首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The glacier mass balance, area change, and glacier runoff in the Yarkant River Basin (YRB) and the Beida River Basin (BRB) were estimated from 1961 to 2006 by employing a modified monthly degree‐day model. Comparisons between the simulated and observed mass balance, equilibrium line altitude, and glacier runoff suggest that the model can be used to analyze the long‐term changes of glacier mass balance and runoff in the YRB and the BRB. The glacier mass balances of the YRB and the BYB both have a significantly decreasing trend with ?4.39 mm a‐1 and ?8.15 mm a‐1 from 1961 to 2006 because of a significant increase in ablation caused by increasing summer air temperatures, especially since 1996. The total runoff in glacier areas has a significant increasing trend with 0.23 × 108 m3 a‐1 and 0.02 × 108 m3 a‐1 in the YRB and the BRB, respectively. By comparing the mean mass balance during the period 1961 to 1986 with that of the 1987 to 2006, the BRB glacier mass balance's sensitivity to temperature is at 0.33 m a‐1 °C, nearly twice as much as that of the YRB at 0.16 m a‐1 °C. The difference between the glacier temperature sensitivity in the YRB and the BRB is primarily because the glacier elevation band area weighted altitude of the YRB is about 700 m higher than that of BRB. The glacier elevation band area weighted summer air temperature in the YRB is around 2 °C lower than that of the BRB. Therefore, the annual positive degree‐day of the YRB and the BRB increases by about 21.0 °C and 77.3 °C respectively when the summer air temperature increases by 1 °C, resulting into more glacier ablation and runoff in the BRB than in the YRB. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Climate and land use changes greatly modify hydrologic regimes. In this paper, we modelled the impacts of biofuel cultivation in the US Great Plains on a 1061‐km2 watershed using the Soil and Water Assessment Tool (SWAT) hydrologic model. The model was calibrated to monthly discharges spanning 2002–2010 and for the winter, spring, and summer seasons. SWAT was then run for a climate‐change‐only scenario using downscaled precipitation and a projected temperature for 16 general circulation model (GCM) runs associated with the Intergovernmental Panel on Climate Change Special Report on Emission Scenarios A2 scenario spanning 2040–2050. SWAT was also run on a climate change plus land use change scenario in which Alamo switchgrass (Panicum virgatum L.) replaced native range grasses, winter wheat, and rye (89% of the basin). For the climate‐change‐only scenario, the GCMs agreed on a monthly temperature increase of 1–2 °C by the 2042–2050 period, but they disagreed on the direction of change in precipitation. For this scenario, decreases in surface runoff during all three seasons and increases in spring and summer evapotranspiration (eT) were driven predominantly by precipitation. Increased summer temperatures also significantly contributed to changes in eT. With the addition of switchgrass, changes in surface runoff are amplified during the winter and summer, and changes in eT are amplified during all three seasons. Depending on the GCM utilized, either climate change or land use change (switchgrass cultivation) was the dominant driver of change in surface runoff while switchgrass cultivation was the major driver of changes in eT. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
陈德亮  高歌 《湖泊科学》2003,15(Z1):105-114
近几年来,国家气候中心己经建立了中国主要四大流域气候对水资源影响评估的模式框架.本文拟进一步证明其中之一的两参数分布式月水量平衡水文模式对长江之上汉江和赣江两子流域径流的模拟能力,结果表明该水文模式对目前气候条件下径流模拟效果较好,运行稳定,可用于实时业务运行.在此基础上,利用ECHAM4和HadCM2两GCM(General Circulation Model)未来气候情景模拟结果及目前实测气候情况,对汉江和赣江两子流域的径流对未来气候变化的敏感性进行评估.经检验,两GCM对未来气候,特别是降水情景模拟存在一定差异,因此,造成径流对气候变化的响应不同,这充分反映了全球模式模拟结果不确定性在气候变化影响研究中的重要性.  相似文献   

4.
