首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The quantification of groundwater recharge is an important but challenging task in groundwater flow modeling because recharge varies spatially and temporally. The goal of this study is to present an innovative methodology to estimate groundwater recharge rates and zone structures for regional groundwater flow models. Here, the unknown recharge field is partitioned into a number of zones using Voronoi Tessellation (VT). The identified zone structure with the recharge rates is associated through a simulation‐optimization model that couples MODFLOW‐2000 and the hybrid PSOLVER optimization algorithm. Applicability of this procedure is tested on a previously developed groundwater flow model of the Tahtal? Watershed. Successive zone structure solutions are obtained in an additive manner and penalty functions are used in the procedure to obtain realistic and plausible solutions. One of these functions constrains the optimization by forcing the sum of recharge rates for the grid cells that coincide with the Tahtal? Watershed area to be equal to the areal recharge rate determined in the previous modeling by a separate precipitation‐runoff model. As a result, a six‐zone structure is selected as the best zone structure that represents the areal recharge distribution. Comparison to results of a previous model for the same study area reveals that the proposed procedure significantly improves model performance with respect to calibration statistics. The proposed identification procedure can be thought of as an effective way to determine the recharge zone structure for groundwater flow models, in particular for situations where tangible information about groundwater recharge distribution does not exist.  相似文献   

2.
Spatial and temporal variations in a trichloroethylene (TCE) plume at an industrial complex in Wonju, Korea, were examined based on hydrogeological data and seven rounds of groundwater quality data collected over a year. The site has considerable vertical heterogeneities; the top layer of soil is covered by impermeable paving material at several locations, followed by a series of reclaimed or residual soil layers, and with weathered rocks to the crystalline biotite granite at the bottom. Areal heterogeneity in the surface conditions plays an important role in controlling groundwater recharge. The heterogeneity structure is influenced by complex surface conditions paved with asphalt and concrete. Owing to the presence of limited recharge area and concentrated summer precipitation events, the effects of seasonal variations on groundwater hydraulics tend to diminish with distance from the recharge area. This result was established by analysing the influence of the contrasting surface recharge conditions between the near‐source zone and the far zone, and the seasonally concentrated precipitation on the transport patterns of a TCE plume. In addition, variations in the plume's downstream contaminant flux levels were also analysed along a transect line near the source zone. The results show that the general tendency of the TCE plume contaminant concentration and mass discharges were reproducible if we account for seasonal recharge variations and the associated changes in the groundwater level. During recharge events, the TCE concentration variations appear to be influenced by leaching of the residual dense non‐aqueous‐phase liquid (DNAPL) TCE trapped in the unsaturated zone. This result shows that seasonal variations in contaminant plume near the source zone is inevitable at this site, and that these variations indicate the presence of residual DNAPL at or above the water table, at least in some isolated locations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Distributed, infiltration‐based approaches to stormwater management are being implemented to mitigate effects of urban development on water resources. One of the goals of this type of storm water management, sometimes called low impact development or green infrastructure, is to maintain groundwater recharge and stream base flow at predevelopment levels. However, the connection between infiltration‐based stormwater management and groundwater recharge is not straightforward. Water infiltrated through stormwater facilities may be stored in soil moisture, taken up by evapotranspiration or contribute to recharge and eventually base flow. This study focused on a 1.1 km2 suburban, low impact development watershed in Clarksburg, Maryland, USA, that was urbanized and contained 73 infiltration‐based stormwater facilities. Continuous water table measurements were used to quantify the movement of infiltrated stormwater. Time series analyses were performed on hydrographs of 7 wells, and the episodic master recession method was used. Persistence in water levels, as measured by autocorrelation function, was found to be positively related to depth to water. Storm properties (precipitation rate and duration) and well location (proximity to the nearest stream) were significant in driving episodic recharge to precipitation ratios. The well that had the highest recharge to precipitation ratios and water table rises of up to 1.5 m in response to storm events was located furthest from the stream and down gradient of stormwater infiltration locations. This work may be considered in evaluating the effects of planned watershed‐scale infiltration‐based stormwater management on groundwater flow systems.  相似文献   

