost coverage toward the edge. A small, visually dark, circular feature has a spectrum that shows both hydrate and crystalline water ice features and perhaps contains a hydrate different in spectral characteristics and perhaps composition than found in the lineament.  相似文献   

3.
Europa and Callisto are two “extreme members” in a sequence of the Galilean ice satellites formed at different distances from Jupiter. The difference in their mean density probably reflects the material density gradient that appeared even in the subplanetary disk of Jupiter. At the same time, general peculiarities in the composition of the surfaces of Europa and Callisto apparently characterize the accumulated effect of all subsequent evolutionary processes, including current volcanic activity on the satellite Io and its ionized material transfer in Jovian magnetosphere, as well as chemical reactions taking place under low-temperature (within ~90–130 K) and irradiation conditions. In 2016–2017, we observed the leading and trailing hemispheres of Europa and Callisto in the spectral range of 1.0–2.5 μm at 2-m telescope of Caucasian Mountain Observatory (CMO) of Sternberg Astronomical Institute (SAI) of Moscow State University (MSU). We found that, on a global scale, Europa and Callisto exhibit similar spectral characteristics and, particularly, the maxima in the distributions of sulfuric acid hydrate in the trailing hemispheres of the both moons, which agrees with the data of previous measurements. This can be considered as evidence for general ion implantation on these and other moons in the radiation belts of Jupiter. Moreover, our spectral data suggest that water ice and hydrates (clathrates) of other compounds are dominant or abundant in the leading hemispheres of Europa and Callisto. Specifically, we detected a weak absorption band of CH4 clathrate centered at ~1.67 μm in the reflectance spectra of the leading (the band is more intense) and trailing (the band is less intense) hemispheres of Europa. Weak signs of the same absorption band are also in the reflectance spectra of Callisto measured at its different orientations.  相似文献   

4.
We have obtained reflectivity spectra of the trailing and leading sides of all four Galilean satellites with circular variable filter wheel spectrometers operating in the 0.7- to 5.5-μm spectral interval. These observations were obtained at an altitude of 41,000 ft from the Kuiper Airborne Observatory. Features seen in these data include a 2.9-μm band present in the spectra of both sides of Callisto; the well-known 1.5-μm and 2.0-μm combination bands and the previously more poorly defined 3.1-μm fundamental of water ice observed in the spectra of both sides of Europa and Ganymede; and features centered at 1.35 ± 0.1, 2.55 ± 0.1, and 4.05 ± 0.05 μm noted in the spectra of both sides of Io. In an effort to interpret these data, we have compared them with laboratory spectra as well as synthetic spectra constructed with a simple multiple-scattering theory. We attribute the 2.9-μm feature of Callisto's spectra primarily to bound water, with the product of fractional abundance of bound water and mean grain radius in micrometers equaling approximately 3.5 × 10?1 for both sides of the satellite. The fractional amounts of water ice cover on the trailing side of Ganymede, its leading side, and the leading side of Europa were found to be 50 ± 15, 65 ± 15, and 85% or greater, respectively. The bare ground areas on Ganymede have reflectivity properties in the 0.7- to 2.5-μm spectral region comparable to those of Callisto's surface and also have significant quantities of bound water, as does Callisto. Interpretation of the spectrum for the trailing side of Europa is complicated by magnetospheric particle bombardment which causes a perceptible broadening of strong bands, but the ice cover on this side is probably comparable to that on the leading side. These irradiation effects may be responsible for much of the difference in the visual geometric albedos of the two sides of Europa. Minor, but significant, amounts of ferrous-bearing material (either ferrous salts or alkali feldspars but not olivines or pyroxenes) account for the 1.35-μm feature of Io. The two longer wavelength bands are most likely attributable to nitrate salts. Ferrous salts and nitrates can jointly also account for much of the spectral variation in Io's visible reflectivity, thereby eliminating the need to postulate large quantities of sulfur. The absence of noticeable features near 3-μm wavelength in Io's spectra leads to upper bounds of 10% on the fractional cover of water and ammonia ice and 10?3 on the relative abundance of bound water and hydroxylated material on Io. The two sides of Io have similar compositions. We suggest that the systematic increase in fractional water ice cover from Callisto to Ganymede to Europa is bought about by variations in efficiencies of recoating the satellite's surface by interior water brought to the surface, and by the deposition of extrinsic dust. The most important component of the latter is debris, derived from the outer irregular satellites of Jupiter, which impacts the Galilean satellites at relatively low velocities. Europa has the largest water ice cover because its crust is thinnest and thus the frequency of water recoating is the greatest, and because it is farthest from the sources of low-velocity dust. While models which depict Io's surface as consisting primarily of very fine-grained ice are no longer viable, we are unable to definitively distinguish between the salt assemblage and alkali feldspar models. The salt model can better account for Io's reflectivity spectrum from 0.3 to 5 μm, but the absence of appreciable quantities of bound water and hydroxylated material may not be readily understood within the context of that model.  相似文献   

