首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report monitoring observations of 20 high-luminosity active galactic nuclei (AGN), 12 of which are radio-quiet quasars (RQQs). Intranight optical variability (INOV) was detected for 13 of the 20 objects, including 5 RQQs. The variations are distinctly stronger and more frequent for blazars than for the other AGN classes. By combining these data with results obtained earlier in our programme, we have formed an enlarged sample consisting of 9 BL Lacs, 19 RQQs and 11 lobe-dominated radio-loud quasars (RLQs). The moderate level of rapid optical variability found for both RQQs and radio lobe-dominated quasars (LDQs) argues against a direct link between INOV and radio loudness. We supplemented the present observations of 3 BL Lacs with additional data from the literature. In this extended sample of 12 well observed BL Lacs, stronger INOV is found for the EGRET detected subset.  相似文献   

2.
In this paper, we collect the redshift, bolometric luminosity, the full- width at half maximum of the Hβ emission line, the monochromatic luminosity at 5100 Å and the radio loudness for the sample of 117 quasars, including 20 radio-quiet quasars (RQQs) and 97 radio-loud quasars (RLQs). With the reverberation mapping method we calculate the black hole mass and Eddington ratio for this sample, as well as the radio luminosity from the total 5 GHz ?ux density. By analyzing the correlations among them, we obtain the following conclusions: (1) The black hole mass has weak correlations with the bolometric luminosity, radio loudness and radio luminosity for the RQQs, and has strong correlations with the bolometric luminosity, radio loudness and radio luminosity for the RLQs; (2) For the RQQs, the bolometric luminosity has weak correlations with the radio luminosity and 5 100 Å monochromatic luminosity, and for the RLQs, the bolometric luminosity has strong correlations with the radio luminosity and 5 100 Å monochromatic luminosity; (3) The RQQs and RLQs differ in the distributions of the black hole mass, emission line width and Eddington ratio. Based on these results, we suggest: the difference of emission line width between RQQs and RLQs is probably caused by the difference of black hole mass; the fundamental difference between RQQs and RLQs is caused by the difference of their intrinsic physical nature; the black hole mass, black hole spin, Eddington ratio, and host galaxy morphology are the important parameters to explain the origin of radio loudness and the double-peaked distribution; and the radio jet is closely related with the accretion rate of disk.  相似文献   

3.
Although radio-quiet quasars (RQQs) constitute ≳ 90 per cent of optically identified quasar samples, their radio properties are only poorly understood. In this paper we present the results of a multi-frequency VLA study of 27 low-redshift RQQs. We detect radio emission from 20 objects, half of which are unresolved (≤ 0.24 arcsec). In cases where significant structure can be resolved, double, triple and linear radio sources on scales of a few kpc are found. The radio emission (typically) has a steep spectrum (α ∼ 0.7, where S  ∝ ν−α), and high brightness temperatures ( T B ≥ 105 K) are measured in some of the radio components. The RQQs form a natural extension to the radio luminosity–absolute magnitude distribution of nearby Seyfert 1s. We conclude that a significant fraction of the radio emission in RQQs originates in a compact nuclear source directly associated with the quasar. There are no significant differences between the radio properties of RQQs with elliptical hosts and those in disc galaxies within the current sample.  相似文献   

4.
We present an extensive X-ray spectral analysis of the cores of 19 Faranoff–Riley type II sources in the redshift range 0.5 < z < 1.0 which were selected to be matched in isotropic radio power. The sample consists of 10 radio galaxies (RGs) and nine quasars. We compare our results with the expectations from a unification model that ascribes the difference between these two types of sources to the viewing angle to the line of sight, beaming and the presence of a dust and gas torus. We find that the spectrum of all the quasars can be fitted with a single power law, and that the spectral index flattens with decreasing angle to the line of sight. We interpret this as the effect of increasingly dominant inverse Compton X-ray emission, beamed such that the jet emission outshines other core components. For up to 70 per cent of the RGs we detect intrinsic absorption; their core spectra are best fitted with an unabsorbed steep power law of average spectral index Γ= 2.1 and an absorbed power law of spectral index Γ= 1.6, which is flatter than that observed for radio-quiet quasars (RQQs). We further conclude that the presence of a jet affects the spectral properties of absorbed nuclear emission in active galactic nuclei. In RGs, any steep-spectrum component of nuclear X-ray emission, similar to that seen in RQQs, must be masked by a jet or by jet-related emission.  相似文献   