4.
Aquifers show troubling signs of irreversible depletion as climate change, population growth, and urbanization lead to reduced natural recharge rates and overuse. One strategy to sustain the groundwater supply is to recharge aquifers artificially with reclaimed water or stormwater via managed aquifer recharge and recovery (MAR) systems. Unfortunately, MAR systems remain wrought with operational challenges related to the quality and quantity of recharged and recovered water stemming from a lack of data‐driven, real‐time control. This paper presents a laboratory scale proof‐of‐concept study that demonstrates the capability of a real‐time, simulation‐based control optimization algorithm to ease the operational challenges of MAR systems. Central to the algorithm is a model that simulates water flow and transport of dissolved chemical constituents in the aquifer. The algorithm compensates for model parameter uncertainty by continually collecting data from a network of sensors embedded within the aquifer. At regular intervals the sensor data is fed into an inversion algorithm, which calibrates the uncertain parameters and generates the initial conditions required to model the system behavior. The calibrated model is then incorporated into a genetic algorithm that executes simulations and determines the best management action, for example, the optimal pumping policy for current aquifer management goals. Experiments to calibrate and validate the simulation‐optimization algorithm were conducted in a small two‐dimensional synthetic aquifer under both homogeneous and heterogeneous packing configurations. Results from initial experiments validated the feasibility of the approach and suggested that our system could improve the operation of full‐scale MAR facilities.  相似文献   

5.
Large agricultural fields in South Korea are located mostly on alluvial plains, where a significant amount of groundwater is used for heating of water‐curtain insulated greenhouses. Such greenhouses are commonly used for crop cultivation during the winter dry season from November to March. After use the groundwater is discharged directly into streams, causing groundwater depletion. A hydrogeological study was carried out in a typical agricultural area of this type, located on an alluvial aquifer near the Nakdong River. Groundwater levels, chemical characteristics, and temperatures from 68 observation wells were analyzed to determine the impacts of seasonal groundwater pumping on the groundwater system and stream‐aquifer interactions. Our results show that the groundwater system has not yet reached a state of dynamic equilibrium. Decades of excessive seasonal pumping have caused a gradual decline of groundwater levels, leading to groundwater depletion, especially in areas further from the river. Seasonal pumping has also significantly affected groundwater quality in the aquifer near the river. Groundwater temperature is decreasing (in this case a disadvantage), and saline groundwater is being diluted by induced recharge. The results of this study provide a basic outline for effective integrated water management that is widely applicable in South Korea.  相似文献   

6.
Abstract

This paper presents a methodology for the design and optimization of artificial recharge-pumping systems (ARPS). The objective of ARPS is to provide a maximum abstraction rate through artificial recharge, while meeting two operational constraints: (a) the influences of the system operation on groundwater levels should be no more than 25 mm in the vicinity of the system; and (b) the travel time of the infiltrated water from the recharge pond to the pumping wells should be more than 60 days. The combined use of a 3-dimensional generic groundwater simulation model with particle tracking analyses has identified the two best ARPS systems: the circular pond system and the island system. By coupling the simulation model with linear and mixed integer programming optimization, the optimal pumping scheme (number, locations and rates of the pumping wells) has been determined. An unsteady state model has been used to simulate the response of the operation of the two systems under natural seasonal variations. The implementation aspects of the two systems are compared.  相似文献   