5.
The surface composition of Europa is of special interest due to the information it might provide regarding the presence of a subsurface ocean. One source of this information is the infrared reflectance spectrum. Certain surface regions of Europa exhibit distorted H2O vibrational overtone bands in the 1.5 and 2.0 μm region, as measured by the Galileo mission Near Infrared Mapping Spectrometer (NIMS). These bands are clearly the result of highly concentrated solvated contaminants. However, two interpretations of their identity have been presented. One emphasizes hydrated salt minerals and the other sulfuric acid, although each does not specifically rule out some of the other. It has been pointed out that accurate chemical identification of the surface composition must depend on integrating spectral data with geochemical models, and information on the tenuous atmosphere sputtered from the surface. It is also extremely important to apply detailed chemistry when interpreting the spectral data, including knowledge of mineral dissolution chemistry and the subsequent optical signatures of ion solvation in low-temperature ice. We present studies of flash frozen acid and salt mixtures as Europa surface analogs and demonstrate that solvated protons, metal cations and inorganic anions all influence the spectra and must all, collectively, be considered when assigning Europa spectral features. These laboratory data show best correlation with NIMS Europa spectra for multi-component mixtures of sodium and magnesium bearing sulfate salts mixed with sulfuric acid. The data provide a concentration upper bound of 50-mol% for MgSO4 and 40-mol% for Na2SO4. This newly reported higher sodium and proton content is consistent with low-temperature aqueous differentiation and hydrothermal processing of carbonaceous chondrite-forming materials during the formation and early evolution of Europa.  相似文献   

6.
Roger N. Clark 《Icarus》1980,44(2):388-409
The reflectance spectra of Ganymede, Europa, Callisto, and Saturn's rings are analyzed using recent laboratory reflectance studies of water frost, water ice, and water and mineral mixtures. It is found that the spectra of the icy Galilean satellites are characteristic of water ice (e.g., ice blocks or possibly very large ice crystals ? 1 cm) or frost on ice rather than pure water frost, and that the decrease in reflectance at visible wavelengths is caused by other mineral grains in the surface. The spectra of Saturn's rings are more characteristic of water frost with some other mineral grains mixed in the frost but not on the surface. The impurities on all these objects are not in spectrally isolated patches but appear to be intimately mixed with the water. The impurity grains appear to have reflectance spectra typical of minerals containing Fe3+. Some carbonaceous chondrite meteorite spectra show the necessary spectral shape. Ganymede is found to have more water ice on the surface than previously thought (~90 wt%), as is Callisto (30–90 wt%). The surface of Europa has a vast frozen water surface with only a few percent impurities. Saturn's rings also have only a few percent impurities. The amount of bound water or bound OH for these objects is 5 ± 5 wt% averaged over the entire surface. Thus with the small amount of nonicy material present on these objects, no hydrated minerals can be ruled out. A new absorption feature is identified in Ganymede, Callisto, and probably Europa at 1.5 μm which is also seen in the spectra of Io but not in Saturn's rings. This feature has not been seen in laboratory studies and its cause is unknown.  相似文献   

7.
Photometric observations of Jupiter’s moons Io and Europa in the spectral band V have been made at the Crimean Astrophysical Observatory for four years in order to construct their light curves reduced to a Solar phase angle of 6°. Comparison of these data with other ground-based observations shows good agreement. This study confirms why the moons that are close to Jupiter have a brighter leading hemisphere. The trailing hemispheres of Io and Europa, which are located in the rapidly rotating magnetic field of Jupiter, are exposed to bombardment by charged particles of the magnetic field. Leaving out of consideration the differences in brightness between the two hemispheres results in serious discrepancies between the space and ground-based photometry data.  相似文献   