5.
We present the results of a comparative study of the intranight optical variability (INOV) characteristics of radio-loud and radioquiet quasars, which involves a systematic intra-night optical monitoring of seven sets of high luminosity AGNs covering the redshift rangez ≃ 0.2 toz ≃ 2.2. The sample, matched in the optical luminosity—redshift(M B—z) plane, consists of seven radio-quiet quasars (RQQs), eight radio lobedominated quasars (LDQs), five radio core-dominated quasars (CDQs) and six BL Lac objects (BLs). Systematic CCD observations, aided by a careful data analysis procedure, have allowed us to detect INOV with amplitudes as low as about 1%. Present observations cover a total of 113 nights (720 hours) with only a single quasar monitored as continuously as possible on a given night. Considering the cases of only unambiguous detections of INOV we have estimated duty cycles (DCs) of 17%, 12%, 20% and 61% for RQQs, LDQs, CDQs, and BLs, respectively. The much lower amplitude and DC of ESfOV shown by RQQs compared to BLs may be understood in terms of their having optical synchrotron jets which are modestly misdirected from us. From our fairly extensive dataset, no general trend of a correlation between the INOV amplitude and the apparent optical brightness of the quasar is noticed. This suggests that the physical mechanisms of INOV and long term optical variability (LTOV) do not have a one-to-one relationship and different factors are involved. Also, the absence of a clear negative correlation between the INOV and LTOV characteristics of blazars of our sample points toward an inconspicuous contribution of accretion disk fluctuations to the observed INOV. The INOV duty cycle of the AGNs observed in this program suggests that INOV is associated predominantly with the highly polarized optical emission components. We also report new VLA imaging of two RQQs (1029 + 329 & 1252 + 020) in our sample which has yielded a 5 GHz detection in one of them (1252 + 020;S 5GHZ ≃ 1 mJy).  相似文献   

6.
Near-IR images, obtained at the ESO-VLT during excellent seeing conditions, of a sample of 17 radio-loud and radio-quiet quasars in the redshift range 1 < z < 2 are presented. The host galaxies of both types of quasars appear to follow the expected trend in luminosity of massive ellipticals undergoing simple passive evolution. We find a systematic difference by a factor ∼2 in the host luminosity between RLQs and RQQs that does not change significantly from z = 2 to the present epoch. Quasar hosts appear thus to be already well formed at z ∼ 2 and similar to massive inactive spheroids. These findings are in disagreement with the predictions of models for the joint formation and evolution of galaxies and active nuclei based on the hierarchical structure formation scenario.  相似文献   

7.
The radio properties of 11 obscured 'radio-intermediate' quasars at redshifts   z ≳ 2  have been investigated using the European Very-Long-Baseline-Interferometry Network (EVN) at 1.66 GHz. A sensitivity of  ∼25 μJy per 17 × 14 mas2 beam  was achieved, and in seven out of 11 sources unresolved radio emission was securely detected. The detected radio emission of each source accounts for ∼30–100 per cent of the total source flux density. The physical extent of this emission is ≲150 pc, and the derived properties indicate that this emission originates from an active galactic nucleus (AGN). The missing flux density is difficult to account for by star formation alone, so radio components associated with jets of physical size ≳150 pc and ≲40 kpc are likely to be present in most of the sources. Amongst the observed sample steep, flat, gigahertz-peaked and compact-steep spectrum sources are all present. Hence, as well as extended and compact jets, examples of beamed jets are also inferred, suggesting that in these sources, the obscuration must be due to dust in the host galaxy, rather than the torus invoked by the unified schemes. Comparing the total to core (≲150 pc) radio luminosities of this sample with different types of AGN suggests that this sample of   z ≳ 2  radio-intermediate obscured quasars shows radio properties that are more similar to those of the high-radio-luminosity end of the low-redshift radio-quiet quasar population than those of Fanaroff–Riley type I (FR I) radio galaxies. This conclusion may reflect intrinsic differences, but could be strongly influenced by the increasing effect of inverse-Compton cooling of extended radio jets at high redshift.  相似文献   

8.
We present the results of multiwavelength observations of cores and hotspots, at L , C , X and U bands with the Very Large Array, of a matched sample of radio galaxies and quasars selected from the Molonglo Reference Catalogue . We use these observations to determine the spectra of cores and hotspots, and test the unified scheme for radio galaxies and quasars. Radio cores have been detected at all wavelengths in all of the quasars in our sample, whereas only ∼50 per cent of the galaxies have cores detected in at least one of the wavelengths . The degree of core prominence in this sample is consistent with the unified scheme for radio galaxies and quasars. A comparison of the distributions of the two-point spectral index of the cores in our sample of lobe-dominated quasars, with the distributions in a matched sample of core-dominated quasars, shows that the distributions for these two classes are significantly different, and this is consistent with the expectations of the unified scheme. The difference in the spectral indices of the two hotspots on opposite sides is also significantly larger for quasars than for radio galaxies, as is expected in the unified scheme. We also investigate the relationship between the spectral index of the hotspots and the redshift or luminosity for our sample of sources.  相似文献   