Drought is one of the severe natural disasters to impact human society and occurs widely and frequently in China,causing considerable damage to the living environment of humans.The Yellow River basin(YRB)of China shows great vulnerability to drought in the major basins;thus,drought monitoring in the YRB is particularly important.Based on monthly data of 124 meteorological stations from 1961 to 2015,the Standardized Precipitation Evapotranspiration Index(SPEI)was used to explore the temporal and spatial patterns of drought in the YRB.The periods and trends of drought were identified by Extreme-point Symmetric Mode Decomposition(ESMD),and the research stages were determined by Bernaola-Galvan Segmentation Algorithm(BGSA).The annual and seasonal variation,frequency and intensity of drought were studied in the YRB.The results indicated that(1)for the past 55 years,the drought in the YRB has increased significantly with a tendency rate of-0.148(10 a)~(-1),in which the area Lanzhou to Hekou was the most vulnerable affected(-0.214(10 a)~(-1));(2)the drought periods(2.9,5,10.2 and 18.3 years)and stages(1961–1996,1997–2002 and 2003–2015)were characterized and detected by ESMD and BGSA;(3)the sequence of drought frequency was summer,spring,autumn and winter with mean values of 71.0%,47.2%,10.2%and 6.9%,respectively;and(4)the sequence of drought intensity was summer,spring,winter and autumn with mean values of 0.93,0.40,0.05 and 0.04,respectively.  相似文献   

5.
Climate change and its impact on hydrological processes are overarching issues that have brought challenges for sustainable water resources management. In this study, surface water resources in typical regions of China are projected in the context of climate change. A water balance model based on the Fu rational function equation is established to quantify future natural runoff. The model is calibrated using data from 13 hydrological stations in 10 first-class water resources zones of China. The future precipitation and temperature series come from the ISI-MIP (Inter-Sectoral Impact Model Intercomparison Project) climate dataset. Taking natural runoff for 1961–1990 as a baseline, the impacts of climate change on natural runoff are studied under three emissions scenarios: RCP2.6, RCP4.5 and RCP8.5. Simulated results indicate that the arid and semi-arid region in the northern part of China is more sensitive to climate change compared to the humid and semi-humid region in the south. In the near future (2011–2050), surface water resources will decrease in most parts of China (except for the Liaozhong and Daojieba catchments), especially in the Haihe River Basin and the middle reaches of the Yangtze River Basin. The decrement of surface water resources in the northern part of China is more than that in the southern part. For the periods 2011–2030 and 2031–2050, surface water resources are expected to decrease by 12–13% in the northern part of China, while those in the southern part will decrease by 7–10%.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR R. Hirsch  相似文献   

6.
Climate change may significantly affect the hydrological cycle and water resource management, especially in arid and semi‐arid regions. In this paper, output from the Providing Regional Climates for Impacts Studies (PRECIS) regional climate model were used in conjunction with the Soil and Water Assessment Tool (SWAT) to analyse the effects of climate change on streamflow of the Xiying and Zamu rivers in the Shiyang River basin, an important arid region in northwest China. After SWAT model calibration and validation, streamflow in the Shiyang River Basin was simulated using the PRECIS climate model data for greenhouse gas emission scenarios A2 (high emission rate) and B2 (low emission rate) developed by Intergovernmental Panel on Climate Change. Monthly streamflow and hydrological extremes were compared for present‐day years (1961–1990), the 2020s (2011–2040), 2050s (2041–2070) and 2080s (2071–2100). The results show that mean monthly streamflow in Shiyang River Basin generally increased in the 2020s, 2050s and 2080s between 0.7–6.1% at the Zamu gauging station and 0.1–4.8% at the Xiying gauging station. The monthly minimum streamflow increased persistently, but the maximum monthly streamflows increased in the 2020s and slightly decreased in the 2050s and 2080s. This study provides valuable information for guiding future water resource management in the Shiyang River Basin and other arid and semi‐arid regions in China. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Alpine glaciers and perennial snow fields are important hydrologic elements in many mountain environments providing runoff during the late summer and during periods of drought. Because relatively long records of glacier mass–balance data are absent from many glacierized catchments, it remains unclear to what extent shrinking perennial snow and glaciers have affected runoff trends from these watersheds. Here, we employ a hydrograph separation technique that uses a double mass curve in an attempt to isolate changes in runoff due to glacier retreat and disappearance of perennial snow. The method is tested using hydrometric data from 20 glacierized and 16 nonglacierized catchments in the Columbia Basin of Canada. The resulting estimates on cryosphere storage contribution to streamflow were well correlated to other regional estimates on the basis of measurements as well as empirical and mechanistic models. Annual cryosphere runoff changed from +19 to ?55% during the period 1975–2012, with an average decline of 26%. For August runoff, these changes ranged from +17 to ?66%, with an average decrease of 24%. Reduction of cryosphere contributions to annual and late summer flows is expected to continue in the coming decades as glaciers and the perennial snow patches shrink. Our method to isolate changes in late summer cryospheric storage contributions can be used as a first order estimate on changes in glacier contributions to flow and may help researchers and water managers target watersheds for further analysis.  相似文献   

8.