7.
The hydrological influence of fault zones in tectonic areas is usually difficult to depict from field data. Numerical simulation allows representation of such flow systems and an estimation of flow lines and rates. This paper reports on simulations of the groundwater flow in a range‐and‐basin area affected by a regional fault zone, which may drain or recharge an overlaying alluvial aquifer. Different hydraulic conductivity values for the range rocks, the fault‐zone, and the sedimentary infill of the basin are considered, as well as different fault‐zone widths and boundary conditions. Results show that upward and downward fluxes develop in the upper part of the fault zone, controlled by the action of the alluvial aquifer, influencing the recharge of the sedimentary basin. This paper shows the hydrological efficiency of fault zones as preferential flow; it also analyses the constraints that determine groundwater recharge to the surrounding basins. These results contribute to the understanding of hydrogeological dynamics in tectonic areas. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Groundwater resources play a pivotal role in the rural water delivery system in Ghana. The hydrogeological system of Middle Voltaian terrain was simulated using available data on hydraulic heads and boundary conditions. The objective was to characterize the general groundwater flow pattern and provide local estimates of the distribution of hydraulic conductivity and recharge fields. The results suggest a predominant NE–SW flow direction, which ties in with the general regional structural trend and indicates that the hydrogeological conditions of the rocks are controlled by structural entities created in the wake of fracturing and/or weathering of the rocks whose primary permeabilities are considerably reduced because of high compaction and low‐grade metamorphism. Calibrated hydraulic conductivities range between 1.90 and 10.81 m/d. The spatial distribution appears to reflect the intensity of fracturing and/or weathering of the rock and the proportion of the clay fraction of the weathered zone. Vertical groundwater recharge has been estimated to range between 0.3% and 4.1% of the annual rainfall. This recharge rate is quite low and reflects the imperviousness of the thick overburden because of high clay content in some places and high compaction in others. Despite this apparently low recharge rate, groundwater resources potential in the area appear to be high, and increased abstraction from existing abstraction wells by up to 50% does not appear to register significant effects on groundwater budgets at the simulated recharge rates. This suggests that the well yields are much lower than the potential of the aquifer system. The apparently low yields might be associated with poor well development and the choice of inappropriate well completion materials. This study recommends a monitoring system to be developed for a much more regional groundwater flow simulation under transient conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
This paper proposes an approach to estimate groundwater recharge using an optimization‐based water‐table fluctuation method combined with a groundwater balance model in an arid hardrock‐alluvium region, located at the Oman–United Arab Emirates border. We introduce an “effective hardrock thickness” term to identify the percentage of the considered hardrock thickness in which effective groundwater flow takes place. The proposed method is based upon a Thiessen polygon zoning approach. The method includes subpolygons to represent specific geologic units and to enhance the confidence of the estimated groundwater recharge. Two linear and 1 nonlinear submodels were developed to evaluate the model components for the calibration (October 1996 to September 2008) and validation (October 2008 to September 2013) periods. Long‐term annual groundwater recharge from rainfall and return flow over the model domain are estimated as 24.62 and 5.71 Mm3, respectively, while the effective groundwater flow circulation is found to occur in the upper 7% of the known hardrock thickness (42 m), confirming conclusions of previous field studies. Considering a total difference in groundwater levels between eastern and western points of the study area of the order of 220 m and a 12‐year monthly calibration period, a weighted root mean squared error in predicted groundwater elevation of 2.75 m is considered quite reasonable for the study area characterized by remarkable geological and hydrogeological diversity. The proposed approach provides an efficient and robust method to estimate groundwater recharge in regions with a complex geological setting in which interaction between fractured and porous media cannot be easily assessed.  相似文献   

