首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 158 毫秒
1.
运用球谐函数定积分的基本递推公式,推导了在重力场球谐综合与球谐分析中出现的广义球谐函数定积分的计算公式;给出了其适用于超高阶次的改良型递推公式.数值试验表明,该改良公式具有较高的计算精度和计算速度,解决了超高阶次广义球谐函数定积分计算的溢出问题,拓展了这类定积分的计算公式.他们的数值实现为利用位模型计算高分辨率扰动重力场元格网平均值、重力场球谐综合分析等奠定了基础.  相似文献   

2.
广义球谐函数定积分计算方法的改进   总被引:1,自引:0,他引:1  
运用球谐函数定积分的基本递推公式,推导了在重力场球谐综合与球谐分析中出现的广义球谐函数定积分的计算公式;给出了其适用于超高阶次的改良型递推公式。数值试验表明,该改良公式具有较高的计算精度和计算速度,解决了超高阶次广义球谐函数定积分计算的溢出问题,拓展了这类定积分的计算公式。他们的数值实现为利用位模型计算高分辨率扰动重力场元格网平均值、重力场球谐综合分析等奠定了基础。  相似文献   

3.
关于勒让德函数的一组特殊定积分递推公式   总被引:4,自引:1,他引:3  
根据勒让德函数理论的基本递推公式和基本性质 ,详细推导了在重力梯度调和分析中出现的一组特殊定积分的递推公式 ;并且指出 ,这组递推公式对于物理大地测量的调和分析理论也具有一定的价值。  相似文献   

4.
根据勒让德函数理论的基本递推公式和基本性质,详细推导了在重力梯度调和分析中出现的一组特殊定积分的递推公式;并且指出,这组递推公式对于物理大地测量的调和分析理论也具有一定的价值.  相似文献   

5.
关于勒让德函数一组特殊定积分递推公式   总被引:1,自引:0,他引:1  
根据勒让德函数理论的基本递推公式和基本性质,详细推导了在重力梯度调和分析中出现的一组特殊定积分的递推公式;并且指出,这组递推公式对于物理大地测的调和分析理论也具有一定的价值。  相似文献   

6.
全张量重力梯度数据的谱表示方法   总被引:4,自引:1,他引:3  
在文献「1」的基础上,进一步研究全张量重力梯度数据的全局和局部分量的广义球谐谱表示和轨道根数据表示,并给出了广义球谐函数与球谐函数这间的关系,从理论上得到了全张量重力梯度数据的描述方法和由全张量重力梯度网格数据恢复全球重力位谱系数的基本公式,本文对全张量重力梯度数据的谱表示和谱分析所做的工作,对由重力梯度张量的部分分量恢复全球重力位普系数有一定的参考价值。  相似文献   

7.
卫星重力梯度数据的模拟研究   总被引:3,自引:1,他引:2  
推导了运用地球重力场模型计算单点、格网点以及格网平均的扰动重力梯度复组合分量的公式;提出了广义球谐函数及其定积分的新算法,并利用EGM96地球重力场模型试算了全球地区卫星轨道面上的重力梯度分量的格网平均观测值;通过对角线分量满足Laplace方程的精度,验证了该算法的有效性和实用性。  相似文献   

8.
推导了运用地球重力场模型计算单点、格网点以及格网平均的扰动重力梯度复组合分量的公式;提出了广义球谐函数及其定积分的新算法,并利用EGM96地球重力场模型试算了全球地区卫星轨道面上的重力梯度分量的格网平均观测值;通过对角线分量满足Laplace方程的精度,验证了该算法的有效性和实用性。  相似文献   

9.
重力梯度为重力位的二阶导数,可以通过星载梯度仪进行观测。重力场球谐函数系数可以通过正则化方法由重力梯度算出。本文在对正则化方法分析的基础上提出了估计球谐函数系数正则解误差的方法,为我国今后发射重力梯度卫星提供技术准备。  相似文献   

10.
本文详细推导了地球引力加速度及其偏导数的计算公式,给出了一组用来计算正规化球谐函数的递推关系。这组递推关系优于一般文献上所给出的用来计算非正规化球谐函数的递推关系,它避免了由于不同阶、级非正规化球谐函数数值相差过大而引起的计算精度的损失。在卫星精密轨道确定中已经证明这种算法是非常有效的。  相似文献   

