首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
For the managers of a region as large as the Great Barrier Reef, it is a challenge to develop a cost effective monitoring program, with appropriate temporal and spatial resolution to detect changes in water quality. The current study compares water quality data (phytoplankton abundance and water clarity) from remote sensing with field sampling (continuous underway profiles of water quality and fixed site sampling) at different spatial scales in the Great Barrier Reef north of Mackay (20 degrees S). Five transects (20-30 km long) were conducted from clean oceanic water to the turbid waters adjacent to the mainland. The different data sources demonstrated high correlations when compared on a similar spatial scale (18 fixed sites). However, each data source also contributed unique information that could not be obtained by the other techniques. A combination of remote sensing, underway sampling and fixed stations will deliver the best spatial and temporal monitoring of water quality in the Great Barrier Reef.  相似文献   

2.
流域植被覆盖状况对于水源地生态环境保护具有重要的指示作用.当前的水质目标管理不仅要着眼于湖库水质参数控制,更应该从整个流域的角度维系生态平衡.在此背景下,依托长时间序列MODIS遥感数据对千岛湖流域2001-2013年植被覆盖状况进行监测,采用最小二乘法趋势分析和Mann-Kendall显著性检验方法分析了千岛湖流域植被的空间分布特征、时间变化特征与长期变化趋势.研究表明该方法能够有效地监测流域植被覆盖的时空动态变化:1)从空间分布上来看,千岛湖流域植被覆盖状况整体较好,但同时也发现受人为干扰较大的地域如河、湖附近的城镇建设用地、农业用地以及园地,其NDVI值明显低于自然林地;2)从时间变化特征上看,2001-2013年千岛湖流域植被年际NDVI在0.69~0.73之间波动,且近年来有增长趋势,年内季节性NDVI动态分析表明高时间分辨率的MODIS数据能够用来区分常绿植被与落叶植被的物候特征,以分析不同植被类型对流域氮、磷流失的风险差异;3)从变化趋势上看,2001-2013年植被覆盖状况改善的区域远大于退化的区域,其中改善区域约占流域面积的55.90%,呈现出一定退化状态的区域约占29.60%(严重退化区域仅占3.97%),而相对稳定不变区域约占14.51%.经与气温与降水等气候因子进行相关性分析表明,植被NDVI与气温呈显著正相关,而降水则不敏感,说明气温是研究区植被生长的主导气候因子.同时发现,人类活动对局部植被变化影响较大.研究结果可为流域水资源与生态环境保护提供空间数据支撑.  相似文献   

3.
The study of runoff is a crucial issue because it is closely related to flooding, water quality and erosion. In cultivated catchments, agricultural ditch drainage networks are known to influence runoff. As anthropogenic elements, agricultural ditch drainage networks can therefore be altered to better manage surface runoff in cultivated catchments. However, the relationship between the spatial configuration, i.e. the density and the topology, of agricultural ditch drainage networks and surface runoff in cultivated catchments is not understood. We studied this relationship by using a random network simulator that was coupled to a distributed hydrological model. The simulations explored a large variety of spatial configurations corresponding to a thousand stochastic agricultural ditch drainage networks on a 6.4 km² Mediterranean cultivated catchment. Next, several distributed hydrological functions were used to compute water flow paths and runoff for each simulation. The results showed that (i) denser networks increased the drained volume and the peak discharge and decreased hillslopes runoff, (ii) greater network density did not affect the surface runoff any further above a given network density, (iii) the correlation between network density and runoff was weaker for small subcatchments (< 2 km²) where the variability in the drained area that resulted from changes in agricultural ditch drainage networks increased the variability of runoff and (iv) the actual agricultural ditch drainage network appeared to be well optimized for managing runoff as compared with the simulated networks. Finally, our results highlighted the role of agricultural ditch drainage networks in intercepting and decreasing overland flow on hillslopes and increasing runoff in drainage networks. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Water and land are the two natural resources restraining crop production in South Africa. With the increasing demand for food, emphasis has shifted from the sole reliance on rain fed crop production, to irrigation. The deterioration in irrigation water quality from surface water sources is, however, posing a big challenge to the sustainability of irrigated crop production. This is because more water is required for leaching, resulting in shallow water tables in agricultural lands. The installation of well designed subsurface drainage systems alone is not enough; the provision of timely maintenance is also necessary. In this study, the extent and severity of problems as a consequence of shallow water tables and their possible causes were investigated at three sugarcane fields in Pongola, South Africa, having low hydraulic conductivity soils. Also investigated were soil salinity levels and the temporal variation in the salinity of the irrigation water. A water table map of a 32 ha sugarcane field was generated, using observed water table depth (WTD) data from 36 piezometers monitored from September 2011 to February 2012. Out of the total 32 ha under cultivation, 12% was found to be affected by shallow WTDs of less than the 1.0 m design WTD. The inability of natural drainage to cope with subsurface drainage needs and the poor maintenance of subsurface drainage systems contributed to the shallow water tables in the area. Furthermore, the currently adopted drainage design criteria also proved unsatisfactory with mean observed water table depth and drainage discharge (DD) of 20% and 50%, respectively, less than their respective design levels. The salinity of the irrigation water was, on average, 32% higher than threshold tolerance level of sugarcane. The root zone soil salinity levels at the three study sites were greater than the 1.7 dS m−1 threshold for sugar cane. The subsurface drainage design criteria adopted at the site needs to be revisited by ensuring that the slope of the land is taken into consideration in the drainage design in addition to adhering to a recommended maintenance schedule.  相似文献   