Investigation of the variations in runoff, sediment load, and their dynamic relation is conducive to understanding hydrological regime changes and supporting channel regulation and fluvial management. This study is undertaken in the Xihanshui catchment, which is known for its high sediment-laden in the Jialing River of the Yangtze River basin, southern China, to evaluate the change characteristics of runoff, sediment load, and their relationship at multi-temporal scales from 1966 to 2016. The results showed that runoff changed significantly for more months, whereas the significant changes in monthly sediment load occurred from April to September. The contributions of runoff in summer and autumn and sediment load in summer to their annual value changes were greater. Annual runoff and sediment load in the Xihanshui catchment both exhibited significant decreasing trends (p < 0.05) with a significant mutation in 1993 (p < 0.05). The average annual runoff in the change period (1994–2016) decreased by 49.58% and annual sediment load displayed a substantial decline with a reduction of 77.77% in comparison with the reference period (1966–1993) due to climate change and intensive human activity. The power functions were satisfactory to describe annual and extreme monthly runoff–sediment relationships, whereas the monthly runoff–sediment relationship and extreme monthly sediment-runoff relationship were changeable. Spatially, annual runoff–sediment relationship alteration could be partly attributed to sediment load changes in the upstream area and runoff variations in the downstream region. Three quantitative methods revealed that the main driver for significant reductions of annual runoff and sediment load is the human activity dominated by soil and water conservation measures, while climate change only contributed 22.73%–38.99% (mean 32.07%) to the total runoff reduction and 3.39%–35.56% (mean 17.32%) to the total decrease in sediment load.  相似文献   

9.
C. Pilling  J. A. A. Jones 《水文研究》1999,13(17):2877-2895
Nationwide changes in spatially well‐resolved patterns of British runoff were investigated under two climate change scenarios derived from general circulation model (GCM) output. A physical process‐based hydrological model (HYSIM) was used to simulate effective runoff across a 10 km×10 km British grid under baseline and future climate conditions. A gridded baseline climatology for precipitation and the Penman variables was used to validate HYSIM across Britain using grid cell‐specific parameters derived from land use and soil type. The climate change scenarios were constructed from the Hadley Centre's high resolution equilibrium GCM (UKHI) for 2050 and transient GCM (UKTR) for 2065. Future effective runoff was simulated under both scenarios by applying changes in precipitation and the Penman variables to the baseline climatology. Annual effective runoff is shown to increase throughout most of Britain under the UKHI scenario for 2050, whilst it decreases over much of England and Wales under the UKTR scenario for 2065. Both scenarios show an increasing gradient in runoff between a wetter northern Britain and a drier south‐eastern Britain. This gradient is more pronounced under the UKTR scenario. Changes in effective runoff for winter and summer show an increase in seasonality under both scenarios. Winter runoff is shown to increase most in northern Britain under both scenarios, whilst summer runoff is shown to experience major reductions over much of England and Wales under the UKTR scenario. If these simulations are realized, Britain may expect an accentuated north to south‐east imbalance in available water resources. If this is combined with a temporal imbalance suggested by the increased seasonality, there could be problems for the future management of British water resources. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
Z. L. Li  Z. X. Xu  J. Y. Li  Z. J. Li 《水文研究》2008,22(23):4639-4646
Shift trend and step changes were detected for runoff time series in the Shiyang River basin, one of the inland river basins in north‐west China. Annual runoff data from eight tributaries as well as both annual and monthly runoff from the mainstream from 1958 to 2003 were used. Seven statistical test methods were employed to identify the shift trends and step changes in the study. Mann–Kendall test, Spearman's Rho test, linear regression and Hurst exponent were used to detect past and future shift trends for runoff time series, while the distributed‐free CUSUM test, cumulative deviations and the Worsley likelihood ratio test were used to detect step changes for the same time series. Results showed that the annual runoff from Zamu, Huangyang and Gulang rivers, as well as both annual and monthly runoff from the mainstream, show statistically significant decreasing trends. Future tendency of runoff for both tributaries and mainstream were consistent with that from 1958 to 2003. Step changes probably occurred in 1961 for the runoff from Huangyang, Gulang and Dajing rivers according to the Worsley likelihood ratio test, but no similar results were found using the other two test methods. Three change points (1979, 1974 and 1973) were detected for the mainstream using different methods. These change points were close to the years that reservoirs started to be operated. Both climate change and human activities, especially the latter, contributed to the decreasing runoff in the study area. Between 21% and 79% of the reduction in runoff from the mainstream was due to the impact of human activities during the past few decades. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Tao Gao  Huailiang Wang 《水文研究》2017,31(13):2412-2428