11.
扩展高阶和超高阶重力场模型的构制与应用的数值稳定性取决于超高阶次缔合勒让德函数的计算方法。文中详细介绍了现有的多种缔合勒让德函数的递推计算方法:标准前向列推法、标准前向行推法、跨阶次递推法和Belikov列推法。从计算速度、计算精度和计算溢出问题3个角度分析比较了阶次高至2 160阶的各种方法的优劣。通过数值试验证明,Belikov列推法和跨阶次递推法是计算超高阶次缔合勒让德函数较优的方法,而其他几种方法不能用于超高阶次缔合勒让德函数的计算。文中结论为超高阶次球谐综合与球谐分析的数值计算提供了可靠的依据。  相似文献   

12.
An algorithm for the determination of the spherical harmonic coefficients of the terrestrial gravitational field representation from the analysis of a kinematic orbit solution of a low earth orbiting GPS-tracked satellite is presented and examined. A gain in accuracy is expected since the kinematic orbit of a LEO satellite can nowadays be determined with very high precision, in the range of a few centimeters. In particular, advantage is taken of Newton's Law of Motion, which balances the acceleration vector with respect to an inertial frame of reference (IRF) and the gradient of the gravitational potential. By means of triple differences, and in particular higher-order differences (seven-point scheme, nine-point scheme), based upon Newton's interpolation formula, the local acceleration vector is estimated from relative GPS position time series. The gradient of the gravitational potential is conventionally given in a body-fixed frame of reference (BRF) where it is nearly time independent or stationary. Accordingly, the gradient of the gravitational potential has to be transformed from spherical BRF to Cartesian IRF. Such a transformation is possible by differentiating the gravitational potential, given as a spherical harmonics series expansion, with respect to Cartesian coordinates by means of the chain rule, and expressing zero- and first-order Ferrer's associated Legendre functions in terms of Cartesian coordinates. Subsequently, the BRF Cartesian coordinates are transformed into IRF Cartesian coordinates by means of the polar motion matrix, the precession–nutation matrices and the Greenwich sidereal time angle (GAST). In such a way a spherical harmonic representation of the terrestrial gravitational field intensity with respect to an IRF is achieved. Numerical tests of a resulting Gauss–Markov model document not only the quality and the high resolution of such a space gravity spectroscopy, but also the problems resulting from noise amplification in the acceleration determination process.  相似文献   

13.
This paper is devoted to the spherical and spheroidal harmonic expansion of the gravitational potential of the topographic masses in the most rigorous way. Such an expansion can be used to compute gravimetric topographic effects for geodetic and geophysical applications. It can also be used to augment a global gravity model to a much higher resolution of the gravitational potential of the topography. A formulation for a spherical harmonic expansion is developed without the spherical approximation. Then, formulas for the spheroidal harmonic expansion are derived. For the latter, Legendre’s functions of the first and second kinds with imaginary variable are expanded in Laurent series. They are then scaled into two real power series of the second eccentricity of the reference ellipsoid. Using these series, formulas for computing the spheroidal harmonic coefficients are reduced to surface harmonic analysis. Two numerical examples are presented. The first is a spherical harmonic expansion to degree and order 2700 by taking advantage of existing software. It demonstrates that rigorous spherical harmonic expansion is possible, but the computed potential on the geoid shows noticeable error pattern at Polar Regions due to the downward continuation from the bounding sphere to the geoid. The second numerical example is the spheroidal expansion to degree and order 180 for the exterior space. The power series of the second eccentricity of the reference ellipsoid is truncated at the eighth order leading to omission errors of 25 nm (RMS) for land areas, with extreme values around 0.5 mm to geoid height. The results show that the ellipsoidal correction is 1.65 m (RMS) over land areas, with maximum value of 13.19 m in the Andes. It shows also that the correction resembles the topography closely, implying that the ellipsoidal correction is rich in all frequencies of the gravity field and not only long wavelength as it is commonly assumed.  相似文献   

14.
New spherical integral formulas between components of the second- and third-order gravitational tensors are formulated in this article. First, we review the nomenclature and basic properties of the second- and third-order gravitational tensors. Initial points of mathematical derivations, i.e., the second- and third-order differential operators defined in the spherical local North-oriented reference frame and the analytical solutions of the gradiometric boundary-value problem, are also summarized. Secondly, we apply the third-order differential operators to the analytical solutions of the gradiometric boundary-value problem which gives 30 new integral formulas transforming (1) vertical-vertical, (2) vertical-horizontal and (3) horizontal-horizontal second-order gravitational tensor components onto their third-order counterparts. Using spherical polar coordinates related sub-integral kernels can efficiently be decomposed into azimuthal and isotropic parts. Both spectral and closed forms of the isotropic kernels are provided and their limits are investigated. Thirdly, numerical experiments are performed to test the consistency of the new integral transforms and to investigate properties of the sub-integral kernels. The new mathematical apparatus is valid for any harmonic potential field and may be exploited, e.g., when gravitational/magnetic second- and third-order tensor components become available in the future. The new integral formulas also extend the well-known Meissl diagram and enrich the theoretical apparatus of geodesy.  相似文献   