10.
Simulating groundwater flow in basin‐fill aquifers of the semiarid southwestern United States commonly requires decisions about how to distribute aquifer recharge. Precipitation can recharge basin‐fill aquifers by direct infiltration and transport through faults and fractures in the high‐elevation areas, by flowing overland through high‐elevation areas to infiltrate at basin‐fill margins along mountain fronts, by flowing overland to infiltrate along ephemeral channels that often traverse basins in the area, or by some combination of these processes. The importance of accurately simulating recharge distributions is a current topic of discussion among hydrologists and water managers in the region, but no comparative study has been performed to analyze the effects of different recharge distributions on groundwater simulations. This study investigates the importance of the distribution of aquifer recharge in simulating regional groundwater flow in basin‐fill aquifers by calibrating a groundwater‐flow model to four different recharge distributions, all with the same total amount of recharge. Similarities are seen in results from steady‐state models for optimized hydraulic conductivity values, fit of simulated to observed hydraulic heads, and composite scaled sensitivities of conductivity parameter zones. Transient simulations with hypothetical storage properties and pumping rates produce similar capture rates and storage change results, but differences are noted in the rate of drawdown at some well locations owing to the differences in optimized hydraulic conductivity. Depending on whether the purpose of the groundwater model is to simulate changes in groundwater levels or changes in storage and capture, the distribution of aquifer recharge may or may not be of primary importance.  相似文献   

11.
Abstract

Water supply to the world’s megacities is a problem of quantity and quality that will be a priority in the coming decades. Heavy pumping of groundwater beneath these urban centres, particularly in regions with low natural topographic gradients, such as deltas and floodplains, can fundamentally alter the hydrological system. These changes affect recharge area locations, which may shift closer to the city centre than before development, thereby increasing the potential for contamination. Hydrogeological simulation analysis allows evaluation of the impact on past, present and future pumping for the region of Kolkata, India, on recharge area locations in an aquifer that supplies water to over 13 million people. Relocated recharge areas are compared with known surface contamination sources, with a focus on sustainable management of this urban groundwater resource. The study highlights the impacts of pumping on water sources for long-term development of stressed city aquifers and for future water supply in deltaic and floodplain regions of the world.

Editor D. Koutsoyiannis

Citation Sahu, P., Michael, H.A., Voss, C.I., and Sikdar, P.K., 2013. Impacts on groundwater recharge areas of megacity pumping: analysis of potential contamination of Kolkata, India, water supply. Hydrological Sciences Journal, 58 (6), 1340–1360.  相似文献   

12.
13.
Groundwater is a resilient water source and its importance is even greater in periods of drought. Areas such as the Mediterranean where adverse climate change effects are expected are bell‐weather locations for groundwater depletion and are of considerable interest. The present study evaluates renewable groundwater stress (RGS) as the ratio of groundwater use to groundwater availability, quantifying use as the trend in gravity recovery and climate experiment‐derived (GRACE) subsurface anomalies (ΔGWtrend) and renewable groundwater availability as mean annual recharge. Estimates for mean annual recharge for the various regions in Greece have been derived using numerical models. Our results highlight two RGS regimes in Greece (variable stress and unstressed) of the four characteristic stress regimes, that is, overstressed, variable stress, human‐dominated stress, and unstressed, defined as a function of the sign of use and the sign of groundwater availability (positive or negative). Variable stress areas are found in Central Greece (Thessaly region), where intensive agriculture results in negative ΔGWtrend values combined with positive mean annual recharge rates. RGS values range from ?0.05 to 0, indicating a low impact area. Within this region, adverse effects of groundwater overexploitation are already evident based on the negative GRACE anomalies; however, recharge is still positive, mitigating the effects of over‐pumping. The rest of Greek aquifers fall within the unstressed category, with RGS values from 0.02 to 0.05, indicating that the rate of use is less than the natural recharge rate.  相似文献   