The Mann–Kendall test, composite analysis, and 68 high‐quality meteorological stations were used to explore the spatiotemporal variations and causes of precipitation extremes over the Yellow River basin (YRB) during the period of 1960–2011. Results showed that (a) the YRB is characterized by decreases of most precipitation indices, excluding the simple daily intensity index, which has increasing trends in most locations, suggesting that the intensity of rainfall and the probability of occurrence of droughts have increased during the last decades. (b) Trends of extreme precipitation show mixed patterns in the lower reach of the YRB, where drought–flood disasters have increased. The increases in heavy rainfall and decreases in consecutive wet days in recent years over the northwestern portions of the YRB indicate that the intensity and frequency of above‐normal precipitation have been trending upward in domains. In the central‐south YRB, the maximum 1‐day precipitation (RX1day) and precipitation on extremely wet days (R99p) have significantly increased, whereas the number of consecutive dry days has declined; these trends suggest that the intensity of precipitation extremes has increased in those regions, although the frequency of extreme and total rainfall has decreased. (c) The spatial distributions of seasonal trends in RX1day and maximum 5‐day precipitation (RX5day) exhibited less spatial coherence, and winter is becoming the wettest season regionwide, particularly over the central‐south YRB. (d) There were multiple and overlapping cycles of variability for most precipitation indices, indicating variations of time and frequency. (e) Elevation is intimately correlated with precipitation indices, and a weakening East Asian summer monsoon during 1986–2011 compared to that in 1960–1985 may have played an important role in the declines in most indices over the YRB. Therefore, the combined effects from local and teleconnection forcing factors have collectively influenced the variations in precipitation extremes across the YRB. This study may provide valuable evidence for the effective management of water resources and the conduct of agricultural activities at the basin scale.  相似文献   

12.
The glaciers on Tibetan Plateau play an important role in the catchment hydrology of this region. However, our knowledge with respect to water circulation in this remote area is scarce. In this study, the HBV light model, which adopts the degree‐day model for glacial melting, was employed to simulate the total runoff, the glacier runoff and glacier mass balance (GMB) of the Dongkemadi River Basin (DRB) at the headwater of the Yangtze River on the Tibetan Plateau, China. Firstly, the daily temperature and precipitation of the DRB from 1955 to 2008 were obtained by statistical methods, based on daily meteorological data observed in the DRB (2005–2008) and recorded by four national meteorological stations near the DRB (1955–2008). Secondly, we used 4‐year daily air temperature, precipitation, runoff depth and monthly evaporation, which were observed in the DRB, as input to obtain a set of proper parameters. Then, the annual runoff, the glacier runoff and GMB (1955–2008) were calculated using the HBV model driven by interpolated meteorological data. The calculated GMB fits well with the observed results. At last, using the temperature and precipitation predicted by climate models, we predicted the changes of runoff depth and GMB of the DRB in the next 40 years. Under all climate‐change scenarios, annual glacier runoff shows a significant increase due to intensified ice melting. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
ABSTRACT

Climate change alters hydrological processes and results in more extreme hydrological events, e.g. flooding and drought, which threaten human livelihoods. In this study, the large-scale distributed variable infiltration capacity (VIC) model was used to simulate future hydrological processes in the Yarlung Zangbo River basin (YZRB), China, with a combination of the CMIP5 (Coupled Model Intercomparison Project, fifth phase) and MIROC5 (Model for Interdisciplinary Research on Climate, fifth version) datasets. The results indicate that the performance of the VIC model is suitable for the case study, and the variation in runoff is remarkably consistent with that of precipitation, which exhibits a decreasing trend for the period 2046–2060 and an increasing trend for 2086–2100. The seasonality of runoff is evident, and substantial increases are projected for spring runoff, which might result from the increase in precipitation as well as the increase in the warming-induced melting of snow, glaciers and frozen soil. Moreover, evapotranspiration exhibits an increase between 2006–2020 and 2046–2060 over the entire basin, and soil moisture decreases in upstream areas and increases in midstream and downstream areas. For 2086–2100, both evapotranspiration and soil moisture increase slightly in the upstream and midstream areas and decrease slightly in the downstream area. The findings of this study could provide references for runoff forecasting and ecological protection for similar studies in the future.  相似文献   

14.