5.
Observations of surface velocity data from August 2002 to February 2004 were collected by a series of four long-range high-frequency (HF) radars along the coast of New Jersey. The shelf observations of the central Mid-Atlantic Bight (MAB) were compared to historical observations of surface flow characteristics in the area. The time-averaged spatial mean velocity of 4 cm/s in the down-shelf along-shelf direction and 3 cm/s in the offshore across-shelf direction compared very well to historical surface measurements in the study region. However, as the spatial resolution of the data set revealed, this simple measure masked significant spatial variations in the overall and seasonal mean flow structures. Three regions – the south bank of the Hudson Shelf Valley, the southern New Jersey inner shelf (LEO-15) region, and the region offshore of the Delaware Bay mouth (southwest corner) – had mean flows that favor offshore transport of surface water. In terms of temporal variability, maps of the principle axes showed that the across-shelf (minor) axis contribution was not insignificant in the surface layer ranging from 0.3 to 0.9 of along-shelf (major) axis and that there were seasonal differences in orientation and ellipticity. Analysis of the spatial changes in the temporal and spatial correlation scales over the shelf showed that shelf position, in addition to site separation, contributed to the differences in these properties. Furthermore, observations over the Hudson Shelf Valley region suggested that this was a region of transition in which the orientation of along- and across-shelf components begin to change.  相似文献   

6.
This study assessed the long‐term (1979–2008) water budget closures for 19 large cold region drainage basins in Canada using recently developed datasets for precipitation (P), land surface evapotranspiration and water surface evaporation, and observed streamflow. Total water storage (TWS) trends from the GRACE satellite observations were also used to assist the assessment. The objectives are to quantify the magnitudes and spatial patterns of the water budget imbalance (ε) and its source of errors for these cold region basins. Results showed that the water budget was closed within 10% of the P on average for all the basins. The ε showed a general pattern of positive values in the south and negative values in the north and mountainous regions over the country. Basins with large ε values were mostly found in the north. Uncertainties in the water budget variables, particularly P, were found to play a major role in the ε. Significant trends in TWS were found over 11 basins, which accounted for 31% of their ε on average. Improvements in the observation network, data quality assurance, and spatial models for P are critical for further improving the water budget closure for the cold region drainage basins. © 2014 Her Majesty the Queen in Right of Canada. Hydrological Processes. © John Wiley & Sons, Ltd.  相似文献   

7.
Highly seasonal boreal catchments are hydrologically complex and generally data poor and, hence, are ripe for investigation using tracer‐aided hydrologic models. The influence of physiography on isotopic metrics was assessed to identify the catchment characteristics dominating evaporative enrichment. A multiyear stable isotope of water dataset was collected at the outlets of 16 boreal catchments in central Canada ranging in area from 12 to 15,282 km2. Physiographic characteristics were obtained through raster analysis of freely available land cover images, stream networks, and digital elevation models. Correlation analysis indicated that as the percentage coverage of open water increased, so too did the evaporative effects observed at the catchment outlet. Correlation to wetland metrics indicated that increasing the percentage coverage of wetlands can reduce or increase evaporative effects observed, depending on the isotopic metric used and the corresponding drainage density, catchment slope, and presence of headwater lakes. The slopes of river evaporative‐mixing lines appear to reflect multifaceted relationships, strongest between catchment slope, headwater lakes, and connected wetlands, whereas mean line‐conditioned excess is more directly linked to physiographic variables. Hence, the slopes of river evaporative‐mixing lines and mean line‐conditioned excess are not interchangeable metrics of evaporative enrichment in a catchment. Relationships identified appear to be independent of catchment scale. These results suggest that adequate inclusion of the distribution of open water throughout a catchment, adequate representation of wetland processes, catchment slope, and drainage density are critical characteristics to include in tracer‐aided hydrologic models in boreal environments in order to minimize structural uncertainty.  相似文献   