9.
We have searched the archived, pointed ROSAT Position Sensitive Proportional Counter data for blazars by correlating the WGACAT X-ray data base with several publicly available radio catalogues, restricting our candidate list to serendipitous X-ray sources with a flat radio spectrum ( α r≤0.70, where S ν ∝ ν − α ). This makes up the Deep X-ray Radio Blazar Survey (DXRBS). Here we present new identifications and spectra for 106 sources, including 86 radio-loud quasars, 11 BL Lacertae objects, and nine narrow-line radio galaxies. Together with our previously published objects and already-known sources, our sample now contains 298 identified objects: 234 radio-loud quasars [181 flat-spectrum quasars: FSRQ ( α r≤0.50) and 53 steep-spectrum quasars: SSRQ], 36 BL Lacs and 28 narrow-line radio galaxies. Redshift information is available for 96 per cent of these. Thus our selection technique is ∼90 per cent efficient at finding radio-loud quasars and BL Lacs. Reaching 5-GHz radio fluxes ∼50 mJy and 0.1–2.0 keV X-ray fluxes a few ×10−14 erg cm−2 s−1, DXRBS is the faintest and largest flat-spectrum radio sample with nearly complete (∼85 per cent) identification. We review the properties of the DXRBS blazar sample, including redshift distribution and coverage of the X-ray-radio–power plane for quasars and BL Lacs. Additionally, we touch upon the expanded multiwavelength view of blazars provided by DXRBS. By sampling for the first time the faint end of the radio and X-ray luminosity functions, this sample will allow us to investigate the blazar phenomenon and the validity of unified schemes down to relatively low powers.  相似文献   

10.
We present spectroscopic observations of a sample of faint gigahertz peaked‐spectrum (GPS) radio sources drawn from the Westerbork Northern Sky Survey (WENSS). Redshifts have been determined for 19 (40 per cent) of the objects. The optical spectra of the GPS sources identified with low‐redshift galaxies show deep stellar absorption features. This confirms previous suggestions that their optical light is not significantly contaminated by active galactic nucleus-related emission, but is dominated by a population of old (>9 Gyr) and metal-rich (>0.2 [Fe/H]) stars, justifying the use of these (probably) young radio sources as probes of galaxy evolution. The optical spectra of GPS sources identified with quasars are indistinguishable from those of flat-spectrum quasars, and clearly different from the spectra of compact steep‐spectrum (CSS) quasars. The redshift distribution of the GPS quasars in our radio-faint sample is comparable to that of the bright samples presented in the literature, peaking at z ∼2–3. It is unlikely that a significant population of low-redshift GPS quasars is missed as a result of selection effects in our sample. We therefore claim that there is a genuine difference between the redshift distributions of GPS galaxies and quasars, which, because it is present in both the radio-faint and bright samples, cannot be caused by a redshift–luminosity degeneracy. It is therefore unlikely that the GPS quasars and galaxies are unified by orientation, unless the quasar opening angle is a strong function of redshift. We suggest that the GPS quasars and galaxies are unrelated populations and just happen to have identical observed radio spectral properties, and hypothesize that GPS quasars are a subclass of flat-spectrum quasars.  相似文献   

11.
We report on the search for distant radio-loud quasars in the Cosmic Lens All Sky Survey (CLASS) of flat spectrum radio sources with S 5GHz>30 mJy . Unresolved optical counterparts were selected from APM scans of POSS-I plates, with e <19.0 and red o − e >2.0 colours, in an effective area of ∼6400 deg2. Four sources were found to be quasars with z >4 , of which one was previously known. This sample bridges the gap between the strong radio surveys with S 5GHz>200 mJy and the samples of radio-weak quasars that can be generated via radio observations of optically selected quasars. In addition, four new quasars at z >3 have been found. The selection criteria result in a success-rate of ∼1:7 for radio-loud quasars at z >4 , which is a significant improvement over previous studies. This search yields a surface density of 1 per 1600 deg2, which is about a factor of ∼15 lower than that found in a similar search for radio-quiet quasars at z >4 . The study presented here is strongly biased against quasars beyond z >4.5 , since the e -passband of the POSS-I only samples the spectra shortward of 1200 Å at these redshifts.  相似文献   