8.
The purpose of this study was to determine if any temporal variability in the broadband UV spectral properties of the icy Galilean satellites exists, and if so, to characterize its spatial distribution as a function of longitude in order to attempt to correlate any temporal changes with satellite surface interactions with the space environment. The temporal time period examined is between 1978-1984 (referred to as the 1980s data) and those from 1995-1996 (referred to as the 1990s data). The plausible temporal characteristics detected appear to vary from one satellite to the next. For Europa possible temporal variations are concentrated on the leading, anti-jovian quadrant. Example broadband UV spectra show Europa's spectral slope decreases (and darkens) with time on the leading and anti-jovian hemispheres, but remains essentially constant with time on the trailing hemisphere. The data quality does not support any definitive temporal changes for Ganymede. Possible temporal changes seen in the Callisto data set are concentrated on the jovian hemisphere. Example broadband UV spectra for Callisto show no definitive change in slope with time. The hypothesis is that these temporal differences in UV spectral properties are caused by variations in the surface ice chemistry due to temporal variability in the space environment. It is postulated that the UV spectral changes suggested for Europa may be linked to changes in H2O2 concentrations, whereas the changes on Callisto may be linked to variability in SO2 concentration.  相似文献   

9.
Voyager images of Iapetus ranging in phase angle from 8 to 90° were used to define the satellite's photometric properties and construct an albedo map of its surface. The images confirm that the albedo distribution has a roughly hemispheric asymmetry, as had been inferred from earlier analyses of the disk-integrated lightcurve. On the darker leading hemisphere albedo contours are roughly elliptical in shape and centered at the apex of orbital motion, flattened at the poles and elongated along the equator. The reflectance within the darker material is lowest (0.02–0.03) at the apex, and increases with increasing distance from the apex. The albedo pattern on the brighter trailing hemisphere is more complex. Reflectance increases gradually with increasing distance from the interface with the darker material, and reaches a maximum near the poles. Reflectances of 0.3–0.4 in the brighter material are common, and the highest values probably reach 0.6. The transition in reflectance contours between the two materials is gradual rather than sharp, and albedo histograms of images centered on the visually perceived boundary are weakly bimodal. The dark material on Iapetus is reddish, the bright material somewhat less so.  相似文献   

10.
A very high quality wiggly-line spectrogram was analyzed by making high-resolution spectral scans of numerous small solar features. An attempt from the line profiles to detect a magnetic field difference between the granular and intergranular regions, resulted in a field increase of 20 ± 15 G in the darker regions of the granular field. Line width increases apparently due to small-scale turbulent velocities are seen in the darker regions. It is postulated that in general darker regions show increased turbulent velocities. Conspicuous asymmetries in line profiles are seen in dark intergranular regions. It is suggested that these are the result of velocity gradients in the downward flow of material. An ionized Cr line showed a conspicuous increase in equivalent width in the darker regions of the granular field, thus indicating a decrease in electron pressure in these areas.  相似文献   

11.
Several approaches have been used to estimate the ice shell thickness on Callisto, Ganymede, and Europa. Here we develop a method for placing a strict lower bound on the thickness of the strong part of the shell (lithosphere) using measurements of topography. The minimal assumptions are that the strength of faults in the brittle lithosphere is controlled by lithostatic pressure according to Byerlee's law and the shell has relatively uniform density and thickness. Under these conditions, the topography of the ice provides a direct measure of the bending moment in the lithosphere. This topographic bending moment must be less than the saturation bending moment of the yield strength envelope derived from Byerlee's law. The model predicts that the topographic amplitude spectrum decreases as the square of the topographic wavelength. This explains why Europa is rugged at shorter wavelengths (∼10 km) but extremely smooth, and perhaps conforming to an equipotential surface, at longer wavelengths (>100 km). Previously compiled data on impact crater depth and diameter [Schenk, P.M., 2002. Nature 417, 419-421] on Europa show good agreement with the spectral decrease predicted by the model and require a lithosphere thicker than 2.5 km. A more realistic model, including a ductile lower lithosphere, requires a thickness greater than 3.5 km. Future measurements of topography in the 10-100 km wavelength band will provide tight constraints on lithospheric strength.  相似文献   