8.
Continuous subglacial measurements of turbidity and electrical conductivity — two indicators of basal water quality — can be used to help characterize subglacial drainage systems. These indicators of water quality yield information that complements that provided by water pressure measurements. Quantitative attributes of subglacial drainage systems, such as water velocity and subglacial residence time, as well as qualitative behaviour — for example, spatial and temporal variations in system morphology — can be deduced using water quality measurements. Interpretation is complicated by the many potential influences on turbidity and electrical conductivity, but when these complications are appreciated a richer interpretation results. To demonstrate the utility of basal water quality measurements, observations from Trapridge Glacier, Yukon Territory, Canada were examined. The data reveal complex behaviour of the drainage system, but constraints imposed by basal water quality measurements help to clarify the nature of the subglacial flow system. The measurement and interpretation methods described and demonstrated are applicable to other glaciers. As such, they should prove useful for characterizing different subglacial drainage configurations and behaviours, thereby improving our general understanding of the hydrology and dynamics of wet-based glaciers.  相似文献   

9.
In irrigation areas, ground water salinity (GWS) levels may vary depending on the amount and quality of irrigation water applied and on the activity of the drainage system. GWS plays a vital role in irrigation systems by influencing whether the environment is suitable for plant growth. Hence, it is necessary to monitor changes in GWS both temporally and spatially. Maps are generally used to visualize this information. However, evaluation of temporal and spatial variations of GWS can be difficult because of the necessity of assessing many maps together to understand both temporal and spatial changes. In this study, a data assessment method that can be used for multi‐year ground water salinity evaluations is presented. The method looks at the spatial and temporal relationships between the main salinity classes present in the study area, their typical locations (i.e. areas where the salinity classes are most frequently located), and the alternate salinity classes in those locations in any of the years of the time series. As a case study, the method was applied to multi‐year (1990–2000) GWS observations in the Mustafakemalpasa irrigation project (19 370 ha) in the Marmara region of north‐western Turkey. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Non‐point source (NPS) pollution from agricultural land is increasing exponentially in many countries of the world, including India. A modified approach based on the conservation of mass and reaction kinetics has been derived to estimate the inflow of non‐point source pollutants from a river reach. Two water quality variables, namely, nitrate (NO3) and ortho‐phosphate (o‐PO4), which are main contributors as non‐point source pollution, were monitored at four locations of River Kali, western Uttar Pradesh, India, and used for calibration and validation of the model. Extensive water quality sampling was done with a total of 576 field data sets collected during the period from March 1999 to February 2000. Remote sensing and geographical information system (GIS) techniques were used to obtain land use/land cover of the region, digital elevation model (DEM), delineation of basin area contributing to non‐point source pollution at each sampling location and drainage map. The results obtained from a modified approach were compared with the existing mass‐balance equations and distributed modelling, and the performances of different equations were evaluated using error estimation viz. standard error, normal mean error, mean multiplicative error and correlation statistics. The developed model for the River Kali minimizes error estimates and improves correlation between observed and computed NPS loads. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
It is critical to understand and quantify the temporal and spatial variability in hillslope hydrological data in order to advance hillslope hydrological studies, evaluate distributed parameter hydrological models, analyse variability in hydrological response of slopes and design efficient field data sampling networks. The spatial and temporal variability of field‐measured pore‐water pressures in three residual soil slopes in Singapore was investigated using geostatistical methods. Parameters of the semivariograms, namely the range, sill and nugget effect, revealed interesting insights into the spatial structure of the temporal situation of pore‐water pressures in the slopes. While informative, mean estimates have been shown to be inadequate for modelling purposes, indicator semivariograms together with mean prediction by kriging provide a better form of model input. Results also indicate that significant temporal and spatial variability in pore‐water pressures exists in the slope profile and thereby induces variability in hydrological response of the slope. Spatial and temporal variability in pore‐water pressure decreases with increasing soil depth. The variability decreases during wet conditions as the slope approaches near saturation and the variability increases with high matric suction development following rainfall periods. Variability in pore‐water pressures is greatest at shallow depths and near the slope crest and is strongly influenced by the combined action of microclimate, vegetation and soil properties. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
《水文科学杂志》2013,58(5):917-935
Abstract