12.
We present optical (∼3200 to ∼9000 Å) off-nuclear spectra of 26 powerful active galaxies in the redshift range 0.1≤ z ≤0.3, obtained with the Mayall and William Herschel 4-m class telescopes. The sample consists of radio-quiet quasars, radio-loud quasars (all with −23≥ M V ≥−26) and radio galaxies of Fanaroff–Riley Type II (with extended radio luminosities and spectral indices comparable to those of the radio-loud quasars). The spectra were all taken approximately 5 arcsec off-nucleus, with offsets carefully selected so as to maximize the amount of galaxy light falling into the slit, whilst simultaneously minimizing the amount of scattered nuclear light. The majority of the resulting spectra appear to be dominated by the integrated stellar continuum of the underlying galaxies rather than by light from the non-stellar processes occurring in the active nuclei, and in many cases a 4000-Å break feature can be identified. The individual spectra are described in detail, and the importance of the various spectral components is discussed. Stellar population synthesis modelling of the spectra will follow in a subsequent paper.  相似文献   

13.
We report results of an 18-ks exposure with the ACIS instrument on Chandra of the powerful z =0.62 radio galaxy 3C 220.1. The X-ray emission separates into cluster gas of emission-weighted kT ∼5 keV , 0.7–12 keV luminosity (to a radius of 45 arcsec) of 5.6×1044 erg s−1 and unresolved emission (coincident with the radio core). While the extended X-ray emission is clearly thermal in nature, a straightforward cooling-flow model, even in conjunction with a point-source component, is a poor fit to the radial profile of the X-ray emission. This is despite the fact that the measured properties of the gas suggest a massive cooling flow of ∼130 M yr−1, and the data show weak evidence for a temperature gradient. The central unresolved X-ray emission has a power-law spectral energy index α ∼0.7 and 0.7–12 keV luminosity of 1045 erg s−1, and any intrinsic absorption is relatively small. The two-point spectrum of the core emission between radio and X-ray energies has α rx=0.75 . Since this is a flatter spectrum than seen in other sources where the X-ray emission is presumed to be radio-related, regions close to the active galactic nucleus (AGN) in this source may dominate the central X-ray output, as is believed to be the case for lobe-dominated quasars. Simple unification models would be challenged if this were found to be the case for a large fraction of high-power radio galaxies.  相似文献   

14.
We explore the relationship between the extended radio and line emission for a radio-loud quasar sample including both core-dominated and lobe-dominated quasars. A strong correlation is present between the extended radio and broad-line emission. The core emission is also correlated with the broad-line emission for core-dominated quasars in the sample. The statistical behaviour of the core emission of lobe-dominated quasars is rather different from that of core-dominated quasars. The extended radio luminosity is a good tracer for jet power, while the core luminosity can only be a jet power tracer for core-dominated quasars.  相似文献   

15.
It has been claimed by Taylor et al. that the low-redshift end of the K – z relation for radio galaxies is too bright by about half a magnitude owing to contributions from the obscured quasar nuclei. Such a result has major implications for the use of the K -band Hubble diagram in understanding the cosmological evolution of radio galaxies. In this paper we present 1–5-μm imaging data of a nearly complete sample of low-redshift radio galaxies; this approach allows us to determine accurately the strengths of any unresolved nuclear components in the galaxies. We detect nuclear sources in five targets, whose broad-band colours are consistent with reddened quasar spectra. In all the five cases the ratio of the inferred intrinsic near-infrared luminosity to the narrow-line luminosity is typical of quasars. We find a correlation between the inferred nuclear extinction and core-to-lobe ratio, which places constraints on the geometry of the torus. We find evidence for a shift of the K – z relation to fainter magnitudes, but by a much smaller amount (∼0.1 mag) than determined by Taylor et al. Under the assumption that the nuclear sources in radio galaxies have the same intrinsic near-infrared spectra as quasars, our multiwavelength images allow us to limit any possible shift to less than 0.3 mag.  相似文献   

16.
We discuss the relative merits of mid-infrared and X-ray selection of type 2 quasars. We describe the mid-infrared, near-infrared and radio selection criteria used to find a population of redshift   z ∼ 2  type 2 quasars which we previously argued suggests that most supermassive black hole growth in the Universe is obscured. We present the optical spectra obtained from the William Herschel Telescope, and we compare the narrow emission-line luminosity, radio luminosity and maximum size of jets to those of objects from radio-selected samples. This analysis suggests that these are genuine radio-quiet type 2 quasars, albeit the radio-bright end of this population. We also discuss the possibility of two different types of quasar obscuration, which could explain how the ∼2–3:1 ratio of type 2 to type 1 quasars preferred by modelling our population can be reconciled with the ∼1:1 ratio predicted by unified schemes.  相似文献   