12.
Radar observations of the Galilean satellites, made in late 1976 using the 12.6-cm radar system of the Arecibo Observatory, have yielded mean geometric albedos of 0.04 ± , 0.69 ± 0.17, 0.37 ± 0.09, and 0.15 ± 0.04, for Io, Europa, Ganymede, and Callisto, respectively. The albedo for Io is about 40% smaller than that obtained approximately a year earlier, while the albedos for the outer three satellites average about 70% larger than the values previously reported for late 1975, raising the possibility of temporal variation. Very little dependence on orbital phase is noted; however, some regional scattering inhomogeneities are seen on the outer three satellites. For Europa, Ganymede, and Callisto, the ratios of the echo received in one mode of circular polarization to that received in the other were: 1.61 ± 0.20 1.48 ± 0.27, and 1.24 ± 0.19, respectively, with the dominant component having the same sence of circularity as that transmitted. This behavior has not previously been encountered in radar studies of solar system objects, whereas the corresponding observations with linear polarization are “normal.” Radii determined from the 1976 radar data for Europa and Ganymede are: 1530 ± 30 and 2670 ± 50 km, in fair agreement with the results from the 1975 radar observations and the best recent optical determinations. Doppler shifts of the radar echoes, useful for the improvement of the orbits of Jupiter and some of the Galilean satellites, are given for 12 nights in 1976 and 10 nights in 1975.  相似文献   

13.
We outline the observational constraints required to identify chaos regions on Europa. Large incidence angle, rather than high resolution, appears to be the primary observational requirement for identifying chaos. At incidence angles >70°, chaos can be identified on Europa at image resolutions as low as 1.5 km/pixel. Similar images obtained at moderate or low incidence angles (<50°) require image resolutions upwards of ~250 m/pixel to identify chaos. If global images of Europa can be acquired at high incidence angles, the majority of its chaotic terrain can be identified, helping to constrain models of chaos formation and distribution. Furthermore, our results indicate that the areal coverage of chaos may be more uncertain than previously reported, representing as little as 10% or as much as 50% of the non-polar regions of Europa. These guidelines will aid in the development of optical instruments for future Europa missions, as well as other icy bodies, such as Triton.  相似文献   

14.
One hundred eighty-seven reflectance spectra (0.33–1.10 μm) of the Galilean satellites have been obtained. Solar phase angle color correction coefficients were derived and the spectra corrected to a solar phase of 6°. Solar phase angle coefficients beyond 0.55 μm are presented for the first time. The spectra as a function of orbital phase angle are presented in the form of images to display hemispheric spectral variations. Io and Europa are redder on their trailing hemispheres while Callisto is redder on its leading hemisphere. Ganymede shows small longitudinal color variations despite the complex albedo structure visible in Voyager images. Comparisons of these data with previous measurements reveal that most differences can be attributed to the solar calibration. Reflectance measurements of Io at 0.73 μm observed 8.5 years apart show a 6% global reflectance decrease. However, it is difficult to unambigously attribute this particular decrease in reflectance to a change in Io's surface composition.  相似文献   

15.
Spectra of asteroid 4 Vesta obtained in October 1990 with the International Ultraviolet Explorer are reanalyzed and reinterpreted. A large portion of the eastern hemisphere (based on the prime meridian definition of Thomas et al., 1997a) is darker at UV wavelengths than much of the western hemisphere. The UV lightcurve is in contrast with the visible lightcurve, which shows that the eastern hemisphere is brighter than the western. These IUE spectra of Vesta thus may be evidence for the “spectral reversal,” first seen on the Moon by Apollo 17, where the visibly brighter lunar highlands are darker than the maria at far-UV wavelengths. This effect was linked to space weathering when it was noted (Wagner et al., 1987) that the spectral reversal appears in the laboratory spectra of lunar soils but not powdered lunar rocks.We investigate Vesta’s UV lightcurve and spectral reversal, and its possible connection with space weathering. The addition to grain coatings of small amounts of submicroscopic iron (SMFe) through vapor deposition causes drastic spectral changes at UV-visible wavelengths (Hapke, 2001), while the longer wavelength spectrum remains largely unaffected. Other laboratory results (e.g., Hiroi and Pieters, 1998) indicate that the UV-visible wavelength range is affected by simulated weathering processes in a manner similar to what is seen on Vesta. It is likely that Vesta has experienced relatively minor amounts of space weathering, as indicated by the spectral reversal, along with the subtle visible-near infrared weathering effects (e.g., Binzel et al., 1997).  相似文献   