15.
Computations of Fourier coefficients and related integrals of the associated Legendre functions with a new method along with their application to spherical harmonics analysis and synthesis are presented. The method incorporates a stable three-step recursion equation that can be processed separately for each colatitudinal Fourier wavenumber. Recursion equations for the zonal and sectorial modes are derived in explicit single-term formulas to provide accurate initial condition. Stable computations of the Fourier coefficients as well as the integrals needed for the projection of Legendre functions are demonstrated for the ultra-high degree of 10,800 corresponding to the resolution of one arcmin. Fourier coefficients, computed in double precision, are found to be accurate to 15 significant digits, indicating that the normalized error is close to the machine round-off error. The orthonormality, evaluated with Fourier coefficients and related integrals, is shown to be accurate to O(10?15) for degrees and orders up to 10,800. The Legendre function of degree 10,800 and order 5,000, synthesized from Fourier coefficients, is accurate to the machine round-off error. Further extension of the method to even higher degrees seems to be realizable without significant deterioration of accuracy. The Fourier series is applied to the projection of Legendre functions to the high-resolution global relief data of the National Geophysical Data Center of the National Oceanic and Atmospheric Administration, and the spherical harmonic degree variance (power spectrum) of global relief data is discussed.  相似文献   

16.
Fourier transform summation of Legendre series and D-functions   总被引:4,自引:1,他引:3  
The relation between D- and d-functions, spherical harmonic functions and Legendre functions is reviewed. Dmatrices and irreducible representations of the rotation group O(3) and SU(2) group are briefly reviewed. Two new recursive methods for calculations of D-matrices are presented. Legendre functions are evaluated as part of this scheme. Vector spherical harmonics in the form af generalized spherical harmonics are also included as well as derivatives of the spherical harmonics. The special dmatrices evaluated for argument equal to/2 offer a simple method of calculating the Fourier coefficients of Legendre functions, derivatives of Legendre functions and vector spherical harmonics. Summation of a Legendre series or a full synthesis on the unit sphere of a field can then be performed by transforming the spherical harmonic coefficients to Fourier coefficients and making the summation by an inverse FFT (Fast Fourier Transform). The procedure is general and can also be applied to evaluate derivatives of a field and components of vector and tensor fields.  相似文献   

17.
18.
G. Sona 《Journal of Geodesy》1995,70(1-2):117-126
The correct use of ellipsoidal coordinates and related ellipsoidal harmonic functions can provide a representation of linearized Geodetic Boundary Value Problems (GBVP) much closer to the exact ones than what is usually done in spherical approximation: this becomes important in the present age, since terms of the type e2N, possibly amounting to several dozens of centimetres, are nowadays observable.Although the theory of ellipsoidal harmonics has been introduced into geodesy by several authors to treat gravity global models, the numerical computation of ellipsoidal harmonics of high degree and order seems to be more critical than it has been recognized. In particular, exact recursive relations display a quite unstable behaviour, no matter what normalization constants are used; it is only through particular representation of hypergeometric functions that it is possible to find a sound method for numerical manipulation. Also the asymptotic approximations, exploiting the smallness of the eccentricity, e2, are analysed in relation to their critical behaviour for particular values of degree and order, it is shown that a limit layer theory can provide a simpler, better, and stable approximation of the exact values of ellipsoidal harmonics.  相似文献   

19.
Spherical harmonic series, commonly used to represent the Earth’s gravitational field, are now routinely expanded to ultra-high degree (> 2,000), where the computations of the associated Legendre functions exhibit extremely large ranges (thousands of orders) of magnitudes with varying latitude. We show that in the degree-and-order domain, (ℓ,m), of these functions (with full ortho-normalization), their rather stable oscillatory behavior is distinctly separated from a region of very strong attenuation by a simple linear relationship: , where θ is the polar angle. Derivatives and integrals of associated Legendre functions have these same characteristics. This leads to an operational approach to the computation of spherical harmonic series, including derivatives and integrals of such series, that neglects the numerically insignificant functions on the basis of the above empirical relationship and obviates any concern about their broad range of magnitudes in the recursion formulas that are used to compute them. Tests with a simulated gravitational field show that the errors in so doing can be made less than the data noise at all latitudes and up to expansion degree of at least 10,800. Neglecting numerically insignificant terms in the spherical harmonic series also offers a computational savings of at least one third.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号