14.
One of the most important issues for water resource management is developing strategies for groundwater modelling that are adaptable to data scarcity. These strategies are particularly important in arid and semi‐arid areas where access to data is poor and data collection is difficult, such as the Lake Chad Basin in Africa. In the present study, we establish a numerical groundwater flow model and evaluate the effects of dry and wet periods on groundwater recharge in the Chari–Logone area (96 000 km2) of the Lake Chad Basin. Boundary conditions, flow direction, sources, and sinks for the Chari–Logone local model were obtained by revising and remodelling the Lake Chad Basin regional hydrogeological model (508 400 km2) developed by the BRGM (Bureau de Recherches Géologiques et Minières) in the 1990s. The simulated aquifer water level showed good agreement with observed levels. Aquifer recharge is primarily determined by river–aquifer interactions and mostly occurs in the southern section of the study area. In wet years, groundwater recharge also occurs in the N'Djamena area. The approach we adopted provided relevant results and was useful as an initial step in more detailed modelling of the area. It also proved to be a useful method for groundwater modelling in large semi‐arid and arid regions where available data are scarce. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
The purpose of this study was to develop an interpretive groundwater‐flow model to assess the impacts that planned forest restoration treatments and anticipated climate change will have on large regional, deep (>400 m), semi‐arid aquifers. Simulations were conducted to examine how tree basal area reductions impact groundwater recharge from historic conditions to 2099. Novel spatial analyses were conducted to determine areas and rates of potential increases in groundwater recharge. Changes in recharge were applied to the model by identifying zones of basal area reduction from planned forest restoration treatments and applying recharge‐change factors to these zones. Over a 10‐year period of forest restoration treatment, a 2.8% increase in recharge to one adjacent groundwater basin (the Verde Valley sub‐basin) was estimated, compared to conditions that existed from 2000 to 2005. However, this increase in recharge was assumed to quickly decline after treatment due to regrowth of vegetation and forest underbrush and their associated increased evapotranspiration. Furthermore, simulated increases in groundwater recharge were masked by decreases in water levels, stream baseflow, and groundwater storage resulting from surface water diversions and groundwater pumping. These results indicate that there is an imbalance between water supply and demand in this regional, semi‐arid aquifer. Current water management practices may not be sustainable into the far future and comprehensive action should be taken to minimize this water budget imbalance.  相似文献   

16.
This study explores the inclusion of a groundwater recharge based design objective and the impact it has on the design of optimum groundwater monitoring networks. The study was conducted in the Hamilton, Halton, and Credit Valley regions of Ontario, Canada, in which the existing Ontario Provincial Groundwater Monitoring Network was augmented with additional monitoring wells. The Dual Entropy-Multiobjective Optimization (DEMO) model was used in these analyses. The value of using this design objective is rooted in the information contained within the estimated recharge. Recharge requires knowledge of climate, geomorphology, and geology of the area, thus using this objective function can help account for these physical characteristics. Two sources of groundwater recharge data were examined and compared, the first was calculated using the Precipitation-Runoff Modeling System (PRMS), and the second was an aggregation of recharge found using both the PRMS and Hydrological Simulation Program-Fortran (HSP-F). The entropy functions are used to identify optimal trade-offs between the maximum information content and the minimum shared information between the monitoring wells. The recharge objective will help to quantify hydrological characteristics of the vadose zone, and thus provide more information to the optimization algorithm. Results show that by including recharge as a design objective, the spatial coverage of the monitoring network can be improved. The study also highlights the flexibility of DEMO and its ability to incorporate additional design objectives such as the groundwater recharge.  相似文献   