Glacier meltwater change in the north‐eastern edge of the Tibetan Plateau is greatly important for the projection of the impact of future climate change on local water resource management. Although the glaciated area is only approximately 4% of the Upper Reach of the Shule River Basin (URSRB), the average glacier meltwater contribution to river run‐off was approximately 23.6% during the periods 1971/1972 to 2012/2013. A new glacier melting module coupled with the macroscale hydrologic Variable Infiltration Capacity model (VIC‐CAS) was adopted to simulate and project changes in the glacier meltwater and river run‐off of the URSRB forced by downscaled output of the BCC‐CSM1.1(m), CANESM2, GFDL‐CM3, and IPSL‐CM5A‐MR models. Comparisons between the observed and simulated river run‐offs and glacier area changes during the periods 2000/2001, 2004/2006, 2008/2009, and 2012/2013 suggest that the simulation is reasonable. Due to increases in precipitation, the annual total run‐off is projected to increase by approximately 2.58–2.73 × 108 m3 in the 2050s and 0.28–1.87 × 108 m3 in the 2100s compared with run‐off in the 2010s based on the RCP2.6 (low greenhouse gas emission) and RCP4.5 (moderate greenhouse gas emission) scenarios, respectively. The contribution of glacier meltwater to river run‐off will more likely decrease to approximately 10% and less than 5% during the 2050s and 2100s, respectively.  相似文献   

15.
The paper presents the outcomes of a study conducted to analyse water resources availability and demand in the Mahanadi River Basin in India under climate change conditions. Climate change impact analysis was carried out for the years 2000, 2025, 2050, 2075 and 2100, for the months of September and April (representing wet and dry months), at a sub‐catchment level. A physically based distributed hydrologic model (DHM) was used for estimation of the present water availability. For future scenarios under climate change conditions, precipitation output of Canadian Centre for Climate Modelling and Analysis General Circulation Model (CGCM2) was used as the input data for the DHM. The model results show that the highest increase in peak runoff (38%) in the Mahanadi River outlet will occur during September, for the period 2075–2100 and the maximum decrease in average runoff (32·5%) will be in April, for the period 2050–2075. The outcomes indicate that the Mahanadi River Basin is expected to experience progressively increasing intensities of flood in September and drought in April over the considered years. The sectors of domestic, irrigation and industry were considered for water demand estimation. The outcomes of the analysis on present water use indicated a high water abstraction by the irrigation sector. Future water demand shows an increasing trend until 2050, beyond which the demand will decrease owing to the assumed regulation of population explosion. From the simulated future water availability and projected water demand, water stress was computed. Among the six sub‐catchments, the sub‐catchment six shows the peak water demand. This study hence emphasizes on the need for re‐defining water management policies, by incorporating hydrological response of the basin to the long‐term climate change, which will help in developing appropriate flood and drought mitigation measures at the basin level. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
S. Rehana  P. P. Mujumdar 《水文研究》2013,27(20):2918-2933
This paper presents an approach to model the expected impacts of climate change on irrigation water demand in a reservoir command area. A statistical downscaling model and an evapotranspiration model are used with a general circulation model (GCM) output to predict the anticipated change in the monthly irrigation water requirement of a crop. Specifically, we quantify the likely changes in irrigation water demands at a location in the command area, as a response to the projected changes in precipitation and evapotranspiration at that location. Statistical downscaling with a canonical correlation analysis is carried out to develop the future scenarios of meteorological variables (rainfall, relative humidity (RH), wind speed (U2), radiation, maximum (Tmax) and minimum (Tmin) temperatures) starting with simulations provided by a GCM for a specified emission scenario. The medium resolution Model for Interdisciplinary Research on Climate GCM is used with the A1B scenario, to assess the likely changes in irrigation demands for paddy, sugarcane, permanent garden and semidry crops over the command area of Bhadra reservoir, India. Results