For urban drainage and urban flood modelling applications, fine spatial and temporal rainfall resolution is required. Simulation methods are developed to overcome the problem of data limitations. Although temporal resolution higher than 10–20 minutes is not well suited for detailed rainfall—runoff modelling for urban drainage networks, in the absence of monitored data, longer time intervals can be used for master planning or similar purposes. A methodology is presented for temporal disaggregation and spatial distribution of hourly rainfall fields, tested on observations for a 10-year period at 16 raingauges in the urban catchment of Dalmuir (UK). Daily rainfall time series are simulated with a generalized linear model (GLM). Next, using a single-site disaggregation model, the daily data of the central gauge in the catchment are downscaled to an hourly time scale. This hourly pattern is then applied linearly in space to disaggregate the daily data into hourly rainfall at all sites. Finally, the spatial rainfall field is obtained using inverse distance weighting (IDW) to interpolate the data over the whole catchment. Results are satisfactory: at individual sites within the region the simulated data preserve properties that match the observed statistics to an acceptable level for practical purposes.  相似文献   

13.
Coastal and inshore areas of the Great Barrier Reef lagoon receive substantial amounts of material from adjacent developed catchments, which can affect the ecological integrity of coral reefs and other inshore ecosystems. A 5-year water quality monitoring dataset provides a 'base range' of water quality conditions for the inshore GBR lagoon and illustrates the considerable temporal and spatial variability in this system. Typical at many sites were high turbidity levels and elevated chlorophyll a and phosphorus concentrations, especially close to river mouths. Water quality variability was mainly driven by seasonal processes such as river floods and sporadic wind-driven resuspension as well as by regional differences such as land use. Extreme events, such as floods, caused large and sustained increases in water quality variables. Given the highly variable climate in the GBR region, long-term monitoring of marine water quality will be essential to detect future changes due to improved catchment management.  相似文献   

14.
人类活动的加强导致湖泊生态系统发生"突变",造成生物多样性下降、藻类暴发、水质恶化等等环境和生态问题.中国许多湖泊已经发生"突变"或面临着突变风险.获悉湖泊生态系统发生突变的时空差异对于区域湖泊的保护,预防湖泊突变的发生以及制定合适的修复策略至关重要.本研究收集了中国55个不同区域湖泊的古湖沼学数据,探讨了湖泊突变的区域特点.研究确定了湖泊生态系统发生突变时间和区域差异,并揭示了空间差异的原因.结果表明,中国湖泊生态系统突变时间的区域分异特征为:长江中下游湖泊最早出现突变;东部和东北湖区湖泊突变时间明显早于西南、内蒙古和新疆湖泊;各湖区内,城郊湖泊突变时间早于乡村湖泊.人类活动强度是造成湖泊突变时空差异的主要驱动力.研究认为,区域人类活动强度影响了湖泊生态系统的演化进程,造成了中国湖泊生态系统突变的区域差异.本研究从生态系统突变的角度,利用古湖沼学综述了中国湖泊生态系统在人类活动下的演化进程,更深刻地认识了中国湖泊现状,为湖泊保护提供了有力的科学依据.  相似文献   

15.
Rivers on territory of the Republic of Serbia can be separated to three sea drainage basins: Black, Adriatic and Aegean. Majority of rivers belong to the Black Sea drainage basin. The Danube is the most important river in Serbia and one of the most important rivers of Europe. All rivers investigated in this paper represent direct or indirect tributaries of the Danube River and as that, they are belonging to the Black Sea drainage basin. In this study, the water quality status and the spatial and temporal trends of seven major rivers in Serbia were assessed through the application of ten parameters of Water Quality Index. Ten year (2004–2013) public database of environmental data was used. Into considerations were taken differences between every river individually and difference between sample positions on every single river. Based on the chemical parameters of water quality, it can be seen that the biggest rivers in Serbia show different values of WQ parameters. The highest WQ value is measured on the Drina River, while the lowest value is measured on the Ju?na Morava and the Tisza River. Analyses of parameters per period of year show that there is a statistically significant difference between values during warm and cold periods.  相似文献   

16.
A data-driven model is designed using artificial neural networks (ANN) to predict the average onset for the annual water temperature cycle of North-American streams. The data base is composed of daily water temperature time series recorded at 48 hydrometric stations in Québec (Canada) and northern US, as well as the geographic and physiographic variables extracted from the 48 associated drainage basins. The impact of individual and combined drainage area characteristics on the stream annual temperature cycle starting date is investigated by testing different combinations of input variables. The best model allows to predict the average temperature onset for a site, given its geographical coordinates and vegetation and lake coverage characteristics, with a root mean square error (RMSE) of 5.6 days. The best ANN model was compared favourably with parametric approaches.  相似文献   