17.
Hydrological effects of groundwater abstraction near a Danish river valley have been assessed by integrated hydrological modelling. The study site contains groundwater‐dependent terrestrial ecosystems in terms of fen and spring habitats that are highly dependent on regional and local scale hydrology. Fens are rare and threatened worldwide due to pressures from agriculture, to lack of appropriate management and to altered catchment hydrology. A solid foundation for hydrological modelling was established based on intensive monitoring at the site, combined with full‐scale pumping tests in the area. A regional groundwater model was used to describe the dynamics in groundwater recharge and the large‐scale discharge to streams. A local grid refinement approach was then applied in a detailed assessment of damage in order to balance the computational effort and the need for a high spatial resolution. A considerable flow reduction in the natural spring was monitored during a full‐scale pumping test while no significant effects on the water table in the fen habitats were observed. A modelled abstraction scenario predicted a lowering of 2–3 cm in the centre of the main fen area during summer periods. The predicted change in water table conditions in the fen habitat is compared to the variability found in 35 Danish fens, and the ecological response is discussed based on statistical water‐level vegetation relations. The results provide a rare quantitative foundation for decision making in relation to management of groundwater‐dependent terrestrial ecosystems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The effects of surface water flow system changes caused by constructing water‐conservation areas and canals in southeast Florida on groundwater quality under the Atlantic Coastal Ridge was investigated with numerical modeling. Water quality data were used to delineate a zone of groundwater with low total dissolved solids (TDS) within the Biscayne aquifer under the ridge. The delineated zone has the following characteristics. Its location generally coincides with an area where the Biscayne aquifer has high transmissivities, corresponds to a high recharge area of the ridge, and underlies a part of the groundwater mound formed under the ridge prior to completion of the canals. This low TDS groundwater appears to be the result of pre‐development conditions rather than seepage from the canals constructed after the 1950s. Numerical simulation results indicate that the time for low TDS groundwater under the ridge to reach equilibrium with high TDS surface water in the water‐conservation areas and Everglades National Park are approximately 70 and 60 years, respectively. The high TDS groundwater would be restricted to the water‐conservation areas and the park due to its slow eastward movement caused by small hydraulic gradients in Rocky Glades and its mixing with the low TDS groundwater under the high‐recharge area of the ridge. The flow or physical boundary conditions such as high recharge rates or low hydraulic conductivity layers may affect how the spatial distribution of groundwater quality in an aquifer will change when a groundwater flow system reaches equilibrium with an associated surface water flow system.  相似文献   

19.
The impacts of long-term pumping on groundwater chemistry remain unclear in the Manas River Basin, Northwest China. In this study, major ions within five surface water and 105 groundwater samples were analyzed to identify hydrogeochemical processes affecting groundwater composition and evolution along the regional-scale groundwater flow paths using the multivariate techniques of hierarchical cluster analysis (HCA) and principal components analysis (PCA) and traditional graphical methods for analyzing groundwater geochemistry. HCA classified the groundwater samples into four clusters (C1 to C4). PCA reduced the dimensionality of geochemical data into three PCs, which explained 86% of the total variance. The results of HCA and PCA were used to identify three zones: “recharge,” “transition,” and “discharge.” In the recharge zone the groundwater type is Ca-HCO3-SO4 and is primarily impacted by the dissolution of calcite and silicate weathering. In the transition zone the groundwater type is Ca-HCO3-SO4-Cl and is impacted by rock dissolution and reverse ion exchange. In the discharge zone the groundwater type is Na-Cl and is impacted by evaporation and reverse ion exchange. In addition, anthropogenic activities impact the groundwater chemistry in the study area. The groundwater type generally changes from Ca-HCO3-SO4 in the recharge area to Na-Cl in the discharge area along the regional-scale groundwater flow paths. This study provides a process-based knowledge for understanding the interaction of groundwater flow patterns and geochemical evolution within the Manas River Basin.  相似文献   

20.
Groundwater model predictions are often uncertain due to inherent uncertainties in model input data. Monitored field data are commonly used to assess the performance of a model and reduce its prediction uncertainty. Given the high cost of data collection, it is imperative to identify the minimum number of required observation wells and to define the optimal locations of sampling points in space and depth. This study proposes a design methodology to optimize the number and location of additional observation wells that will effectively measure multiple hydrogeological parameters at different depths. For this purpose, we incorporated Bayesian model averaging and genetic algorithms into a linear data-worth analysis in order to conduct a three-dimensional location search for new sampling locations. We evaluated the methodology by applying it along a heterogeneous coastal aquifer with limited hydrogeological data that is experiencing salt water intrusion (SWI). The aim of the model was to identify the best locations for sampling head and salinity data, while reducing uncertainty when predicting multiple variables of SWI. The resulting optimal locations for new observation wells varied with the defined design constraints. The optimal design (OD) depended on the ratio of the start-up cost of the monitoring program and the installation cost of the first observation well. The proposed methodology can contribute toward reducing the uncertainties associated with predicting multiple variables in a groundwater system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号