from the downscaling model suggest that the monthly rainfall is likely to increase in the reservoir command area. RH, Tmax and Tmin are also projected to increase with small changes in U2. Consequently, the reference evapotranspiration, modeled by the Penman–Monteith equation, is predicted to increase. The irrigation requirements are assessed on monthly scale at nine selected locations encompassing the Bhadra reservoir command area. The irrigation requirements are projected to increase, in most cases, suggesting that the effect of projected increase in rainfall on the irrigation demands is offset by the effect due to projected increase/change in other meteorological variables (viz., Tmax and Tmin, solar radiation, RH and U2). The irrigation demand assessment study carried out at a river basin will be useful for future irrigation management systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
This study demonstrates the use of spatially downscaled, monthly general circulation model (GCM) rainfall and temperature data to drive the established HyMOD hydrological model to evaluate the prospective effects of climate change on the fluvial run‐off of the River Derwent basin in the UK. The evaluation results of this monthly hydrological model using readily available, monthly GCM data are consistent with studies on nearby catchments employing high‐temporal resolution data, indicating that useful hydro‐climatic planning studies may be possible using standard datasets and modest computational resources. HyMOD was calibrated against 5 km2 gridded UK Climate Projections dataset data and then driven using monthly spatially interpolated (~5 km2) outputs from Hadley Centre Coupled Model, version 3 and the Canadian Centre for Climate Modelling and Analysis for Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC‐SRES) A2a and B2a covering the 2020s, 2050s and 2080s. Results for both GCMs project a decrease in annual run‐off in both GCM models and scenarios with higher values in the summer/autumn months, whereas an increase in the later winter months. Both Hadley Centre Coupled Model, version 3 and the Canadian Centre for Climate Modelling and Analysis show higher ranges of uncertainty during the winter season with higher values of run‐off associated with December in all three simulation periods and two scenarios. A seasonal comparison of run‐off simulations shows that both GCMs give similar results in summer and autumn, whereas disparities due to GCM uncertainties are more conspicuous in winter and spring. In this study, both the GCMs under A2a scenario have demonstrated the high possibility of time shift in monthly average peak run‐offs in the Derwent River by 2080s in comparison with the early 21st century. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Climate variability and change impact groundwater resources by altering recharge rates. In semi-arid Basin and Range systems, this impact is likely to be most pronounced in mountain system recharge (MSR), a process which constitutes a significant component of recharge in these basins. Despite its importance, the physical processes that control MSR have not been fully investigated because of limited observations and the complexity of recharge processes in mountainous catchments. As a result, empirical equations, that provide a basin-wide estimate of mean annual recharge using mean annual precipitation, are often used to estimate MSR. Here North American Regional Reanalysis data are used to develop seasonal recharge estimates using ratios of seasonal (winter vs. summer) precipitation to seasonal actual or potential evapotranspiration. These seasonal recharge estimates compared favorably to seasonal MSR estimates using the fraction of winter vs. summer recharge determined from isotopic data in the Upper San Pedro River Basin, Arizona. Development of hydrologically based seasonal ratios enhanced seasonal recharge predictions and notably allows evaluation of MSR response to changes in seasonal precipitation and temperature because of climate variability and change using Global Climate Model (GCM) climate projections. Results show that prospective variability in MSR depends on GCM precipitation predictions and on higher temperature. Lower seasonal MSR rates projected for 2050-2099 are associated with decreases in summer precipitation and increases in winter temperature. Uncertainty in seasonal MSR predictions arises from the potential evapotranspiration estimation method, the GCM downscaling technique and the exclusion of snowmelt processes.  相似文献   

19.