17.
Beasley Lake Watershed is an agriculturally influenced drainage basin in western Mississippi that has been intensively studied for 25 years. As part of the USDA Conservation Effects Assessment Project (CEAP), the watershed has archived hydrology, precipitation, and water quality data in order to measure the effects of multiple USDA Natural Resources Conservation Service conservation practices on lake water quality. The long-term database is available to researchers using a web-based application, Sustaining the Earth's Watersheds, Agricultural Research Data System (STEWARDS). STEWARDS is a GIS-based data retrieval application that encompasses spatial and temporal data collected from multiple sites within the watershed. This data note describes information located in the STEWARDS Beasley Lake Watershed database, including hydrology, precipitation, and water quality data. This information is valuable to researchers and agencies beyond the USDA as an available and useful database to improve the understanding of how land-use practices affect the water quality of shallow lake systems.  相似文献   

18.
The time it takes water to travel through a catchment, from when it enters as rain and snow to when it leaves as streamflow, may influence stream water quality and catchment sensitivity to environmental change. Most studies that estimate travel times do so for only a few, often rain-dominated, catchments in a region and use relatively short data records (<10 years). A better understanding of how catchment travel times vary across a landscape may help diagnose inter-catchment differences in water quality and response to environmental change. We used comprehensive and long-term observations from the Turkey Lakes Watershed Study in central Ontario to estimate water travel times for 12 snowmelt-dominated headwater catchments, three of which were impacted by forest harvesting. Chloride, a commonly used water tracer, was measured in streams, rain, snowfall and as dry atmospheric deposition over a 31 year period. These data were used with a lumped convolution integral approach to estimate mean water travel times. We explored relationships between travel times and catchment characteristics such as catchment area, slope angle, flowpath length, runoff ratio and wetland coverage, as well as the impact of harvesting. Travel time estimates were then used to compare differences in stream water quality between catchments. Our results show that mean travel times can be variable for small geographic areas and are related to catchment characteristics, in particular flowpath length and wetland cover. In addition, forest harvesting appeared to decrease mean travel times. Estimated mean travel times had complex relationships with water quality patterns. Results suggest that biogeochemical processes, particularly those present in wetlands, may have a greater influence on water quality than catchment travel times.  相似文献   

19.
太湖水质时空特性及其与蓝藻水华的关系   总被引:16,自引:5,他引:11  
张晓晴  陈求稳 《湖泊科学》2011,23(3):339-347
以太湖2005-2007年的连续监测资料为基础,运用聚类分析和自相关分析方法,针对总无机磷,总无机氮、水温等环境理化因素与叶绿素a进行时空序列分析,初步归纳了当前太湖水质指标变化的空间特点、时问周期性及其与蓝藻水华暴发的关系.结果表明,太湖水质的空间分布大致分为三个人湖河口、四个湖湾、湖心区、西部湖区、东部湖区等十个区...  相似文献   

20.
Natural ponds are perceived as spatially and temporally highly variable ecosystems. This perception is in contrast to the often-applied sampling design with high spatial but low temporal replication. Based on a data set covering a period of six years and 20 permanently to periodically inundated ponds, we investigated whether this widely applied sampling design is sufficient to identify differences between single ponds or single years with regard to water quality and macrophyte community composition as measures of ecosystem integrity.In our study, the factor “pond”, which describes differences between individual ponds, explained 56 % and 63 %, respectively, of the variance in water quality and macrophyte composition. In contrast, the factor “year” that refers to changes between individual years, contributed less to understand the observed variability in water quality and macrophyte composition (10 % and 7 % respectively, of the variance explained). The low explanation of variance for “year” and the low year-to-year correlation for the single water quality parameter or macrophyte coverage values, respectively, indicated high but non-consistent temporal variability affecting individual pond patterns.In general, the results largely supported the ability of the widely applied sampling strategy with about one sampling date per year to capture differences in water quality and macrophyte community composition between ponds. Hence, future research can be rest upon sampling designs that give more weight to the number of ponds than the number of years in dependence on the research question and the available resources. Nonetheless, pond research would miss a substantial amount of information (7 to 10 % of the variance explained), when the sampling would generally be restricted to one year. Moreover, we expect that the importance of multiple-year sampling will likely increase in periods and regions of higher hydrological variability compared to the average hydrological conditions encountered in the studied period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号