17.
We have observed a sample of 149 Seyfert galaxies and radio-quiet quasars at 13 cm with both a 275-km radio interferometer and the 6-km compact array of the Australia Telescope. The high-resolution observations searched for the presence of compact, high-brightness-temperature radio emission from the active nucleus. The low-resolution observations measured the total radio emission from the galaxy disc and Seyfert core and lobes. From these we draw the following conclusions. (i) Seyfert galaxies that lack compact radio cores display a correlation between radio and far-infrared (FIR) emission similar to the correlation displayed by normal spirals, albeit with greater scatter. The correlation is found to be intrinsic and is not an artefact of the richness effect. (ii) A very different radio–FIR correlation is displayed by those Seyferts that harbour compact radio cores. These tend to be more radio-loud than either normal spirals or the Seyferts that lack compact cores. The compact core emission thus seems to be responsible for the generally poor radio–FIR correlation displayed by Seyfert galaxies. (iii) The radio–FIR correlation is not significantly improved by subtracting off the 0.1-arcsec (20- to 200-pc) compact radio emission from the total radio emission. This suggests that the emission from the active galactic nucleus has significant structure on scales larger than 0.1 arcsec. Perhaps these structures are the 'linear' radio features that have been seen previously in Seyfert nuclei.  相似文献   

18.
We present spectra of six luminous quasars at   z ∼ 2  , covering rest wavelengths 1600−3200 Å. The fluxes of the UV Fe  ii emission lines and Mg  ii λ2798 doublet, the line widths of Mg  ii and the 3000 Å luminosity were obtained from the spectra. These quantities were compared with those of low-redshift quasars at   z = 0.06–0.55  studied by Tsuzuki et al. In a plot of the Fe  ii (UV)/Mg  ii flux ratio as a function of the central black hole mass, Fe  ii (UV)/Mg  ii in our   z ∼ 2  quasars is systematically greater than in the low-redshift quasars. We confirmed that luminosity is not responsible for this excess. It is unclear whether this excess is caused by rich Fe abundance at   z ∼ 2  over low-redshift or by non-abundance effects such as high gas density, strong radiation field and high microturbulent velocity.  相似文献   

19.
A sample of 47 faint Gigahertz Peaked Spectrum (GPS) radio sources selected from the Westerbork Northern Sky Survey (WENSS) has been imaged in the optical and near-infrared, resulting in an identification fraction of 87 per cent. The R  −  I R  −  K colours of the faint optical counterparts are as expected for passively evolving elliptical galaxies, assuming that they follow the R -band Hubble diagram as determined for radio-bright GPS galaxies. We find evidence that the radio spectral properties of the GPS quasars are different from those of GPS galaxies. The observed distribution of radio spectral peak frequencies for GPS sources optically identified with bright stellar objects (presumably quasars) is shifted compared with GPS sources identified with faint or extended optical objects (presumably galaxies), in the sense that a GPS quasar is likely to have a higher peak frequency than a GPS galaxy. This means that the true peak frequency distribution is different for the GPS galaxies and quasars, because the sample selection effects are independent of optical identification. The correlation between peak frequency and redshift that has been suggested for bright sources has not been found in this sample; no correlation exists between R magnitude (and therefore redshift) and peak frequency for the GPS galaxies. We therefore believe that the claimed correlation is actually caused by the dependence of the peak frequency on optical host, because the GPS galaxies are generally at lower redshifts than the quasars. The difference in the peak frequency distributions of the GPS galaxies and quasars is further evidence against the hypothesis that they form a single class of object.  相似文献   

20.
ROSAT X-ray observations of 3CRR radio sources   总被引:1,自引:0,他引:1  
Over half the 3CRR sample of radio galaxies and quasars has been observed in X-rays with ROSAT pointed observations, and we present results from these observations, discussing many of the sources in detail. The improved spatial resolution of ROSAT over earlier missions allows a better separation of the nuclear and extended components of the X-ray emission. We investigate the relationship between nuclear X-ray and core radio luminosity, and show that our results support a model in which every radio galaxy and quasar has a beamed nuclear soft X-ray component directly related to the radio core. We report evidence for rich cluster environments around several powerful quasars. These X-ray environments are comparable to those of high-redshift radio galaxies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号