The hydrological response to the potential future climate change in Yangtze River Basin (YRB), China, was assessed by using an ensemble of 54 climate change simulations. The Coupled Model Intercomparison Project 5 simulations under two new Representative Concentration Pathways (RCP) 4.5 and 8.5 emission scenarios were downscaled and used to drive the Variable Infiltration Capacity hydrological model. This study found that the range of temperature changes is homogeneous for almost the entire region, with an average annual increase of more than 2 °C under RCP4.5 and even more than 4 °C under RCP8.5 in the end of the twenty first century. The warmest period (June–July–August) of the year would experience lower changes than the colder ones (December–January–February). Overall, mean precipitation was projected to increase slightly in YRB, with large dispersion among different global climate models, especially during the dry season months. These phenomena lead to changes in future streamflow for three mainstream hydrological stations (Cuntan, Yichang, and Datong), with slightly increasing annual average streamflows, especially at the end of twenty first century. Compared with the percentage change of mean flow, the high flow shows (90th percentile on the probability of no exceedance) a higher increasing trend and the low flow (10th percentile) shows a decreasing trend or lower increasing trend. The maximum daily discharges with 5, 10, 15, and 30-year return periods show an increasing trend in most sub-basins in the future. Therefore, extreme hydrological events (e.g., floods and droughts) will increase significantly, although the annual mean streamflow shows insignificant change. The findings of this study would provide scientific supports to implement the integrated adaptive water resource management for climate change at regional scales in the YRB.  相似文献   

20.
This work presents a methodology to make statistical significant and robust inferences on climate change from an ensemble of model simulations. This methodology is used to assess climate change projections of the Iberian daily-total precipitation for a near-future (2021–2050) and a distant-future (2069–2098) climates, relatively to a reference past climate (1961–1990).Climate changes of precipitation spatial patterns are estimated for annual and seasonal values of: (i) total amount of precipitation (PRCTOT), (ii) maximum number of consecutive dry days (CDD), (iii) maximum of total amount of 5-consecutive wet days (Rx5day), and (iv) percentage of total precipitation occurred in days with precipitation above the 95th percentile of the reference climate (R95T). Daily-total data were obtained from the multi-model ensemble of fifteen Regional Climate Model simulations provided by the European project ENSEMBLES. These regional models were driven by boundary conditions imposed by Global Climate Models that ran under the 20C3M conditions from 1961 to 2000, and under the A1B scenario, from 2001 to 2100, defined by the Special Report on Emission Scenarios of the Intergovernmental Panel on Climate Change.Non-parametric statistical methods are used for significant climate change detection: linear trends for the entire period (1961–2098) estimated by the Theil-Sen method with a statistical significance given by the Mann-Kendall test, and climate-median differences between the two future climates and the past climate with a statistical significance given by the Mann-Whitney test. Significant inferences of climate change spatial patterns are made after these non-parametric statistics of the multi-model ensemble median, while the associated uncertainties are quantified by the spread of these statistics across the multi-model ensemble. Significant and robust climate change inferences of the spatial patterns are then obtained by building the climate change patterns using only the grid points where a significant climate change is found with a predefined low uncertainty.Results highlight the importance of taking into account the spread across an ensemble of climate simulations when making inferences on climate change from the ensemble-mean or ensemble-median. This is specially true for climate projections of extreme indices such CDD and R95T. For PRCTOT, a decrease in annual precipitation over the entire peninsula is projected, specially in the north and northwest where it can decrease down to 400 mm by the middle of the 21st century. This decrease is expected to occur throughout the year except in winter. Annual CDD is projected to increase till the middle of the 21st century overall the peninsula, reaching more than three weeks in the southwest. This increase is projected to occur in summer and spring. For Rx5day, a decrease is projected to occur during spring and autumn in the major part of the peninsula, and during summer in northern Iberia. Finally, R95T is projected to decrease around 20% in northern Iberia in summer, and around 15% in the south-southwest in autumn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号