16.
New near-infrared (0.65–2.5 μm) reflectance spectra of the Galilean satellites with 1.5% spectral resolution and ≈2% intensity precision are presented. These spectra more precisely define the water ice absorption features previously identified on Europa, Ganymede, and Callisto at 1.55 and 2.0 μm. In addition, previously unreported spectral features due to water ice are seen at 1.25, 1.06, 0.90, and 0.81 μm on Europa, and at 1.25, 1.04, and possibly 0.71 μm on Ganymede. Unreported absorption features in Callisto's spectrum occur at 1.2 μm, probably due to H2O, and a weak, broad band extending from 0.75 to 0.95 μm, due possibly to other minerals. The spectrum of Io has only weak absorption features at 1.15 μm and between 0.8 and 1.0 μm. No water absorptions are positively identified in the Io spectra, indicating an upper limit of areal water frost coverage of 2% (leading and trailing sides). It is found for Callisto, Ganymede, and Europa that the water ice absorption features are due to free water and not to water bound or absorbed onto minerals. The areal coverage of water frost is ≈ 100% on Europa (trailing side), ≈65% on Ganymede (leading side), and 20–30% on Callisto (leading side). An upper limit of ≈5% bound water (in addition to the 20–30% ice) may be present on Callisto, based on the strong 3-μm band seen by other investigators. A summary of spectra of the satellites from 0.325 to about 5 μm to aid in laboratory and interpretation studies is also presented.  相似文献   

17.
The sputtering and decomposition of the surface of Europa by fast ions and electrons lead to the production of an atomosphere containing sodium and potassium atoms. Here time-of-flight energy distributions are measured for Na and K sputtered from a vapor-deposited ice by 200-eV electrons. These data are then used in a Monte Carlo simulation for alkalis in Europa's atmosphere. Na/K ratios versus distance from Europa are calculated and compared to the recent observations in the range 6 to 18 Europan radii from the surface. Normalizing to the observations, the Na/K ratio for the loss rates is ∼27 and the ratio for the average surface source rates is ∼20. These ratios are very different from the Na/K ratio at Io and are larger than the Na/K ratio suggested for Europa's putative subsurface ocean, consistent with fractionation on freezing and upwelling of ocean material.  相似文献   

18.
We present new 1.45-1.75 μm spectra of Europa's dark non-ice material with a spectral resolution (λ/δλ) of 1200, obtained by using adaptive optics on the Keck telescope to spatially separate the spectrum of the non-ice material from that of the surrounding ice-rich regions. Despite the great increase in spectral resolution over the previous best spectra of the non-ice material, taken with Galileo's near-infrared mapping spectrometer (NIMS) with λ/δλ=66, no new fine-scale spectral structure is revealed. The smoothness of the spectra is inconsistent with available laboratory spectra of crystalline hydrated salts at Europa temperatures, but is more consistent with various combinations of non-crystalline hydrated salts and/or hydrated sulfuric acid, as have been matched to the lower-resolution NIMS spectra.  相似文献   

19.
Water ice I rheology is a key factor for understanding the thermal and mechanical state of the outer shell of the icy satellites. Ice flow involves several deformation mechanisms (both Newtonian and non-Newtonian), which contribute to different extents depending on the temperature, grain size, and applied stress. In this work I analyze tidally heated and stressed equilibrium convection in the ice shell of Europa by considering a composite viscosity law which includes diffusion creep, basal slip, grain boundary sliding and dislocation creep, and. The calculations take into account the effect of tidal stresses on ice flow and use grain sizes between 0.1 and 100 mm. An Arrhenius-type relation (useful for parameterized convective models) is found then by fitting the calculated viscosity between 170 and 273 K to an exponential regression, which can be expressed in terms of pre-exponential constant and effective activation energy. I obtain convective heat flows between ~40 and ~60 mW m?2, values lower than those usually deduced (~100 mW m?2) from geological indicators of lithospheric thermal state, probably indicating heterogeneous tidal heating. On the other hand, for grain sizes larger than ~0.3 mm the thicknesses of the ice shell and convective sublayer are ~20–30 km and ~5–20 km respectively, values in good agreement with the available information for Europa. So, some fundamental geophysical characteristics of the ice shell of Europa could be arising from the properties of the composite water ice rheology.  相似文献   

20.
O.L. Hansen 《Icarus》1973,18(2):237-246
Eclipse observations of Jupiter's satellites Io, Europa, and Ganymede have been obtained in an 8 to 14-μm band pass during 1971. The simplest thermal model able to explain the data for each satellite is a two-layer surface structure with an upper layer, only a few millimeters thick, having low thermal conductivity consistent with fine rock powder or frost, and a subsurface having high thermal conductivity consistent with solid rock or dense ice. The upper layer on Io (γ = 1100 ± 100)2 appears to be different from that on Europa (γ = 3000 ± 1000) and Ganymede (γ = 3400 ± 700), but the two-layer model fits all three satellites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号